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STANISLAW BIEDUGNIS*

MATHEMATICAL MODEL OF THE PRESSURE SEWERAGE
SYSTEM FOR DESIGN PURPOSES AND ANALYSIS OF ITS

OPERATION

Pressure sewerage system is one of the most recent solutions to the problems of sewage dis-
“ posal.

The paper presents a mathematical model that can be used in solving design and exploitation
problems related to the pressure sewerage system. A special attention has been paid to the following
problems: 1. total hydraulic analysis of the pressure sewerage system, 2. the problems of hydraulic
calculation of pressure sewerage system, 3. mathematical model for the design purposes and ana-
lysis of the operation of pressure sewerage systems.

The scope of the present paper covers branched network systems, assuming that hydraulic
characteristics of their technical components are given. The total hydraulic analysis of the pressure
sewerage system operation has been performed by Freeman’s graphical method. This method con-
sists in graphical solving of the set of nonlinear algebraic equations. Considering, however, the fact
that this method is time-consuming a mathematical model has been developed according to which
the problems formulated on the basis of a general hydraulic analysis could be solved. This model
was based on the assumption that in hydraulically long conduits filled completely with sewerage,

the pressure flow is forced by pumps.

DENOTATIONS
a; — hydraulic characteristics of the aggregate,
a;—! — reverse hydraulic characteristics of the aggregate,
aj 1, a;, — data describing the hydraulic characteristics of the aggregate,
d; — internal diameter of the conduit(mm),
d’; — the assumed internal diameter of the conduit (mm),

g — acceleration of gravity (m/s?),

h — length of interval (m),

h; — hydraulic characteristics of the branch,

h;—1 — reverse hydraulic characteristics of the branch,
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hf — total hydraulic characteristics of branches,

hgi — hydraulic losses in the main conduit (m),
k%€ — total hydraulic characteristics of the branches operation,

h;g — total hydraulic characteristics of the operation of pressure sewerage system

h; — hydraulic losses in small conduit (m),

i — index of conduits (nodes) of the network,

iy — small conduit at the sucking side of the aggregate,

iy — small conduit at the pumping side of the aggregate,

j — index of the hydraulic characteristics point,

k — number of aggregates,

k; — roughness of the conduit internal walls (mm),

l; — length of the conduit (m),

m — number of subintervals,

m’ — length of time interval of the aggregate tank emptying (min),
n — number of aggregates (small conduits) or segments of the main conduit,
n’ — length of time interval of the aggregate tank filling up (min),
n”” — number of points determining the aggregate characteristics,

p — number of conduits (nodes) of the network,

p’ — probability of the event Xj,

q — probability of the event X’;,

r — number of aggregates operating simultaneously,

r; — hydraulic characteristics of the conduit,

r,~_1 — reverse hydraulic characteristics of the conduit,

v; — mean selfpurification velocity (m/s),

v,; — difference of the mean real and selfpurification velocity (m/s),
v,;; — mean real velocity (m/s),

w; — node number,

z; — ordinate of the sewage level in the aggreagte tank (m),

zle; — ordinate of the pressure line (m),

z, — ordinate of the sewage level at treatment plant inlet (m),

A; — pressure-tank aggregate,

D — pressure sewerage system tree,

DP — Dbasic tree of pressure sewerage system,

G — branch of pressure sewerage system,

H; — overpressure with respect to the assumed reference level (m),
H, — initial value of the limiting pressure (m),

Hg,; — limiting overpressure (m),

Hpa.x — maximal value of overpressure (m),

H,; — useful lifting height of the aggregate (m),

N — number of branches,

P — conduit of pressure sewerage system,

P(R) — probability of the event R,

P(R) — probability of the event R,

Q; — flow intensity (dm3/s),

Q; — aggregate output (dm?3/s),

Omax — maximal value of flow intensity (dm?/s),
Qwi — flow intensity in mode (dm?3/s),

R — event of a simultaneous emptying of r tanks,
R — opposite event R,
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Re — Reynolds number,

R; — segment of the main conduit,

S — set of commercial diameters (mm),

T — time at which more than k aggregates will operate (years),
X; — event of the aggregate tank emptying,

,

X; — event of the aggregate filling,

W — pressure sewerage system node,

Z; — ordinate of overpressure in auxiliary piezometer (m),

Z;; — ordinate of overpressure in auxiliary piezometer connected to the pressure conduit of the small
conduit (m),

o — coefficient of local hydraulic resistance,

A; — coefficient of linear hydraulic resistance,

» — kinematic coefficient of sewage viscosity (m?/s),

m — pi number,

Q, ' — determinacy sets of characteristics.

1. SUBJECT, PURPOSE, AND SCOPE OF THE PAPER

Pressure sewerage system is one of the most recently developed solutions in the do-
main of sewage fiisposal [2, 4-7, 11-13, 19, 20].

The purpose of the paper is to present a mathematical model useful in solving the de-
sign and operation problems related to pressure sewerage system. The paper deals with
branched systems, assuming that hydraulic characteristics of the systems’ components
are given. Ring systems and the problems concerning detailed technical solutions of the se-
werage system, as well as the optimization problems are beyond the scope of the paper.

2. GENERAL HYDRAULIC ANALYSIS OF THE PRESSURE SEWERAGE SYSTEM

Pressure sewerage systems consist of hydraulic elements which cooperate with one
another, namely: tank-pumping aggregates (feeding sources), pressure laterals, and pres-
sure mains. The total hydraulic analysis of pressure sewerage operation based on Freeman’s
graphic method [, 8-10, 14-18] was performed for the hydraulic system (fig. 1) contai-
ning n pumping aggregates the characteristics of which are given. The aggregates are equip-
ped with tanks, the sewage levels in these tanks being established on the levels z;, where
i = 1, n. Operation of the pressure sewerage system runs as follows: the tanks of the pum-
ping aggregates are filled from the domestic gravity sewerage system, thereupon the tank
is emptied and the sewage forced through a pressure lateral channel into the pressure
main conduit. Automatic start of the aggregates results in a pulsatory flow through the pi-
pes. Thus, the number of the pumping aggregates operating simultaneously at the given
time may be determined with a defined probability. In the case, considered as an example,
there are n aggregates operating simultaneously. The dimensions of all the pipes are gi-
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ven and the values of Q, and H,,, where i = 1, n, should be determined. In order to fa-
cilitate the geometrical interpretation of the above case, the auxiliary piezometers have
been presented in fig. 2.

Wn-1

Z2

Fig. 1. Hydraulic system assumed in analysis of the pressure sewerage system operation
Rys. 1. Hydrauliczny uklad przyjety do analizy ukladu ci$nieniowej sieci kanalizacyjnej

Fig. 2. Distribution of pressures in nodes for hydraulic system presented in fig. 1

Rys. 2. Rozktad ci$nien w wezlach dla hydraulicznego ukladu przedstawionego na rys. 1

The equations of the balances of flows through the nodes are the following:

Q“,,-:ZQJ- for i =1,2,...,n. )
j=1
Using Bernoulli’s equation we get for the separate pipes the following set of equations:
H,=Z—z+h', fori=1,2,...,n, 2)
Z—Z; ,=hgy fori=12,..,n-1, 3)
where
’ li 8Q12 .
hi = (IZ @kJ,—liT{i—) m— fori=12,...,n “)
and
I, 802
heg; = A — Oy for i —1;2,..., 0 4"

“d wtgd
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Solution of the equation 1-3 is reduced to solution of » linear algebraic equations
1 and 27 nonlinear algebraic equations 2-3, where Q,;, Q;, H,;, Z; are unknowns. The sys-
tem of equations 1-3 with 4n unknowns has been completed graphically with the given
characteristics of the pumping aggregates:

a = fi(0) fori=127""n. ®)
Hlm]

Gn-1
Qp-r(n-1,

a,-1-r+(a,-2)
a=

as-1-rq
a:
ap-2

il

ay-1-r+(a,-2) -1,
O,—7-r+(02—2}—/‘2+ ..... +0,.1-(n-1)

|

r |

Ay ~1-r+(ay=2)-ry+...+Qp-y - (n=1) -1, 4

an

ay -1-r+(ay,-2)-ry +..+Qn-1-(N-1) -1,_g+(ap-n}
an-n

[

I orus)

Fig. 3. Graphical solution of the system of equations 1-3
Rys. 3. Rozwiazanie graficzne ukfadu réwnan 1-3

A graphical solution of the system of equations 1-3, 5 is presented in fig. 3. The pro-
cedure consists in a consecutive summation of the characteristics of pumping aggregates
and pipes and in establishing the working points of the system analyzed according to
the relations 1-3. Functions 2-3, 5 have been presented in the same system of coordinates.

3. PROBLEMS CONNECTED WITH A HYDRAULIC CALCULATION OF A PRES-
SURE SEWERAGE SYSTEM

Design of the pressure sewerage system is based on the following data: topography
of the ground, site planning, type and series of the tank-pumping aggregates, and loca-
tion of wastewater treatment plant. The above data are used to set up the location of con-
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duits and to choose the aggregates and diameters of pipes. In case when there exists a pres-
sure sewerage system the following problems may arise: a new feeding source may be
added and its operation parameters should be established, the parameters of the existing
feeding sources may be changed, the necessary extension of the sewerage system, etc.

To solve the above tasks the following types of problems have been formulated for
the hydraulic calculation of the sewerage considered:

PROBLEM 1

For the given pressure sewerage system consisting of:

1. r tank-pumping aggregates the characteristics and sewage levels z;, where i= 1, r
being given, and of

2. p pipes determined preliminary by d}, 1, k;, where i = f—p—, the diameters d; of
the pipes should be selected from the available set S of the commercial diameters having
in mind that the given rate of selfpurification in the pipe should be achieved and the over-
pressure in node be not exceeded.

PROBLEM 2

For the given pressure sewerage system composed of:

1. p tank-pumping aggregates the characteristics and sewage levels z;, where i = 1, p
being given, and of

2. p pipes determined by d,, /,, k;, where i = 1, p determine the flow intensities @,

(RN &4

and useful pumping heights of the aggregates H,;, where i = 1, p.
The problems of the type I refer to design tasks, those of the type II — to the opera-
tion.

4. MATHEMATICAL MODELLING OF THE PRESSURE SEWERAGE SYSTEM
FOR DESIGNING AND OPERATIONAL PURPOSES

Considering the fact that the hydraulic systems of the sewerage are usually very large
and that Freeman’s graphical method is tedious and time-consuming, a mathematical
model should be developed to solve the above formulated problems. This model was
based on the following assumptions:

in hydraulically long pipes the flow is forced with pumps,

the motion is continuous, steady, and isothermic,

the characteristics of the pumping aggregates are shifted vertically with respect to
the assumed reference level on the ordinate z, of the outlet to the treatment plant.
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The systems of the sewerage considered should satisfy the following conditions: in
each pipe the selfpurification velocity v, should be achieved once a day (24 h), and maxi-
mal overpressure in the most distant or the lowest point (i.e. most disadvantageous)
of the network should not exceed the limiting value H,, more often than every T years.
For the above assumptions and basing on the laws of the theory of graphs, algebra

and probability calculus, the following mathematical model has been constructed:

where:

Basic tree DP denotes a set of branches reaching a common node W and one branche
originating from this node.

G 2tz P W P W P W, A4

Branch G denotes the conduit P ended with node or an alternative sequence of con-
duits and nodes beginning with a conduit and ending with a node.

Pl —

By a conduit we mean a segment connecting two nodes in the network W : : = O.
By a node we mean each characteristic point of the network. By a pressure tree of sewe-
rage system we mean each coherent oriented graph which does not include cycles.

Nodes in which there appears an aggregate are described by the characteristics (5),

whereas the conduits are described by the characteristics r; = f;(Q;), where i =1, p.
The characteristics @; and r, are defined within the interval 2 = [O : Qy,,]. The flow
intensity Q,,., is the flow caused by a simultaneous operation of the maximal number
of the pumping aggregates in the time interval 7. Characteristics of aggregates used in
pressure sewerage system are continuous and monotonic. The characteristics of conduits
are monotonic and their continuity may be obtained by coupling their segments in the points
corresponding to Re = 2320 and Re = 4000. Hence, it follows that there exists reverse
characteristics: a7 ' e C[Q'] and r; ' e C[2'], where Q' =[O : H,,,].
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In order to determine the characteristics of cooperation of the separate elements of
the pressuré sewerage tree, the following operations have been introduced to the set of
characteristics: _

operation @ equivalent to the common addition of characteristics a; !, where i =Tp
in the set Q,

operation @ equivalent to the common substraction of characteristics a;, r,, where
i= lhp- in the set Q,

operation |E} equivalent to common addition of reverse characteristics of the coope-
ration of the branch h; !, where i’ = 1, N in the set Q.

The characteristics of cooperation between the separate elements of the pressure se-
werage tree. have been determined by means of the following recurrent relationships:

a o for i =1
hyiy = ; ©)
hy ,©Or for 1l <i<n—l,
h@a,; fori=1
e )
hy »@a;,; for 1 <i<n—1,
B8 = K [ BE (%] ... [ K5, ®)

Working points of the pressure sewerage tree have been determined with the help
of the following relations:
working point 1

l h;g(QI) =1 (@),

®
\ &, =r @,
the remaining working points
hy_(@)=H, , fori=12,..,p—1, (10)
Ry ! fori=1,2,...,p—1
- I 2i2(0) p (11)

la,-(Q,-) for i =p.

The operation of the pressure sewerage system consists in an automatic start of the pum-
ping aggregates, occurring periodically. The moments at which the aggregates start ope-
rating depend exclusively on the filling up of their tanks, whereas the operation time of an
aggregate is the function of the tank volume, hyperpressure, and the aggregate charac-
teristics.

Considering the fact that the pressure in the sewerage system is subject to rapid chan-
ges, it is very difficult to establish in detail the duration of the operation cycles of the ag-
gregates. Therefore to determine the probability of a simultaneous operation of aggre-
gates it has been assumed that the duration of an operation cycle corresponds to the over-
pressure in the sewerage system. This probability was calculated in the following way:
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let m’ denotes the time interval in which the aggregate tank is emptied (min), n" denotes
the time interval in which the aggregate tank is filled up (min), and k denotes the number
of aggregates calculated from the size of settling unit. For X; denoting the event, consis-
ting in fact that the tank of the i-th aggergate is being emptied at the given moment, the pro-
bability of this event is

'=PX)=—— fori=12,..,k, (12)

whereas the probability of the event X;, consisting in fact that at the given time moment
the i-th aggregate tank is being filled, is:

’

n
gq=PX))=—— fori=12,..,k. (13)
m-+n

By R we denote the probability that at the given time moment r tanks (r < k) are
being emptied. The probability of this event is:

P(R) = P,()+P, )+ ... +P,(r—1)+P,(r)

K\ o, [k k
= (0)p°q"+ (l)p‘q"‘1+ oo ol (,,)p’q"", (14)

whereas the probability of an opposite event R, consisting in fact that at the given time
moment more than r aggregates will operate simultaneously, is

P(R) = 1—P(R). (15)

The value m’, m’ < n’, has been assumed as an elementary time unit. Thus, it may
be assumed that P(R) is the estimate of the frequency of the event R. Hence, on the ave-
rage, the event R will will take place every

1

T 16
P(R) % 525600 ° '° )

Starting with the mathematical model formulated in the way presented above, the al-
gorithm and programmes of hydraulic calculation of the problems given in this paper
have been worked out for the computer. A general block diagram of the algorithm for
the solution of the type I problem is presented in fig. 4, the same for the problem of the ty-
pe II being given in fig. 5.

The validity of the mathematical model has been verified by comparing the results
of computer calculations and that obtained by graphical Freeman’s method. From the com-
parison it follows that the upper limit of the absolute error does not exceed the value

of 0.01. Thus, Q; and H,;, where i = f;;, have been calculated with the accuracy of 0.01
dm3/s and 0.01 m, respectively.
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calculation of the characteristics of the
pressure sewage system tree
cooperation (3]

l

calculation of working points of the
pressure sewage system tree [3]

i=11)p

write results;
Wi, 2,0y

read data:
w,, n., 2z

read data:
li, di ' ki

read data:
91, G2

Hmax=An2

Rys. 4. Ogolny schemat blokowy algorytmu rozwiazania zadania I typu

Fig. 4. General block diagram of the algorithm for the solution of the problem of the type I
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read data:
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read data:
li ,di ki

N

Hmax=0dn,2
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Fig. 5. General block diagram of the algorithm for the solution of the problem of the type Ilc

Rys. 5. Ogblny schemat blokowy algorytmu rozwigzania zadania II typu
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5. FINAL REMARKS

In view of the assumptions taken, the mathematical model presented in this paper
describes the nature of phenomena occurring in pressure sewerage system, provided that
the pipes are completely filled up with wastewater.

From the paper presented, some suggestions can be inferred concerning further re-
search and investigations, of which the most important are the following:

mathematical model assuming the forced flow or the gravity one with a free water
level,

mathematical model for ring systems,
introduction of optimization calculus into the problems considered.
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MODEL MATEMATYCZNY SIECI KANALIZACYJNEJ DLA POTRZEB PROJEKTOWANIA
I ANALIZY JEJ DZIALANIA

Jednym z ostatnio rozwijanych rozwigzan w dziedzinie odprowadzania $ciekOw jest ciSnieniowa ka-
nalizacja. )

W opracowaniu przedstawiono model matematyczny przydatny do rozwiazywania zadan projekto-
wych i eksploatacyjnych dotyczacych ci$nieniowej kanalizacji ze szczegdlnym uwzglednieniem nastepu-
jacych fragmentow tego problemu: 1. ogdlnej hydraulicznej analizy pracy uktadu ci$nieniowej kanali-
zacji, 2. zadania hydraulicznego obliczania cisnieniowe;j sieci kanalizacyjnej, 3. modelu matematycznego
dla potrzeb projektowania i analizy dzialania ukladow cisnieniowej kanalizacji.

Zakresem opracowania objeto rozgalezione uklady sieciowe przy zalozeniu, ze jego skiadowe ele-
menty techniczne maja dane charakterystyki hydrauliczne. Do ogoélnej hydraulicznej analizy dzialania
uktadoéw cisnieniowej kanalizacji zastosowano graficzna metod¢ Freemana. Metoda Freemana polega
na graficznym rozwiazaniu ukladu algebraicznych rownan nieliniowych. Uwzgledniajac jednak praco-
chlonno$¢ tej metody opracowano model matematyczny dla potrzeb rozwigzywania zadan sformulo-
wanych na podstawie ogodlnej hydraulicznej analizy. Model matematyczny sformutowano przy zalozeniu,
7ze w calkowicie wypetnionych $ciekami przewodach hydraulicznie dtugich wystepuje przeptyw ci$nienio-
Wy wymuszony pompami. :

MATHEMATISCHES MODELL ZUR PROJEKTIERUNG UND ZUR ANALYSE DER ARBEITS-
WEISE EINES EI:ITWASSERUNGSNETZES

Zur Beseitigung von Abwasser wird in neuester Zeit auch die Druckentwisserung vorgeschlagen.

Der Beitrag beinhaltet ein mathematisches Modell einer Druckkanalisation mit spezieller Bertick-
sichtigung: 1. einer allgemeinen hydraulischen Analyse der Arbeitsweise der Druckkanalisation, 2. der hyd-
raulischen Berechnungsweise eines Drucknetzes und 3. eines mathematischen Modells fiir den Bedarf
und zur Analyse der Arbeitsweise der Druckentwisserung.

Die Arbeit umfasst veristelte Netze mit der Annahme, daB alle Elemente einen hydraulischen Cha-
rakter haben. Zur allgemeinen hydraulischen Analyse des Drucknetzes wurde die graphische Methode
von Freeman verwendet. Die Freeman’sche Methode baut auf graphischen Losungen von algebraischen,
nichtlinearen Gleichungen. Sie ist jedoch zeitaufwendig und aus diesem Grund wurde ein mathematisches
Modell fiir den Bedarf der gestellten Aufgaben erarbeitet unter Bezug der allgemeinen hydraulischen Ana-
lyse. Das mathematische Modell formulierte man bei der Annahme, daB3 der Durchflufl in mit Abwasser
voll gefillten Langrohren durch Pumpen erzwungen wird.

MATEMATUYECKASI MOJEJIb KAHAJTM3ALIMOHHOM CETU JIS1 HYXK]T
TTPOEKTUPOBAHUS 1 AHAJIM3A EE JIEMCTBUS

OnmaEM u3 Pa3BUBACMbIX B HACTOAIIECC BPEMSA pemeﬂuﬁ B obiacTu yaaneHusi CTOYHBIX BOJ ABJIACTCA
HamopHasA KaHaJIA3alus. '
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B pa3pa6oTke mpenioxkeHa MaTeMaTHYECKasd MOIEIb, OPATOJHAS Uil PEIICHHS IPOEKTHBIX M 3KCIUTY-
aTAIMOHHBIX 3a/a4, KACAIOIMUXCsS HAOPHOM KaHAIA3AIHN C OCOOCHHBIM YIETOM ClenyromuX GpparMeHTos
370 mpobnemsr: 1. 06IIEro ruapaBIMYECKOro aHamu3a paboThl CHCTEMEI HAOPHOM KaHAIW3aLHud, 2, 3a-
JIa¥| THOPAB/IAYECKOTO pacyéTa HAIOPHOH KaHAIM3AUHNOHHOM! CETH, 3. MATEMATHIECKOM MOJEIH I Hy KT
NPOEKTAPOBAHMS M AHAJA3A AEHCTBHS CHCTEM HANOPHOM KaHaIIM3allkH.

TIpenensl pa3pabOTKH OXBATHIBAJIM PA3BETBIEHHBIC CETEBBIE CHCTEMBI IPH NONYIICHHH, YTO €ro CO-
CTABHBIE TEXHHYECKHE 3IEMEHTEl HMEIOT JaHHBIC THAPABIAYECKON XapaKTepuCTHKA. [ obmero raapas-
JIAYECKOTO aHAJIM3a NECHTBHS CHCTEM HATIOPHOM KaHalm3auud ObUT mpEMeHEH rpadmueckuit Meton Ppu-
Mara. Mertox ®praMaHa COCTOUT B rpadMYeCKOM DEIIEHHH CHCTEMBI are0pamdecKux HeTMHEUHBIX ypaB-
HeHmi. OOHAKO, YUMTHIBAsT TPYHOEMKOCTH 3TOTO MeTona, Obuia pa3paboTaHa MaTeMaTHYeCKas MOIENH
AL HYX] perienns 3a1a4, chopMyImpOBaHHBIX Ha OCHOBE O0IIEro rufpaBiIM4YecKoro anamusa. Martema-
THYECKass MOIENb OblTIa CHOpMyIApOBaHA NPH NPEINOI0XKECHAR, YTO B THAPABINYECKA IIMHHBIX BOIOBO-
ax, LEJTMKOM 3aItOJIHEHHBIX CTOYHBIMH BOJAMH, BBICTYNAET HAIIOPHOE TEYCHHUE, BRIHYKICHHOE HACOCAMH.




