Vol. 9

1983

No. 3

COMMUNICATION

WOJCIECH ROSZAK*, WŁADYSŁAW PĘKALA**

TREATMENT OF TANNERY EFFLUENT BY IRRADIATION

Tannery effluent is characterized by high concentration of organic matter and toxic substances, like sulphide, phenols and chromium compounds. In order to meet the standards, the concentration of phenol should be decreased to 40 g/m^3 and that of sulphide to 3.0 g/m^3 ahead of disposal into a municipal sewerage system. As a method of pretreatment the irradiation was applied.

Synthetic-vegetable tanning liquor or aqueous solution of single tannins were exposed to γ -radiation from a ⁶⁰Co source (activity 7.4×10² TBq) at room temperature; the dose rate was 0.48 Gy/s, the maximal total dose being 45 kGy. The 400 cm³ samples of tannery effluent were irradiated at the Institute of Applied Radiation Chemistry of the Technical University in Łódź. Some samples were aerated during irradiation. The flow rate of the air was about 50 m³/h. The compositions of irradiated solutions are presented in tab. 1.

Table 1

Solution	Concentration kg/m ³	Phenol C _o g/m ³	$\begin{array}{c} COD\\ g \ O_2/m^3 \end{array}$	$\begin{array}{c} \textbf{BOD} \\ \textbf{g} \ \textbf{O_2}/m^3 \end{array}$
Synthetic-vegetable tanning	1. A.			
liquor		1790	236000	26900
Synthetic-vegetable tanning				
liquor effluent		240	18900	1030
Phenol	0.9500	950	2190	54
Mimosa	10.04	18.8	12560	961
Quebrache	10.00	43.8	13290	656
Rotanine BN (I)	10.88	144	9010	277
Rotanine BN (II)	4.12	30.0	3500	95
Rotanine BNS	10.04	15.0	6730	187

Characteristics of tannins solutions Charakterystyka roztworów garbników

* Institute of Geological Sciences, University of Wrocław, ul. Cybulskiego 30, 50-205 Wrocław, Poland.

** Institute of Applied Radiation Chemistry, Technical University of Łódź, 93-590 Łódź, ul. Wróblewskiego 15, Poland. In samples irradiated the concentrations of phenols (except Rotanine BNS) and organic substances decreased, while their biodegradability (BOD_5/COD) (tab. 2, fig. 1) increased. It has been observed that in samples aerated during the irradiation the degree of phenol removal was greater. The degree of phenol removal from its aqueous solution, subject to irradiation, was consistent with the results obtained by TOUHILL [2].

Table 2

Results of treatment by irradiation the aqueous tannin solutions, dose 45 kGy, γ rays ${}^{60}Co$ Efekt napromieniowania wodnych roztworów garbników, dawka 45 kGy promieniowania γ ${}^{60}Co$

Solutions	Phenol		COD		BOD ₅		BOD ₅ /COD			
	g/m ³	c/c_0	$g O/m^3$	c/c_0	$g \ O/m^3$	c/c_0	before	after		
	Sam	ples aera	ted during	treatment	by irradiat	ion				
Synthetic-vegetable										
tanning	992	0.56	215000	0.91	20500	0.76	0.11	0.095		
Synthetic-vegetable										
tanning liquor										
effluent	51.9	0.22	12100	0.64	2050	1.99	0.055	0.17		
henol	340	0.36	1780	0.81	74	1.37	0.025	0.042		
Aimosa	0.0	0.0	14600	1.00	1890	1.97	0.077	0.13		
luebrache	14.0	0.21	12600	0.94	764	1.16	0.049	0.061		
Rotanine BN (II)	8.0	0.27	3500	0.92	217	3.40	0.027	0.062		
Rotanine BNS	27.5	and the second se	6190	0.92	378	2.05	0.028	0.061		
	Sampl	es nona	erated dur	ing irrac	liation		01020	0.001		
ynthetic-vegetable										
tanning liquor	925	0.52	225000	0.95	21500	0.80	0.11	0.096		
ynthetic-vegetable								0102.0		
tanning liquor										
effluent	97.6	0.41	12000	0.64	1260	1.22	0.055	0.11		
henol	560	0.59	2080	0.95	70	1.29	0.025	0.034		
Concentration of phenol		,1		- Red [%] - 50% -	I – pheno J – pheno J – quebr 144 g Rys. 1. wodnych	 Fig. 1. Concentrations of phenol versus the dose of γ-rays in the aerated tannins solutions <i>I</i> – phenol 950 g/m³, 2 – mimosa 18.8 g/m³, 3 – quebracho 43.8 g/m³, 4 – rotanine BN 144 g/m³, 5 – rotanine BN 30 g/m³ Rys. 1. Zależność stężenia fenoli w wodnych roztworach garbnika od dawki 				
10	20	30	40	+ 100 % 50	4		vania γ ⁶⁰ C 2 – mimoza			
	Dose		(kGy)		3 - quebra	3 – quebracho 43,8 g/m ³ , 4 – rotanina BN 144 g/m ³ , 5 – rotanina BN 30 g/m ³				

106

The dose of 3 kGy caused a twofold decrease of phenol concentration in synthetic-vegetable tanning liquor effluent (fig. 2). Equalization of the sample results in concentrations of phenol which are acceptable in municipal sewerage systems. The cost of irradiation treatment was 29 zl/m^3 , assuming that 80% of the radiation energy was absorbed and that annual regeneration of the ⁶⁰Co source is 12.5%. For comparison: the treatment of the same tannery effluent by activated carbon costed 28 zl/m^3 .

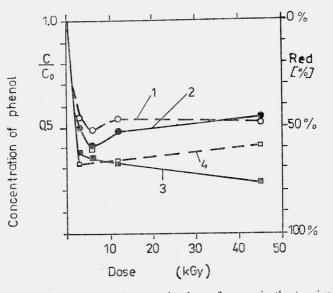


Fig. 2. Concentrations of phenol versus the dose of γ -rays in the tanning liquor 1, 2 – synthetic-vegetable tanning liquor; 3, 4 – synthetic-vegetable tanning liquor effluent; 2, 3 – aerated sample; 1, 4 – nonaerated sample

Rys. 2. Zależność stężenia fenolu w brzeczce od dawki promieniowania γ^{60} Co 1, 2 – brzeczka świeża; 3, 4 – brzeczka zużyta; 2, 3 – próby napowietrzone; 1, 4 – próby nienapowietrzone

REFERENCES

- HASHIMOTO S., MIYATA T., WASHINO M., KAWAKAMI W., A liquid chromatographic study on the radiolysis of phenol aqueous solution, Environ. Sc. Technol., Vol. 13, 71 (1979).
- [2] TOUHILL C. I., MARTIN E. C., FUJIHARA M. P., OLSEN D. E., STEIN I. E., MCDONNEL G., The effects of radiation on Chicago Metropolitan Sanitary District municipal and industrial wastewater, Jour. Wat. Poll. Coutr. Fed., Vol. 42 (2), R 44 (1969).