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Three methods of numerical determination of the Voigt profile parameters 
from Fabry-Perot (FP) interferogram have been discussed and tested. The 
error simulation has been performed assuming that the error comes from the finite 
number of photons in the signal. The influence of the dark current of the photo
multiplier as well as the slow changes of the intensity of light source during the 
registration time have also been studied. The smallest value of the light intensity 
at the maximum of the line and the region of the Lorentzian and Gaussian widths, 
at which the realiable data may be obtained, have been estimated.

Introduction
This paper deals with the analysis of profiles of pressure-broadened 
spectral lines performed by means of Fabry-Perot interferometers. In 
many cases experimental data on line broadening in the very low pressure 
region reported by various researchers differ markedly, in particular for 
weak lines. As an example the “laser” line of neon A = 632.82 nm may 
be quoted. For this line M a t y u g in  et al. [1] found two different values 
of the pressure broadening coefficient a = d(AvL) ¡dp{AvL — Lorentzian 
width of the line, p — pressure), namely (2.1 ±0.14) xlO-5 cm-1 Pa and 
(1.5 ±0.1) xlO“5 cm-1 Pa, using two methods of data analysis. Similar 
situation was reported by M a t y u g in  et al. [1] for the A =  543.37 nm 
line of neon. For a strong line A = 585.2 nm, however, the same authors 
have obtained the identical value of a by using different methods of 
profile analysis. Very large discrepancies exist for the Bel line A = 582.02 
nm, where two different methods of data analysis yielded the values 
a =  7.5 xlO“5 cm-1 Pa [2] and 1 .8xl0“5cm“1 Pa [3].

These discrepancies are probably due to the accuracy of the numerical 
procedure applied to the analysis of line profiles and to the different pro
pagation of experimental errors in different methods.

Three different procedures of determining the Lorentzian and 
Gaussian widths of spectral line are here discussed. In particular a pro
cedure, which consists of direct comparison of the measured line shape 
with the Voigt profile, with the inclusion of overlaping of interference 
orders is discussed. The accuracy of this procedure as well as of two other

* This work was carried on under the Research Project M.R. I. 5.
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procedures for determining the Lorentzian and Gaussian width has been 
tested.

In the present work a particular attention has been paid to the error 
propagation in these methods. To this aim the method of error simulation 
was used which also enabled to estimate the lowest values of the signal 
at the maximum of line at which reliable results could still be obtained.

Numerical analysis of the Fabry-Perot interferograms
The detection of signal in a spectrometer with the Fabry-Perot inter
ferometer (FPI) can be performed either by a direct data recording by 
a recorder, or by digital methods using a scalar or a multichannel analyser. 
In the case of the digital detection of signal the results are obtained in 
the form of a sequence of positive integers. An example of an interfero- 
gram obtained from the FPI by means of a digital method is shown in 
fig. 1. This interferogram was obtained for the l  =  568.93 nm line of

K/2 K/2 K/2 K/2

Fig. 1. The interferogram of the Nel X =  568.9 nm spectral line. N  — the number 
of counts (for explanation see text)

neon by means of the spectrometer described recently [4] using a glow 
discharge tube at neon pressure 1.06 xlO-2 Pa and the discharge current 
1.45 mA, with the spacer 1.513 cm.

Our computer analysis of the interferogram begins with searching for 
the abscissa of maximum for each interference order. For this purpose 
two algorithms have been programmed. The first one is based on the 
assumption that the line profile is symmetric in the vicinity of its maxi
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mum. This assumption is justified for the low-pressure experiments. 
The program finds n points (n being an input value) on both the side 
of the highest point of the whole profile (cf. fig. 1). Having determined 
the set of these 2ft+1 points, the program uses every subset of 3, 4,
2n+1 points (not all of them laying on the same side of maximum) to 
determine the parabola by means of the least square fit. The arithmetic 
mean of all the abscissae of these parabolae maxima is taken as the 
abscissa of the maximum, excluding the parabolae having no maxima 
within the accepted range of 2ft -j-1 points (the latter concerning the 
cases where the parabola has either a maximum outside this range, or 
a minimum due to noise).

The second algorithm can be used for the analysis of asymmetric 
profiles. In this case, after determining of the set of 2ft +1 points as 
described above, every subset of 2, 3, ..., n points (all lying on the same 
side of the profile) is used to determine the straight line by means of the 
least squares fit. Then the intersection points of every pair of these lines 
are found, the left-side line and the right side one having positive and 
negative derivatives, respectively. The arithmetic mean of all the crossing 
point abscissae is accepted as the abscissa of the maximum analysed. 
This “linear” algorithm is, however, not further discussed, because the 
profiles analysed in this paper are rather symmetric and the first (para
bolic) algorithm appeared to be successful. The possibility of combining 
both the algorithms is also programmed.

To determine the maximum for the next interference order the pro
gram searches for the highest points of the whole profile, excluding of 
the 2ft+1 points already analysed. The maximum is then found by using 
the same algorithm as for the first maximum. This process is continued 
until the given number of the interference orders is analysed. Next, the 
program finds the average distance K  between the maxima. The range 
of ±K/2 (from the left to the right side of every maximum, cf. fig. 1) 
is now identified with the dispersion range from —l/4i to +1/41 (t — the 
distance between the interferometer plates) and the abscissa of every 
point within the given interference order is expressed in the units of 1 /21. 
Then the profiles of all the interference orders are shifted and overlayed 
with each other in such a way, that the abscissae of all the maxima pre
viously calculated fall into the same point. In this way the program pro
duces the “composed” profile, in which the points lying outside the inter
val ±l/4< are omitted. Fig. 2 presents the “composed” profile obtained 
from the interferogram shown in fig. 1. Basing on this “composed” 
profile the function values in the equidistant points are calculated using 
the parabolic interpolation.

The experimentally observed line profile B{y) is a convolution of 
the Fabry-Perot instrumental function A(v) and the “true” line profile 
!(?):
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Fig. 2. The observed shape of the Nel A =  568.9 nm line obtained from the inter-
ferogram shown in fig. 1

OO
B(v) =  J A(v-v')I(v')dv' (1)

—  O O

where v — wavenumber.
Formally, the profile I  {v) can be found by using the Fourier transform 

method. Let a(s) and b(s) denote the Fourier transforms of the A{v), 
B(y) functions, respectively. Then I(v) is given by

I ( v ) =  —  f e~2™7csds 
2 n J a(s) (2 )

(the integration variables s has the meaning of time). If the transform 
a(s) becomes zero for some values of s, the unique solution of (2) is not 
possible. Moreover, if there are no a priori assumptions concerning the 
properties of the I(v) function, the experimental errors may cause a rather 
big uncertainty of the solution. This uncertainty can be avoided, however, 
under some assumptions on the spectral line shape, cf. [5]. In our analysis 
we have assumed, that I(v) is the Yoigt profile.

exP [ — (2l/ln2y/Avd)2] 
(AvLl2 r+ \y -v y

(3)

where I 0 — normalizing factor; AvD, AvL — Doppler and Lorentzian 
half-width, respectively, and the integration variable y has the meaning 
of the wavenumber.
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Here we investigate three methods of the line shape analysis, using the 
additional assumption that the Fabry-Perot instrumental function A(y) 
can be represented by the Airy function:

A(v) Ao

1 +  Fsin2

where:
F =  412/(1 — B )2,
B — reflectance of the interferometer plates, 
v0 — wavenumber of the line maximum,
Avi — the free spectral range of the interferometer, 
A 0 — normalization factor.

(4 )

Method 1

According to Ballik [6] the convolution of the FPI-Airy function and 
the Yoigt profile can be expressed analytically as follows:

where:

G{x)
B{x)
B( 0)

oo
%+ 2 ’(Be-i r e - nI>/4cos (nx)

n= 1________________________
oo

i +  £  (Be~L)ne;n D
n=l

L = nTL,

n

D Vhi2 Fd1

(5)

( 6) 

(7)

x = 2,n(v —v0) I Av{

r L  =  A v L /A v i t  r D  =  A v J A v ^

(8)

(8a)

Let Ax denote the half-width of the function G{x). In the Ballik 
method the ratio B(n)IB(0) and the ratio of the half-width Ax to the 
free spectral range Av{ should be determined. Next, the values of D and 
Be"7' can be found graphically. In order to calculate the B(n) and B{0) 
values, the parabolic interpolations are used within the range of 0.12 
and 0.07 of interference order, respectively. The half-width Ax is then 
found from B(0) using the linear interpolation within the range of 0.04 
of the interference order. The numerical values quoted above were deter
mined by tentative calculations (numerical experiment). These values 
correspond to the cases for which the ratio Ax/Sti ranges from about 0.1 
to about 0.35.
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M ethod 2

In this method the experimentally observed periodic function B(x) is 
reduced to an aperiodic function Bx {x) in the interval [ — n, n] :

Bx(x) =  B{x)-r{x), (9)

where r(x) represents the contribution due to the higher interference 
orders. If the Fabry-Pérot instrumental function is the Airy function, 
it can be expanded into the series of the Lorentz profiles (cf. e.g. [7])

where:
Av,·

M = ------ l-lnR , (11)
n

A x — normalization factor, 
x — is given by (8).
If the true line profile is of the Voigt type, (eq. (3)), then Bx(x) is 

also the Voigt profile, with the Lorentzian component

Av.
Avl = Avl ------ -ln  R. (12)

n

In the first approximation, valid when the half-width of B(x) is small, 
compared to Avi, the r(x) function in the interval [ —ji, n] can be ex
pressed as:

r(x)

Using the new variable

h =  A*d 
Avl + Avd

we tabulate the function

(13)

(14)

oo
e(h) = Ax1 B1(0)[ f  B1(x)dx]^1

—  O O

7 (15)
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where Axx — the half-width of the Bx{x) function. We also tabulate the 
function

Y(h)

From (10) it follows that

Axx
Avl +  Avd ' (16)

71 O Oj  B(x)dx = J B1(x)dx.
— 71 —  O O

In practical calculations the function B(x) is normalized to unity 
within one interference order:

f B(x)dx =  1. (17)
— 7l

The values of Bx(0) and Axx can be found in the same way as in the 
method 1. Then, the value of In can be found from the table of e{h) function, 
and the value of Y  from the table of Y{h). Finally, the half-widths 
Avl and Avd can be found from eqs. (14) and (16). The tables of functions 
e(h) and Y(h) are presented in the Appendix.

Method 3

The values of half-widths AvL and AvD, obtained by the method 2, are 
used in the formula (5) to determine L and D, under the additional nor
malization condition (17). The iterative algorithm based on the least 
squares fit is used.

These three methods have been programmed in the Algol-1204 auto
code for the Odra 1204 computer. The program needs the segmentation 
and uses the drum storage. It is available on request. For a rather typical 
case of the interefrogram having two interference orders (~140 experi
mental points) the maxima being determined by means of the parabolic 
algorithm, with n = 6, the total computation time is ~15 min.

Tests and simulation
All the three methods of the analysis of interferograms discussed above 
are developed for the case of an isolated spectral line. They can be, how
ever, applied also in case of lines having non-entirely resolved struc
tures. In such a case the shape of total line should be reduced numerically 
to that of the isolated line. In the present work we consider the case of 
two ovarlapping lines so that the line shape H{x) my be represented as 
the sum:

H{x) -  c[G(x) + pG(x+ô)], (18)

2 — Optica Applicata IX/4
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where c is the number of pulses at the maximum of the line at any count
ing time, /9 — the relative intensity of the second component, <5 — the 
distance between components, G(x) is the shape of the isolated line.

If the distribution H(x) is known the distribution G(x) can be found 
by using the method described in [8]. This method, being an identity 
transformation, does not introduce any additional errors. In this method 
one assumes that both the components have identical shapes and the 
parameters /? and <5 are known. The distribution G(x) determined in this 
way has been further analysed using the three methods discussed above. 
Here (and in the further text) we use the term “Lorentzian width” for 
the sum of the real Lorentzian width AvL and the instrumental width, 
i.e. for

Avl = —  InE. (19)
71

For given values of parameters describing the distribution G{x), 
i.e., Avl and AvD, the function H(x) was tabulated at 68 points within 
one interference order, i.e. the period of function was divided into 68 
parts. Two periods of the function were taken into account in the com
putations. In our calculation we assumed that /3 = 0.1, d =  0.2ti.

The first step in our test was to study the accuracy of the methods 
under consideration. Therefore a series of calculations have been per
formed for the accurate values of the function H(x), and various values 
of r L and r D. The relative errors of the calculated FL and FD values, 
resulting from: the procedure of the “composed” curve construction 
(described above), elimination of the second component and the numerical 
analysis of the interferogram, appeared to be below 0.2 °/0.

In view of the fact that the results of the digital detection are obtained 
in the form of sequence of positive integers, the values of H(x) have 
been approximated by the nearest integers.

The normalizing factor c in eq. (18) simulates the number of the 
counted pulses at the maximum of the line and in the time interval, 
within which the counting is carried out. By performing the calculation 
for various values of c we can estimate the lower limit of the signal at the 
line maximum, at which these methods give realiable results. Such cal
culations were performed for five values of c (c =  200, 500, 1000, 2000, 
and 4000) and for 4 values of FL (0.015, 0.03, 0.06, and 0.12). In all the 
calculations the same value of FD = 0.18 has been used. The analysis 
of the results obtained showed that if the number of pulses at the ma
ximum is below 500 than the accuracy of all the methods drastically 
decreases due to the approximation of H(x) by the nearest integer. For 
small c this approximation yields a curve similar to the step curve, which 
is constant within large intervals in the vicinity of minimum. Therefore, 
in all further calculations we have assumed that c > 500. In order to
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test an error propagation in the considered methods we have performed 
a simulation of both the error for the function describing the observed 
line shape and the background of the photomultiplier. Then using a gene
rator of random numbers we generate a sequence of numbers from the 
interval (0,1). The first number of this sequence is interpreted as the 
value of the distribution function of the standard normal distribution 
N (0,1) (cf. [9]). Further using the Kahn approximation for the distri
bution W(0, 1), the distribution function &(u) has been expressed as 
(for the positive half-axis, cf. [10]):

0{u) = ,e-«2/2 ^ ke—ku

”  (l +  e-*M)2 

where k = Vs/n. We can find the value of v:

, u > 0, (20 )

U

v — 2 J  &(u)du, u >  0. 
0

We can also find the normalized variable u[ 10]:

1 , l  +  t>
u — — In------ ; 0 < v < 1.

k 1 — v
(21 )

The normalized variable u, found in this way, is defined for the positive 
half-axis. In order to get its value for all the real numbers we study the 
next number from the series of the random numbers. If it is smaller than 
0.5 we take — u as the final value of the normalized variable, and if it 
is greater than or equal to 0.5 we take -\-u. In this way for each pair of 
random numbers generated in the interval (0,1) we obtain one value of 
the normalized variable u. Since the counting of pulses is described by 
the Poisson distribution, we assume that the mean standard deviation 
is VH (x), while the values of H [pc) are given by eq. (18) and H (x) + uVS {x) 
was taken as the final value of the “signal” at the given measured 
point. Usually during the measurements various phenomena, such as 
desorption of gases, may appear inside the light source (e.g. discharge 
tube). These effects may cause a decrease of the signal in a way very 
similar to the decrease due to the phenomena of quenching in atomic and 
molecular systems. Therefore, those effects will be called “quasi-quenching”.

In order to include such “quasi-quenching” into our analysis we have 
assumed that the decrease of the signal within one interference order 
may be described by a formula:

I  o (s )
1 + qx 9

(2 2 )

where I 0(x) denotes the value of signal at the abscissa x when there is 
no “quasi-quenching” and q is a constant parameter. This form of I(x)
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was assumed in analogy to the well-known Stern-Volmer formula describ
ing the real quenching [11]. In our calculation the parameter q was 
determined by assuming that the decrease of the signal between the 
first point of the interferogram and the point situated at the distance 
equal to one interference order is equal to 10%. The comparison of the 
results of calculations, with inclusion and omitting of the “quasi-quenching”, 
has proved that the decrease of the signal smaller than 10 % does not 
introduce any essential errors. It turned out that the error of calculated 
values r L and r D caused by the “simulated error” is much greater than 
the error due to the decrease of the intensity of the source caused by 
“quasi-quenching”.

The first step in the analysis of interferograms is to determine the 
positions of particular maxima and their distances from one another. 
The accuracy of the “composing procedure”, which gives the “composed” 
profile, has the most essential influence on the errors of all the methods.

Results of calculations of the position of the first interferogram ma
ximum, for which the decrease of signal due to “quasi-quenching” is 
the largest one, are presented in fig. 3 as a function of the value c of the 
signal at the maximum.

Figure 4 shows the distance between the neighbouring maxima, deter
mined from six different distributions of errors on the curve, as a function

Fig. 3. The deviation dm of the determined position, of the first interference maximum 
as a function of the value c of the signal at the maximum (for lx , =  0.03, Jx> =  0.18). 
The assumed accurate position of the maximum is for dm =  0. The deviation dm 
is given in parts of the distance between the maxima. The points show the values 

dm for various distributions of errors on the curve for a given value of c
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Fig. 4. The dependence of the determined distance d between the maxima on the 
value of c. The assumed value of d is equal to 1 (for explanation see fig. 3)

of the value c. The results shown in figs. 3 and 4 were obtained for the 
curve with a relatively “sharp” maximum {rL =  0.03, r D — 0.18).

Figures 5 and 6 present analogous dependences for the curve with 
a “flat” maximum (rL =  0.3, r D =  0.31). The systematic deviation of 
the position of the maximum is connected with the “quasi-quenching”, 
and with an asymmetry caused by the simulation of the second com
ponent using eq. (18). Owing to the periodic character of A (x) this syste
matic deviation does not play any role, since it does not change the distance 
between the maxima. When the line profile is reduced to the profile of 
an isolated line the position of the maximum of the curve B(x) is changed. 
Since the profiles of spectral lines analysed are symmetric, the final 
position of the maximum is assumed to be the position of the middle 
of the sector Ax, which joins such points on the distribution B(x) for 
which the value of the signal is equal to the half of the values at maximum.

Figures 7 and 8 show the dependence of the mean value of the relative 
errors of the r L and r D:

•̂ 'theor •̂ 'calc and " V  - °̂theor -̂ -̂ calc
rL ' -̂ 'theor 1 D -̂ t̂heor

on the value of parameter c for r L =  0.03, BD =  0.18. These compu
tations were performed for six different distributions of errors on the
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Fig. 5. The deviation dm of the determined position of the first interference maximum 
as a function of c, for r L =  0.3, r D =  0.3 (for explanation see fig. 3)

Fig. 6. Dependence of the distance d between the maxima on c for =  0.3, r D =  0.3. 
The assumed value of d is equal to 1 (for explanation see fig. 3)
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Fig. 7. Dependence of the mean value of the relative error of Pj  ̂on c. The mean values 
were calculated as the arithmetic mean of the absolute values of errors obtained for 

6 distributions of errors on the curve:
• -  the method 1, 3 — the method 2, O — the method 3, T — the largest error occurring for one of 
the six distributions of errors on the curve obtained within one of the three methods used ( /£  = 0.03,

rD =  0 . 2 )

Fig. 8. Dependence of the mean value of the relative error of .Tp on c (for explana
tion see fig. 7)
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curve. Hence, for every c we have obtained six calculated values of r L and 
r D for different distribution of errors on the curve. This means that we 
have obtained six different errors for r L and r D. The error indicated 
in figs. 7 and 8 has the largest value of all the 18 values of errors deter
mined by using three methods discussed in section „Numerical analysis 
of the Fabry-Perot interferogram” (6 errors for each method). The 
mean errors are also shown in figs. 7 and 8. In further analysis only 
one distribution of errors on the curve was applied, namely that for 
which the errors of calculated values of r L and FD are close to the 
mean errors shown in figs. 7 and 8.

Figures 9 and 10 present the dependence of the relative error of the 
Lorentzian width and the Doppler temperature (for different values of c)

Fig. 9. Dependence of the relative error of r L at r D — 0.18, for four values of c: 
o  — c = 500, ·  — c = 1000, A — c =  2000, A — c =  16000. All calculations were 

performed for the same distribution of errors on the curve

on the r L, at FD =  0.18. As it can be seen from figs. 9 and 10, the example 
analysed in figs. 7 and 8 corresponds to the limiting situation, for which 
the reliable results may still be obtained. Similar dependence of the errors 
of the magnitudes FL and FD on the value of FL are shown in figs. 11 
and 12 for Fd =  0.3, and for FD =  0.1 in figs. 13 and 14. The calculations 
were performed by assuming two values of the photomultiplier background, 
namely 36 and 100 pulses in the counting time. It turned out that for 
c >  1000 pulses the results are practically identical for both the values 
of the background. The data discussed above were obtained for the mean 
value of the background equal to 36 pulses.
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Fig. 11. Relative error of l £  v8· Fz, at Pj) =  0.3 (for explanation see fig. 9)

An additional factor which may influence the results of the analysis 
of the interferograms, particularly for weak lines, is the accuracy of the 
value of the substracted background of photomultiplier. In order to
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Fig. 12. Relative error of r D, vs. r L at Tp  =  0.3 (for explanation see fig. 9)

Fig. 13. Relative error of r L vs. r L at r D = 0 . 1  (for explanation see fig. 9)
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Fig. 14. Relative error of r B on J j, at Jj» =  0.1 (for explanation see fig. 9)

estimate the influence of the error of the substracted value of the back
ground on r L and r D the following computations have been performed:

For the value of the mean background equal to 36 pulses and for 
different values of c (c — 1000, 3000, 6000) the error has been simulated. 
From the curves obtained in this way the values of the mean background 
smaller and greater than the real value 36 have been substracted.

Figure 15 shows the dependence of the results of calculations of FL and 
r D for c = 1000 on the value S of the subtracted mean background. 
The simulation of error has been performed for r L =  0.06 and r D = 0.18, 
and for the value of the mean background equal to 36 pulses. This gives 
the value of the signal at the maximum together with the real mean 
background about 200, i.e. B(0)IB(n) =  5. As it can be seen from fig. 15 
one obtains a linear dependence of r L and FB on the value S of the sub
tracted mean background. Similar results were obtained for other values 
of c. It should be noted that the slopes ZD and ZL of the straight lines 
in fig. 15, representing the respective dependences of r D and r L on S, 
depend on the method used in the analysis. The slopes given by the method 
of B a l l ik  [6] are about 1.3-1.6 times greater than those given by the 
methods 2 and 3. Fig. 16 presents the dependence of the slopes ZD and 
ZL on the value of c determined by means of the Ballik method. As it 
can be seen from fig. 16, for c >  5000 the values of become practically 
constant.
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Fig. 15. Dependence of calculated values of ijr, and Jj> at c =  1000 on the value of 
the mean background S. The simulation of error was performed for S  =  36 pulses, 

r_£ =  0.06, r D — 0.2; ·  — method 1, 3 — method 2, O — method 3

Summarizing remarks
A procedure of the curve “composing” has an essential influence on the 
further analysis of the interferograms. The value of the calculated distance 
between the maxima, which can be compared with the value characteristic 
for the particular experimental apparatus is the measure of the accuracy 
of the “composing” procedure. In the apparatus described in [4] this 
characteristic value is equal to the ratio of the length of the Jamin inter
ferometer to the distance between the plates in the FPI. As it can be 
seen from fig. 4 the discrepancies of the results calculated for narrow
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Fig. 16. Dependence of the slope for the method 1 as a function of c. For each c the 
simulation of errors was carried out for three values of the signal at the minimum 
by changing the values of Jjr (the value of the signal with background s was then

changed from 70 to 200)

lines (r L =  0.03, r D = 0.18) are within the 1/68 part of the free spectral 
region as early as for c = 500 pulses. For lines with flat maxima (rL — 0.3, 
r D =  0.31) similar discrepancies are found only for c >  10000 (see fig. 6). 
The analysis of figs. 4 and 6 enables to reject the results of measurements 
charged with large errors, in particular those caused by large noise in 
the vicinity of the maximum. As it can be seen from figs. 9-14, for 
c > 1000 pulses we can determine these values FL which are charged only 
by a little error. Namely, from the comparison of dependences shown in
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figs. 9-14, corresponding to these values of /^(O.l, 0.2, 0.3) it can be 
concluded that the change of the Doppler width in this region affects 
essentially these values of r L, which are not charged with a large error. 
For instance, if 0.03 < PL < 0.3 then for c > 1000 the relative errors of 
both the computed Lorentz width and the Doppler temperature do not 
exceed 10%.

Figure 15 shows that the Ballik method (method 1), being a very accu
rate one, is simultaneously the most sensitive to the background error. 
As it follows from the dependence shown in fig. 16, the influence of the 
background error on the values of r L and r D, determined by the method 1, 
is small for c > 5000. For the methods 2 and 3 the situation is more 
profitable.

In the conclusion we can say that, if the accurate value of the mean 
background is known, then for the “narrow” lines (r L & 0.03, PD 0.2) 
the lower limit of the measured signal at the line maximum cannot be 
lower than 1000 pulses and for the “broad” lines (r L 0.3, r D 0.3) 
it cannot be lower that 5000 pulses. When the value of the mean back
ground is known with a low accuracy then both for the “narrow” and 
“broad” lines c should be greater than 5000. Results obtained in experi
ment are in full accordance with the above conclusions.

All the calculation discussed in this paper were carried out using an 
Odra-1204 computer in the Computing Centre of the Nicholas Copernicus 
University, Torun. The help of the staff of the Centre is greatly acknow
ledged.

Appendix

Tables o f  function e(h) and Y (h)

Table of function s(h)

h 0 1 2 3 4 5 6 7 8 9

0.0 0.6366 0.6366 0.6367 0.6368 0.6370 0.6373 0.6376 0.6379 0.6383 0.6388
0.1 0.6394 0.6400 0.6408 0.6416 0.6425 0.6434 0.6445 0.6457 0.6469 0.6482
0.2 0.6497 0.6512 0.6529 0.6546 0.6565 0.6584 0.6604 0.6626 0.6648 0.6672
0.3 0.6696 0.6722 0.6748 0.6775 0.6804 0.6833 0.6863 0.6893 0.6925 0.6957
0.4 0.6990 0.7024 0.7059 0.7094 0.7129 0.7166 0.7203 0.7240 0.7278 0.7316
0.5 0.7355 0.7394 0.7433 0.7473 0.7513 0.7553 0.7594 0.7635 0.7676 0.7717
0.6 0.7758 0.7800 0.7842 0.7883 0.7925 0.7967 0.8009 0.8051 0.8093 0.8135
0.7 0.8177 0.8219 0.8262 0.8304 0.8345 0.8387 0.8429 0.8471 0.8513 0.8554
0.8 0.8596 0.8637 0.8678 0.8719 0.8760 0.8801 0.8842 0.8882 0.8923 0.8963
0.9
1.0

0.9003
0.9394

0.9043 0.9083 0.9122 0.9162 0.9201 0.9240 0.9279 0.9318 0.9356
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Table of function Y  (h)

h 0 1 2 3 4 5 6 7 8 9

0.0 1.0000 0.9901 0.9804 0.9710 0.9618 0.9528 0.9441 0.9357 0.9275 0.9195
0.1 0.9118 0.9044 0.8973 0.8905 0.8839 0.8776 0.8716 0.8659 0.8605 0.8553
0.2 0.8505 0.8459 0.8416 0.8376 0.8339 0.8305 0.8273 0.8244 0.8217 0.8194
0.3 0.8172 0.8154 0.8137 0.8123 0.8112 0.8102 0.8095 0.8090 0.8087 0.8086
0.4 0.8087 0.8089 0.8094 0.8100 0.8108 0.8118 0.8129 0.8142 0.8156 0.8171
0.5 0.8188 0.8206 0.8225 0.8246 0.8268 0.8290 0.8314 0.8339 0.8365 0.8392
0.6 0.8420 0.8448 0.8478 0.8508 0.8539 0.8571 0.8603 0.8636 0.8670 0.8705
0.7 0.8740 0.8776 0.8812 0.8849 0.8886 0.8924 0.8963 0.9001 0.9041 0.9081
0.8 0.9121 0.9162 0.9203 0.9244 0.9286 0.9329 0.9371 0.9414 0.9457 0.9501
0.9
1.0

0.9545
1.0000

0.9589 0.9634 0.9679 0.9724 0.9769 0.9815 0.9861 0.9907 0.9953
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О  численном анализе интерферограмм Фабри-Перо

Обсуждается и испытывается три метода численного определения параметров профила 
Фоигта по интерферограммам Фабри-Перо. Произведено симуляцю ошибки в предполо
жении что она обусловлена конечным числом фотонов в сигнале. Оценивается найменшая 
величина интенсивности света в максимуме спектральной линии и область лоренцовской 
и гауссовской полуширины при которых получается достоверные результаты.


