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ON STOCHASTIC MODELLING 
OF WATER CONSUMPTION 

AND WASTEWATER DISCHARGE 

Stochastic modelling of water consumption, wastewater discharge and water and wastewater 
quality is of great importance in sanitary engineering. It is connected with control of the water and 
wastewater treatment. This paper gives stochastic models of hourly tap water consumption and 
wastewater inflow to a municipal sewage treatment plant through a separate sewer system. 
First-order autoregressive seasonal models (with period S = 24 h) give a good approximation of 
hourly water consumption. The application of such models for the sewage inflow to the treatment 
plant yields worse approximating effects because of irregular disturbance due to the rainfall. 
Taking this disturbance into account enables us to obtain a model which improves the 
approximation. The same holds when wastewater inflow is correlated with water consumption. 

1. INTRODUCTION 

The wide spectrum of problems dealt with in water and wastewater management 
includes among others modelling of flow and quality parameters. Models of that 
kind may have a number of various applications. They are employed to predict water 
consumption [1] or to describe variations of water flow and water quality in streams 
and rivers [2], [3]. Such models may be efficient tools enabling interpretation of 
operating data from wastewater treatment plants [4]—[7], analysis of their dynamics 
[7], [8], and description of the water treatment process for the needs of control [9]. 

In this paper, stochastic models of tap water consumption and wastewater inflow 
to a municipal sewage treatment plant have been presented. Analyses of data 
included hourly water consumption in two different housing estates (one of these is 
situated in a large city [10], the other one in a small town [11]) and hourly 
wastewater flow entering the sewage treatment plant of the same town through a 
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separate sewer system [12]. The separate sewer system receives illicitly precipitation 
water from many inlets. The models enable to obtain forecasts, which can be used in 
water supply and wastewater treatment processes control. 

2. TIME SERIES ANALYSIS AND SOME FUNDAMENTAL NOTIONS 

The methods used in this study are those developed by Box and JENKINs [13]. 
In engineering practice, we often have to deal with series of interrelated 

observations (time series), which are realizations of a given stochastic process. The 
objective of time series analysis is to discover and to quantify the relations that occur 
among the elements of the series. This enables construction of stochastic models. 
Typical examples of time series (which are of great importance in sanitary 
engineering) are hourly water consumption, wastewater flow, and wastewater load. 

The model for a stationary stochastic process acquires the form 

Zi  _ ~1 Z4-1+(P2Zг-г+...+(PP Zг-р+аt• (1) 

It is referred to as autoregressive model (AR) of order p, and may be defined as 
AR (p). Thus, AR (1) denotes a first-order model, and henceforth 

Z = (P1Zг-1+аг. " (2) 

The term Z included in formulae (1) and (2) indicates the deviation of the point value 
from the average of the stochastic process µ and may be written as  Ź,  = Z, - µ, 
whereas a, denotes white noise (i.e., a series of independent random impulses with an 
average value zero, and a constant variance u ). Substitution of the backward shift 
operator ВZг  = Zz  _ 1  (viz. гm Z, = Z,„) into model (1) gives 

W (B) Zt  = at. (3)  

Моде) 

Z г (1- 01  В  - 0 2  B2  - ... Og  Вч) аг, (4) 

which may also be formulated as 

Zг  = O  (В)  а~, 

is referred to as a moving average model of order q, MA (q). 
It is advisable to use models as simple as possible, i.e., those including the least 

possible number of parameters. These may sometimes be achieved by using a 
combined autoregressive-moving average model of order p, q (viz. ARMA (p, q)): 

(p  (В)  Z1  = O  (В) а1. (6) 

It may frequently happen that the processes under analysis fail to be stationary. If 
so, we are sometimes able to make them stationary by differentiation in terms of the 

(5) 
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backward difference operator V or seasonal backward difference operator Vs. Thus, 
we can write 

PZ~ = Z—Zr — i  = (1—В)ZC  = W, 

175 Zt  = Zг —Zг —s = (1— Bs)Z~ = W. 

Whenever necessary, we have to repeat the differentiation procedure d times. 
Models of ARMA type may be fitted to the W series. They are then referred to as 

integrated autoregression-moving average processes, ARIMA (p, d, q), and can be 
expressed as 

(9) 

Having two correlated time series at hand (X, and Y), it is possible to model one 
of these by making use of the information included in the other. This way, we have 
obtained the transfer function model with added noise 

БΡ  (В)  Y = w  (В)  Хг  _ + Nt (10) 

where X, denotes input and Y indicates output. 
Selecting the process ARIMA  (р,  d, q) for the purpose of modelling noise N, we 

can write 

= 8 (В)w(В)Хr-ь+ ср*  (В)О(В)аі . (11) 

Making use of the model (11), it is necessary to choose a delay b in addition to the 
coefficients in operators 8, w, 4p, O, and noise variance 8Q . The choice of an 
appropriate model to describe a given time series is an iterative procedure which 
involves identification, estimation of parameters, and diagnostic checks. 

Autocorrelation function and partial autocorrelation function are two useful 
tools for the identification of ARIMA models. Using the autocorrelation function, we 
can define the differentiation of the time series, which is a prerequisite to obtain a 
stationary process. The autocorrelation function of a stationary process as well as 
the partial autocorrelation function enable the orders of the autoregression operators 
and of the moving average to be determined tentatively. The autocorrelation 
function allows a rough evaluation of the coefficients of the model. More accurate 
calculations are carried out during nonlinear estimation of parameters. Noise at  is 
assumed to be white and to display a normal distribution. The optimization criterion 
adopted at the stage of nonlinear estimation comprises a minimum error mean-
square for the residuals of the model (difference between model and data). 

Once its parameters have been estimated, the model is subject to diagnostic 
checking for determining its adequacy. If the model is found to be inadequate, the 
iteration cycle must be repeated either in full or in part. 

There are two basic factors which decide whether or not the model is adequate — 
the degree of deviation from the adopted independence of residuals and the degree of 

 

 



44 R. W. SZETELA 

deviation from normal distribution. To assess the independence of residuals it is 
convenient to use their autocorrelation function which may be evaluated by checking 
the goodness of fit by test Q. Another convenient tool is the cumulative periodogram. 

The identification of the transfer function model involves the cross-correlation 
function of series X, and Y. The analysis of the function enables rough evaluation of 
the orders of operator 6, operator co (r and s, respectively), and delay b. The 
coefficients of the model should be estimated by the same method as those of the 
ARIMA model. The same holds for the method of determining the adequacy of the 
model. There is, however, one more thing to do — to check the independence of the 
residuals and the input. The most convenient tool to investigate this independence is 
the cross-correlation function of residuals and input, which may be evaluated when 
checking the goodness of fit by test S. More details on it and forecasting procedures 
can be found in Box and JENкINs [13]. 

3. DISCUSSION OF RESULTS 

3.1. WATER CONSUMPTION 

Figure 1 (solid line) gives hourly water consumption Z, for the housing estate of  
Wrocław  (Series A). Raw data were logged prior to further processing (X, = In Zr). 
The autocorrelation function of Series A is shown in fig. 2. The apparent 24-hour 
seasonal component substantiates the necessity of using the seasonal differentiating 
operator V24  to make the series stationary. Figures 3 and 4 illustrate the 
autocorrelation function and the partial autocorrelation function for the dif-
ferentiated series (V24  Xt), respectively. The rapid fade-away of the autocorrelation 
function substantiates the stationary nature of the series. The break of the partial 
autocorrelation function at k > 1 suggests an autoregression model of first order 
(AR (1)). The results of fitting are listed in tab. 1. Figures 5 and 6 give the 
autocorrelation function of noise and the cumulative periodogram of model 
residuals, respectively. Analysing the plots of the figures and taking into account the 
data of tab. 1, we have good evidence that the selected model is adequate. Test x2  

gives good support to the normal distribution of the residuals (d = 0.006, 
SD = 0.157, x2  = 11.9, DI. = 9)*. 

Figure 1 gives a comparison of data and one-step-ahead forecasts calculated by 
making use of the model. The agreement is very good. Taking into account the 
presence of the operator V 5, all forecasts which are more than one step ahead will 
be adjusted to the seasonal nature of the time series. 

The results from the study of hourly water consumption for the housing estate of 
town R (Series B) are plotted in figs. 7-12. The model to be fitted was found to be 

* a — mean, SD — standard deviation, D.f. — degree of freedom. 
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Fig. 1. Hourly water consumption and forecast for the housing estate of a large city (Series A, Z,) 

that for Series A. The results of fitting are listed in tab. 2. The data of tab. 2 as well as 
the plots in figs. 10-12 indicate that the model is adequate. There is a good 
agreement between one-step-ahead forecasts and the data involved. 
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for Series  Fig. 3. Autocorrelation function for differentiated 
Series A (V 24  X,) 
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Fig. 4. Partial autocorrelation function for dif- Fig. 5. Autocorrelation function for residuals of 
ferentiated Series A (1724  X,) model (1 — gyp, B) 1724  X, = a, (Series A) 

Table 1 

Fitting of model (1— gyp, B) 1724  X, = a, to Series A (X, = In Z,) 

Test Q 

 

Variance 
of residuals 

v2  a 

  

Variance X, 
v 2  X 

Parameters 
of model 

Df. 

 

0.209 0.025 (р1  =  0.65±0.06 46.8 

R=0.94 47 

(coefficient of 64 
correlation) 

5% 

К  

.5 

p .25 .5 

Fig. 6. Cumulative periodogram for residuals of model (1— (p,  В) 1724  X, = a, (Series A) 
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Table 2 

Fitting of model (1 —  9і  В)  1724  X, = a, to series  В  (X, = lnZ,) 

Variance X, 
Variance 

of residuals  
б2  

 

Test Q 
Parameters 
of model DЈ  

   

0.0783 0.0121 q = 0.39 ±0.08 31.0  

R = 0.92 47 
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Fig. 7. Hourly water consumption and forecast for town R (Series B, Z,) 
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Fig. 10. Autocorrelation function for residuals of Fig. 11. Cumulative periodogram for residuals of 
model (1 —q В) V2'Х, = a, (Series B) 

Fig. 12. Histogram for residuals of model (1— l  B) 17 24 X, = a, (Series B) 

3.2. WASTEWATER INFLOW TO THE SEWAGE TREATMENT PLANT OF TOWN R 

Figure 13 shows inflow rate variations for the sewage treatment plant of town R 

(Series C, Z) and periods of rainfall R received by this area. The autocorrelation 
function and partial autocorrelation function (after transformation of X, = In Z, and 
V24  Х )  are shown in figs. 14 and 15, respectively. The form of the autocorrelation 
function suggests that model 

(1—(p t B) V24 X, = a,(referred to as M1) 

may be suitable. 
The results of fitting are gathered in tab. 3, and the results of the analysis of the 

model Ml residuals are plotted in figs. 16-18. Neither test Q nor the periodogram 

model (1—  гр  1  В)  1724  Х, = а,  (Series  В)  
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Fig. 13. Inflow to sewage treatment plant of town R (Series C, Z,) 

call the independence of residuals in question and their distribution may be 
considered normal at the significance level between 0.025 and 0.05. Comparison of 
the data with one-step-ahead forecasts (fig. 19) reveals significant discrepancies at 
40 h. These should be attributed to the high inflow rate experienced the day before as 
a result of heavy rain. When transforming model Ml it becomes obvious that the 
actual forecasts are influenced by the inflow rate measured the preceding day. Нёnсе, 
we obtain  

Х  = 0.72Хг-t + Xt _ 24 -0.72х-25+а~. 

    

0.5' 

     

       

       

     

so  

 

0.5 

    

Fig. 14. Autocorrelation function for differentiat- Fig. 15. Partial autocorrelation function 
ed Series C (V24 X,) for differentiated Series C ((7 24 X,) 

If the hourly inflow rates measured within the preceding 24 h are different from 
normal, their influence on the future inflow values disappears after a time shorter 
than 24 h. The model Ml fails to include this effect. 

4 — ЕРЕ  2/87 
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Fig. 19. Inflow to sewage treatment plant of town R and forecast of model Ml 
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Fitting of models Ml,  М2  to series C  (Х,  =1n Z,) 

Table 3 

Variance  Х,  
Qz Model 

Variance 
of residuals 

oą  

Parameters of the model 
and correlation 

of parameters for it 

Test Q 

D./:  

г  
Xo.os  

Ml 0.00997 гр1  = 0.72±0.06 34.4 

R= 0.76 47 

64  

0.02343 
М2  0.00892 (р1  =  0.75±0.07 60.9 

R  =  0.79 ®, =  —0.12±0.10  46 

R, Z = 0.60  63 

Irrespective of the fact that the autocorrelation function of Series C (X,) presented 
in fig. 20 fails to suggest such an approach, model M2 

(1—фp в)х, _ (1-01В)at (М2)  

was also checked for our purpose. The results of fitting are shown in tab. 3 and figs. 
21-23. Comparing the one-step-ahead forecasts with the data in fig. 24, it becomes 
obvious that there are no disturbances which were present in mddеl Ml. 

3.3. RAINFALL: AN ADDITIONAL VARIABLE OF THE MODEL 

It may be expected that when the relationship between the influent sewage stream 
and the precipitation volume is taken into account, the model displays a smaller 
variance of residuals. Unfortunately, no measured-values of the rain volume received 
by the area of interest were at hand when recording the influent sewage rate Y,'. The 
only information available then was whether or not it rained on a given day. Thus, 
the rainfall periods (R in fig. 13) were assigned unity, whereas the periods with no 
precipitation were assigned zero. The series obtained via this route, D  (Х  ), consisted 
of a number of 0 and 1, thus enabling the approximate representation of rainfall 
phenomena in the investigated period. 

Series C was transformed by logging and substracting the mean (Y = In Y' — In Y,'), 
and Series D by detracting the mean alone (X, =  Х  —  Х ).  Model M4 

Y 
1-8 t в xr—

ь
+1- гΡptB-~2B2at (M4) 

was fitted, and the results are listed in tab. 4. 



Variance Parameters of the model 
of residuals and correlation D. f. D. f. 

aą of parameters for it 

Output 
variance 

On 17) 
Q2 

r 

Test Q Test S 

г  
Xо.о  s  

2 
хо.о5  

Х2 =19.0 DF=11 

X0А5  =19.7 

6 ~ - 0.00452 

SD = 0.088 
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Table 4 

Fitting of model M4 

0.00801 ь  = г  
0.02343 R  =  0.81 1. S1  =  —0.56±0.15  

2.шо =0.17±0.04 37.7 -19.7  

3. гP1 = 0.95±0.08 34 35 

4.  ф  =  —0.20±0.08 48.6 49.8 
R12  =  0.63; R13  =  —0.06 
R14= 0.05; R2 3 = -0.08 
R24=0.08; R3.4=-0.79 

г.  

+1  
D=37.7 OF 34  

0.5 
Х

0.05  ~ 48.6 

5% 

-1 

Fig. 25. Autocorrelation function for residuals 
of model M4  

Fig. 27. Histogram for residuals of model M4 

.25 .5 
Frequency, fj 

Fig. 26. Cumulative periodogram for residuals 
of model M4 
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Fig. 28. Cross correlation function for residuals 
of model M4 and prewhitened input 
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Fig. 29. Inflow to sewage treatment plant of town R and forecast of model M4 
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As shown by the data in figs. 25-27, the residuals of the model are independent 
and display a normal distribution. The assumed independence of noise and 
prewhitened input X, has also been confirmed (fig. 28). The comparison of 
one-step-ahead forecasts for model M4 with the available data (fig. 29) reveals that 
even a rough estimation of the precipitation volume is sufficient to improve the 
forecast established in the 16th hour of measurement (see fig. 24). 

3.4. WATER CONSUMPTION INCLUDED AS AN ADDITIONAL VARIABLE OF THE MODEL 

The application of data on water consumption (Series B (X~)) to the modelling of 
sewage inflow Y' is exemplified by model M5. Series B and C were transformed by 
logging and by substracting the mean (Y = In Y' — In Y'; X, = In X f — In X,). Analysis 
of correlations and, later on, the estimation of parameters have revealed that the best 

Table 5 

Fitting of model M5 

Input 
variance 

(ln Y') 
cr2  Y 

Test Q Test S 
Variance Parameters of the model 

of residuals and correlation D. f. D. f.  
а2 of parameters for it 

2 2 
x0.05 x0.05  

ь = 0  

0.00698 8,  =  0.68±0.07 19.9 22.9 

т0  =  0.18 ±0.03 35 35 

0.02343 R = 0.84 cp, = 0.65±0.06 49.8 49.8 

R1 2 = -0.58 

R1.3 = 0.02 

R23=-0.01 



5 

И1  
Q=19.9 DF=35 

X 405 - 448  
+ 05 

п1 1' ' ' i  '1 
-so 
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.25 ' .5 
Frequency, fj 

д  =-0.0007 

SD=0.083  
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Fig. 30. Autocorrelation function for residuals Fig. 31. Cumulative periodogram for residuals 
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Fig. 32. Histogram for residuals of model M5 Fig. 33. Cross correlation function for residuals 
of model M5 and prewhitened input  
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Fig. 34. Inflow to sewage treatment plant of town R and forecast of model M5 
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results can be achieved by anticipating delay b = 0. The fitting procedure was carried 
out for model M5 of the form 

Y  1 S B X~+1-1 
Bat. (M5) 

1 491 

Table 5 gives the results of fitting for model M5. 
Although the residuals of model M5 are independent (which is proved by the 

analysis of figs. 30 and 31), their distribution fails to be normal (fig. 32). Analysing the 
cross correlation between noise and prewhitened input Xt  (fig. 33), it becomes 
obvious that the model is well fitted (fig. 34). 

4. CONCLUSIONS 

First-order autoregression seasonal models give a good approximation of hourly 
water consumption. The residuals of the models satisfy the condition of indepen-
dence and display a normal distribution. Residual variances are insignificant, and so 
are the errors of forecasts with a small number of steps ahead. The presence of the 
seasonal differentiating operator Vs  accounts for the periodic nature of the forecast 
function. That is why forecasts with many steps ahead do not tend to an average 
value. They have the ability to adjust themselves to the periodic nature of the time 
series (however, errors associated with many-steps-ahead forecasts are considerable). 
The application of such models to the description of sewage inflow to the treatment 
plant through a separate sewer system yields significantly worse approximating 
effects. The main reason is the considerable disturbance in the behaviour of flow due 
to the irregularity of rainfall. Such disturbances become particularly distinct when 
large amounts of precipitation water enter the sewer system illicitly from a great 
number of inlets. The inclusion of this source of disturbance in the model requires the 
wastewater inflow to be correlated with the precipitation volume received in the area 
of interest. 
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STOCHASTYCZNE MODELOWANIE ZU2YCIA WODY I ZRZUTU ŚCIEKÓW 

Stochastyczne modelowanie zużycia wody, zrzutu ścieków oraz ich jakości ma duże znaczenie w 
inżynierii sanitarnej. Wiąże się  ono z zaopatrzeniem w wodę  i sterowaniem procesami oczyszczania wody i 
ścieków. Przedstawiono zagadnienia stochastycznego modelowania zużycia wody wodociągowej i 
dopływu ścieków do oczyszczalni systemem kanalizacyji rozdzielczej. Sezonowe modele autoregresji 
pierwszego rzędu (z okresem S = 24) dobrze przybliżają  godzinowe zużycie wody. Zastosowanie ich w 
modelowaniu godzinowego dopływu ścieków do oczyszczalni nie jest w peіni efektywne z powodu 
nieregularnych zakłóceń  przepływu wywołanych opadami deszczu. Uwzględniając opad deszczu lub 
zużycie wody jako dodatkową  zmienną  objaśniającą, uzyskuje się  modele dające lepsze efekty apro-
ksymacji. 

СТОХАСТИЧЕСКОЕ  МОДЕЛИРОВАНИЕ  
ПОTPЕБЛЕНИЯ  ВОДЫ  И  ОТБРОСА  СТОЧНЫХ  ВОД  

Стохастическое  моделирование  потpeбления  воды  и  отброса  cточныx вод  a  также  их  качеcтва  
имеет  большое  значение  в  санитарной  технологии. Оно  связано  со  снабжением  водой  и  управле-
нием  пpоцeccaми  очистки  воды  и  cточных  вод. Пpeдcтавлены  вопросы  стохастического  модели-
рования  потpeбления  водопроводной  воды  и  добегания  сточных  вод  к  очистной  cтaнции  сиcтемой  
рaздельной  канaлизации. Сезоиные  модели  авторегресеии  первого  порядка  (c  периодом  S  =  24)  
хорошо  приближают  потребление  воды  за  час. Их  применение  для  моделирования  часового  
добегания  cточных  вод  к  очистной  cтaнции  не  вполне  эффективно  из-за  нерегулярных  помех  
течения  вызванных  ocaдками. Учитывая  осадки  или  потребление  воды  как  добавочнyю  
рaзъясняющyю  пеpeменнyю  полyчaют  модели  дающие  лучшие  эффекты  аттроксимации . 


