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Generalized Vander-Lugt filter*

Tomasz Jannson

Institute of Physics, Technical University of Warsaw, Warsaw, Poland

The effective pupil formalism is applied to analysis of modified holographic 
system  in more general geometry than Vander-Lugt filter. The influence of 
both geometry of the system and film OTF on the resolving power is discussed.

Introduction

The influence of both geometry and film OTF on impulse response of 
holographic optical system (HOS) has been reported by several authors 
[1, 2], but the first general analysis of linear HOS in paraxial approxi
mation, based on Kelly’s model of the film [3], was given by K o z m a  
and Z e l e n k a  [4] and then in [5], where effective pupil function has 
been introduced.

In this paper, the effective pupil formalism was applied to a more 
general holographic system which can be called: generalized Yander-Lugt 
filter system because, in its simpliest case, it is identical with conventional 
Vander-Lugt filter (see e.g. [6]). Such an analysis can be useful in data 
processing holographic devices, and also in some practical cases, for 
instance, when nonlinear effects in emulsion are met, the hologram plate 
must be slightly translated with respect to Fourier plane of the system 
[7], or when using of conventional lenses is not convenient. On the other 
hand, even in conventional Vander-Lugt filter case, the effective pupil 
formalism allows a more precise analysis, especially when the small 
apertures are considered.

Effective pupil function of HOS

In order to define effective pupil function of linear HOS, we shall present 
impulse response (or point-spread function) of the system, under assumption 
that the background terms and the image terms for an object are spatially 
separated. Then the background terms can be omitted. Using signifi
cation as in [5] we obtain impulse response function Ji in paraxial approxi
mation (upper sign corresponds to primary image term and lower sign

* This paper has been presented at the Fourth Polish-Czechoslovakian Optical 
Conference in Rynia (near W arsaw), September 19 -22 , 1978.
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to conjugate one):
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where A is wavelength, A is a constant value and variables: xit y{, z{ ; 
s, zr\ x0, yQy z0 determine geometry (fig. 1) of the object, reference and

reconstructing beams, respectively. Next, variables xlf yx\ x, y , z are 
associated with the hologram plane and wavefront reconstruction space, 
respectively, and -̂ eff is effective pupil function of the HOS which has 
the following product form [5]:

p eu(xi, 2/ii vif y{) =  PF(Xi, y A xi, yi)P{x1, yx), ( 2 )
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where P{x11y1) is the conventional pupil function with P(xx, y t) = 1  
inside the hologram plane and P (#i, yx) — 0 outside of the hologram, 
and PF is a generalized pupil function for the film [5]:

P f ( x i > 3/i ? x i t  V i )  =  ~ \Xx i ~ x f ) 2 j t  ( V i ~ 2/i?’)2] 1'2} ·  (3 )[ z{zr )

The coordinates of the pupil centre in (x±, yx) plane have the form:

xF xF(xi)

Vf  =  V f M
VjZr

zr- Z i ’
(4)

and M ( /)  expressed as a function of local spatial frequency /  is the Optical 
Transfer Function (OTF) with circular symmetry.

Consider the both particular cases interesting in practice: lensless 
Fourier HOS and lens Fourier HOS. For the first case we have z{ =  zr. 
Therefore from eq. (3) we find that the OTF aperturing effect occurs 
in object plane (x{, y{) instead of hologram plane [xx1 y±) and the relation 
(3) is then replaced by an analogous one, with x$ =  —{s{zr)zi standing 
for xFJ and y $  =  0. For the second case the situation is similar, but 
formally we must exchange: Zi->F{ and ($/zt-)->(9r, where F{ — focal 
length of the lens in the recording process, and &r — angle of reference 
plane wave; hence x$ — —Fi6 r, and y $  = 0 .  Therefore, the generalized 
pupil function for these cases (j =  1, 2) may be expressed in the form:

P f i xn Vii xi, Vi) = P F{xi,yi)

=  l i { ^ 5r[( ^ - 4 ,)! +  </S]1,2J, (5)

where: z(p  =  zu ^2) =  Ft .
For the typical model of OTF we have [8]:

W = e x P[ - ( | · ) ”], (6)

where 1. In particular, for n-+oo, the OTF becomes jump function 
with spatial frequency cutoff / 0; hence, for this case, the formula (3) 
has the following form:

where
P(f (xu Vii xn Vi) =  circus

( [(ir1- M 2 +  (y1- ^ ) 2]1/2
\ Rf

EF
tei r̂fo

(7)

( 8 )
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In fig. 2 we present geometrical relations between rectangular holo- 
gram plate and circles with radii BF which characterize the pupil functions 
PF for some discrete object points {xin, yin).

Fig. 2. Illustration of OTF influence, as a masking operation, for discrete point of
the object

For the both Fourier HOS cases, according to eq. (5), the OTF pupil 
is situated in the object plane, and for n =  oo, we obtain formulae similar 
of eq. (7) but with B $  =  ^ V o 

lt  would be noted, that from eqs. (3)—(7) the HOS is not isoplanatic, 
in general, even in a paraxial approximation. Fortunatelly, for sufficiently 
small objects, the isoplanarity condition is usually fullfiled, although it 
depends on the sizes of the region Af, where Modulation Transfer Function 
(MTF) is nearly constant. From the above OTF model, (see eq. (6)) we 
have Af =  rfM)(n)-fQ, where the shape coefficient r] depends, of course, 
on the restriction required for AM in ( / , / +  Af) region. For example, when 
1 <  n <  2, ?7(<u) я« 0.1 and (̂0 01) 0.01. Therefore, according to the
above remarks, we get from eqs. (4), (5), (8) the following isoplanarity 
conditions :

lAxjrl
—- —  <  ri{n), for Fresnel HOS, (9a)

IljP

\Дх.\
— 1 ■■ <  r](n), for Fourier HOS. (9b)

BF

For optical frequencies and real materials, the basic parameter A/0 
(characterizing the film OTF influence on P eff) is in range 0.1-0.2.
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Assuming /„  =  0.1, we obtain the following results, according to (9a, b): 
\Axi\!zi <  O.lry(w) for both Fresnel HOS and lensless Fourier HOS, and 
\Axi\li'i <  0.1r}{n) for lens Fourier HOS.

For isoplanatic HOS, we can introduce coherent transfer function 
(CTF) E  (see e.g. [6]) which in our case has the following form:

where fx, f v — spatial frequencies of the image.
The form of the CTF determines two-dimensional pass-band of the 

HOS and by the same means its resolving power. In the first approxi
mation, the procedure for HOS resolution determination is as follows: 
for given hologram sizes we find P(x ,y )  and for a given geometry of the 
system and cutoff frequency of the film / 0 we find P {§) (see eq. (7)) and, 
finally, A simple example of such procedure is presented in fig. 3.

Fig. 3. Analogy between isoplanatic HOS and band-pass filter; transfer function
H  is shown for f y =  0

We can see that the pass-band in ¿c-direction is contained within the range: 
LX/2L· <  fx <  \cc0\/L· and resolving power decreases about two times in 
comparison with the case when the OTF influence is omitted.

For general nonisoplanatic case, the above method can be easily 
generalized, because the eq. (10) holds also in isoplanatic region of arbi
trary object; hence, when the object is locally isoplanatic, we get the

6 — O ptica  A p p lica ta  IX/4
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following, general formula:

X

êf f ( ~  Azfx > ~ tefv>

I f L . sJ_____ L Ml
u  ■t  It 0, *Jl ( H )

The form of generalized CTF allows very interesting interpretation 
of the HOS resolution in information theory formalism: the pass-bands 
of the optical channel connected with HOS are different for several 
isoplanatic regions of the object.

Properties of generalized Vander-Lugt system
The HOS considered in previous chapter may be treated as a subsystem 
of a more general system, analysed below.

It would be noted that although the HOS is not generally isoplanatic 
in relation to the variables («, y) and (x{, y{), it has this property in the 
case of the variables (x , y ) and («0, y0) (see eqs. (1), (2)). In other words, 
the isoplanatism of the system is assured by placing an object in the 
(x0, y0) plane, during the reconstructing process. Moreover, in this case, 
we have a complete analogy with conventional optical system. Really, 
from eq. (1), the image equation can be written in the form of Fresnel 
lens equation:

analogical to classical equation for the both lenses (for Fourier HOS 
we have F H =  oo). By rescaling the «-variables in the following manner:

« 1 — — , X^ — M X ,̂ Xq — ÏÏIqXq
ÀZ

(13)

(the same being done for the ylt y{ and y0 variables), where m =  zlz{ — 
the magnification of HOS, and m0 =  zfz0 — the magnification of Fresnel 
(holographic) lens, we obtain, for point in [xit y{) plane, the following 
equation:

+ 0 0

V0(x,y) y - y o ) U 0{x01y0)d£0d$0, (14)
— OO

where h* is the impulse response of the HOS (see eq. (1)) for conjugate 
image, after rescaling, U0{x0, y0) characterizes the object placed in the 
(« 0 , Vo) plane. However the function V0(x, y) may be treated as a response 
of a more general holographic system called generalized Vander-Lugt 
filter on the point object situated in (x{ , y{) plane.
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Now, let us assume an isoplanatic HOS. Hence, according to condi
tions (9a, b) we get:

V i t  V i )  = V i j  0, 0), (15a)
and

l*(pc- i »0, y - y o; »<> fa) =  **0»- ^ o y - y 0-  fa) · (15b)
By placing an additional object in (xif y{) plane (see fig. 4) and rescaling 
the variables, we obtain a double convolution relation in the conjugate

Fig. 4. Geometry of generalized Vander-Lugt filter

image plane:
+ 00

W(x,y)  =  / / / / * * ( » . o~ xi, fa - fa )  u 0{ x - x 0, y - y 0)x
— oo

x  ft* (®i j fa) dxi dVi dxo dy0. (16)

The Fourier transform of the above relation has the form:

W(fx, fv) =  B ( /* ,/„ )  t t ( f x, fv) X 

X-Peat-■**/*> -tefvi °> ° )exP №(17) 
where:

W(fxJ v) =  F{W (x ,y )} ,  (18)

fto ( /* ,/„) =*'{Uo@o,yo)},

fti(fxJv) - F m ^ f a ) } .

Thus the spatial filtering of the rescaled Fourier transform ft0 and 
ft* takes place in the hologram plane.
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Finally, it can be proved from eq. (17) that the system, considered 
above, performs the same task as Vander-Lugt filter. Moreover, it operates 
in more general geometry than the last one. In particular, when Peff =  
m =  m0 =  1, slzr-*0r and (the lens Fourier HOS), we obtain
a conventional Yander-Lugt filter. Additionally, from eq. (17) it results 
that influence of the both OTF and geometry of the system on the re
solving power of common (Fresnel) HOS is analogous to the case of 
generalized Yander-Lugt filter.

The geometry and OTF influence on the effective pupil function 
form is presented in fig. 5. The geometrical considerations, those illustrated 
in fig. 3, implicate the following relation for rectangular hologram plate 
with sizes Lx, Ly:

P efi = P ,  for b >  1,
Pea =  for — 1 <  b <  1, (19)
P eff =  0, for b <  1, 

where the parameter b has the form:

From fig. 5 we can see that the interval A@r, for P eff ^  P  (OTF 
influence) increases with increasing \z{ — zr\ and decreasing A/0. For example, 
for Lx =  10 cm, zt =  20 cm, A/0 =  0.2 and zr =  23 cm, we get, from

Fig. 5. Illustration of eqs. (19), (20), for L x — 10 cm and z =» 20 cm

fig. 5, Or =  0.155-0.24; hence s ^  3.65-8.6 cm. Therefore, in practice 
the relation (17), with P eff P, is often of importance, even in con
ventional Yander-Lugt filter case.
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Conclusions
Since the influence of the system geometry and OTF generate the phase- 
- amplitude masks situated in hologram and object plane, the effective 
pupil formalism is very useful for system analysis of the ÏÏOS. Therefore, 
in terms of information theory, the HOS can be treated as a multi-channel 
optical filter with different two-dimensional spatial frequency pass-bands 
for several isoplanatic regions of the object plane. Next, by treating the 
HOS, as a subsystem of a more general system, the analysis of the latter 
can be carried out, as for instance, for the holographic system called 
in this paper generalized Yander-Lugt filter.

The further generalization of the system, by adding the third object 
situated in plane zr =  constant, does not introduced any significant 
complications (such a system is connected with Gabor’s idea of associative 
memories [9]). Also, the influence of the additional effects as: partial 
coherence [10] and Gaussian shape of the beams can be easily adapted.

Finally, the above procedure allows a global analysis of the linear 
holographic system in terms of structural information formalism.
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Обобщенный фильтр Вандер — Люгта
Применён формализм эффективного зрачка для анализа модифицированной голографи
ческой системы с более общей геометрией, чем фильтр Вандер-Люгта. Обсуждено вли
яние как геометрии системы, так и оптической функции переноса для плёнки на разреша
ющую силу.


