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Reflection variant
of nonlinear polarization spectroscopy

L I. Gancheryonok, A. V. Lavrinenko

Belarusian State University, Department of Physics, Fr. Skariny av. 4, Minsk 220080, Belarus.

The theoretical analysis of reflection scheme for studying light-induced anisotropy in initially 
isotropic media is presented. It is based on a very powerful wave operators formalism. Our most 
significant result is the expression for amplitude reflection operator in the general covariant 
(coordinate free) form. We also derive the expression for the detected signal in reflection variant of 
nonlinear polarization spectroscopy (NPS) in the case of linearly polarized interacting pump and 
probe waves.

1. Wave operators formalism

Let us consider in detail the application of Fresnel’s wave operator formalism to the 
problem of nonlinear polarization spectroscopy. The principles of such a formalism 
were given in a number of papers (see, for example, [1] — [3] and the literature cited 
therein). A surface impedance operator y (this is a linear operator of matrix form, so 
it may be considered as a tensor) is one of the fundamental concepts of this theory. 
The operator ý generalizes a scalar surface impedance which has been widely known 
in optics and radiowave theory for many years [4] — [6]. Another important concept 
is a normal refraction operator Ň , which generalizes the refractive index operator 
[7], [8]. The operator N  (or tensor as we showed earlier) describes the space 
evolution of the field vector amplitudes of an electromagnetic wave under propaga­
tion in anisotropic and gyrotropic media. Surface impedance and normal refraction 
operators are very useful in the theory of electromagnetic or elastic waves 
propagation in stratified anisotropic media [9], [10]. The boundary problem in such 
kind of media is strictly formulated by means of operators ý and Ň  which depend on 
the characteristics of the incident waves and properties of the corresponding media. 
Thus, the operator method of solving various boundary problems, including 
reflection and transmission of waves at a single plane interface, may be applied to 
calculations where high precision is needed.

Let the first medium, from which the plane harmonic wave of frequency a>

E(r, t) =  J^exp[i(lcmr- cot)] (1)

is obliquely incident onto the second one, be isotropic, and the other medium be 
anisotropic and described by the permittivity tensor e and permeability tensor /2. 
Here, Et is the complex vector amplitude of the electric field strength, k =  co/c,
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c is the velocity of the light in vacuum, m  =  b+mnq is the refraction vector [11] with 
tangential b and normal mnq components, q is the unit normal to the interface. For 
geometry of the problem see Fig. 1. Refraction vector m  is connected with wave 
normal a by means of an index of refraction n

m = n a. (2)

Fig. 1. Geometry of the problem: m„ mr, and m ± are the incidence, reflection and refraction vectors, 
respectively

It is convenient, especially in nonmagnetic media, to use the vector of magnetic 
field strength / /  and its tangential component / / , (relatively to the interface), 
[1] —[3]. It is well known that for the plane waves

H = (m x E )  = m *E  (3)

where (m xE )  denotes the vector product of m and E, m*  is the antisymmetric 
second-rank tensor, dual to the vector m  [11].

Projective operator G is applied to cut vector in tangential plane. With the help 
of dyad q®q, where ® denotes direct product of two vectors, and unit tensor 1 one 
can easily find that ù  =  l —q®q. Thus,

Ht = GH. (4)

We follow the intrinsic form of notations [11], meaning in (4) contraction of
3

tensor G with vector / / in  such form: (Ht)i = G-^Hj. The direct manipulation with
i

tensors and vectors as in (4) simplifies final expressions and provides the results of 
great generality, eliminating the use of any coordinate system. Moreover, the results 
obtained are suitable for computer use.

Further, one can find complex vector amplitudes of reflected / / [  and transmitted 
waves HÎ as shown in papers [1] —[3]:

H rt = fH n H i = âH t, f+ Ù  = â (5)

where f  and d are Fresnel’s reflection and transmission operators, respectively. These
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operators are expressed by means of the surface impedance operators of incident yl, 
reflected yr and transmitted y4 as follows:

t  = (yi - i r (yl- f ), à  =  (6)

where (y4—yr)~ is a pseudoinverse operator (pseudo — because Fresnel’s operators 
f  and â are the planar tensors, acting in two-dimensional subspace of plane interface, 
so the common inverse operation for these operators is not determined). Pseudoin­
verse operator ât~ can be found through the algorithm presented in papers [1] —[3]

= (a ,î-a ) /a t (7)

where ař denotes the trace of adjoint (mutual) tensor [11]. Surface impedance tensor 
ý is introduced as a linear operator transforming vector H t into vector {qxE )

(qxE ) = -yHr (8)

These vectors lie at the plane interface. It is shown [2], [3] that the surface 
impedance satisfies Riccati tensor equation

yÈÿ + ýA—Ďý— Č =  0 (9)

where tensor coefficients are:

Â =  — q*êq®a— — b<S)qjlG,
Eq ^q

B = —l ê l — -b ®  b,
Eq H

C = ——a® a— , (10)
Eq V-q

Ď = ——a(g)qêq*— — Gfiq(g)b,
£q Pq

Eq =  qêq, fiq = qftq, 

tilde denotes transposed operator.
For harmonic wave (1) in isotropic media surface impedance is given by formula

where dyad f fl = a_0®a_0 is a projective operator in the direction orthogonal to 
incident plane, a_0 = (b_0 x q), b = \b\, b0 = b/b. In an anisotropic medium two 
partial waves are excited [12]. They have different polarizations and refraction 
vectors m_ =  b+m* q. Therefore, an operator y (8) connects vectors Ht and (ÿxÆ) 
which characterize a superposition of harmonic fields of both refracted waves. In 
particular case, when crystal is nonmagnetic (/2 = 1) and is cut in such a way that 
vector q is an eigenvector of tensor ê (qs = eq= eqq), tensor yd is expressed in the 
following form:
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-J — (m+ I m+m_ ^  ̂ ^  ̂ I £im" m» \ -
Ti -  K  + " . )  |_ G - m „  m„ ,  . ¿ I - , £l _ a ^ J

where |e| is the determinant of tensor e. The total field of refracted waves

//?(r,t) =  J/f(0)exp[i(/cAr— cot)]exp(i/czW)
- 00 ii/cz)* -

contains an exponential operator exp(i/cziV)k = £  — N \  where z =  gr,

N = A + By.
k= 0

(11)

(12)

(13)
The eigenvalues and eigenvectors of normal refraction operator (13) define normal 
components m* of refraction vector and polarization states of harmonic partial 
refracted waves. Values m* are the solutions of the fourth-power algebraic equation

» * i-^ m J + (Pf- 0 l)i»!* + (Pl0 i-(.P 0)i)m1I + § l = 0, (14)

or one can find them solving the equation of normals [11]

(OT£"1m)(m/2-1 zn) + (E-1znx/2-1ni*)i-|-l = 0. (15)

Tensor coefficients P and Q in (13) are derived from Â,B,Ù,D :

P = Â + BDB~, Q = È(C-DB~Â). (16)

Some complicated cases with degenerated tensor N, where refracted waves with 
linear quadratic and cubic dependence on coordinates appear, are considered in 
detail in papers [12], [13].

2. Reflection from media with light-induced anisotropy (MLIA)

Let us consider an initially isotropic nonlinear medium in which uniaxial anisotropy 
is induced by the powerful pumping plane monochromatic wave normally incident 
from vacuum. If pumping wave is linearly polarized, then dielectric permittivity 
tensor £ may be written in the form [14]

e = £0[(1 + Xo + Zi)? + Zi Cc®c], (17)

where £0 is the dielectric constant, x0 is the linear scalar susceptibility, xt = xi22 i> 
C = (xx 122 +  Xi2i2)/Xi> Xijki are the components of the fourth-rank tensor of the 
third-order nonlinear susceptibility, c is the unit vector of induced optical axis (c is 
also polarization vector of the pumping field). Just as an incident pump wave normal 
is perpendicular to the plane interface, so the optical axis of MLIA is at the plane 
interface. Therefore, one can write

c = cos(pa0 + sin(pb0 (18)

where tp is the azimuth, counted from direction of vector a0 which is perpendicular 
to the incidence plane. We point out that the substitution of vector c (18) into (17) 
yields

eq= qe = Eqq, (19)
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Le., vector q is the eigenvector of dielectric permittivity tensor e (17) with eigenvalue

e4 =  e0(1 +  Xo +  Xi )· (20)

Therefore, we may use the exact analytical expression (11) for surface impedance 
tensor substituting in it the following formula for permittivity tensor e (17)

£ =  E< +  E1f e (21)

where e4 = £0XiC, ze denotes projective dyad operator c® c, and we imply that scalar 
eq is multiplied by a unit tensor 7, which from now we shall drop out. The simple but 
cumbersome calculation gives us expression for impedance tensor of MLIA

% j ftC mn X  + eJ ,  
£4(m„+ +m~) m„+ +m~ F

(22)

where tensor X  is

X  = EqTb + m ifa, i  h = b0®b0 (23)

and by F we denote

F = e4(e4+ £i)—b2(sq+ ea sin2</>).

Eigenvalues m* of normal refraction tensor are derived from (13): m“ 
= y/Eqcos0 for ordinary wave and m* = ^feq—b2 + ea(1 — fc2sin<p/E4) for extraor­
dinary wave. Angle of refraction of ordinary wave 0 O is simply derived from Snell’s 
law

sin©, _  r~ 
sin0o ^ Eq'

(24)

Further transformations are connected with the small magnitude of light-induced 
anisotropy. It means that |eA| «  |e4| and we may consider ex as a small parameter in 
expansion of m f in a series.

Neglecting terms higher than linear in ea, we obtain

m+
n

[■
mn \ 1 +

£x(l — sin2<psin20 o)~]

2(m7P J
(25)

Substitution of (25) into formula (22) gives the tensor of surface impedances in the 
form

f  = + 4 + ^ + r„Jf„+ X(îb - i ü) q \  (26)

Here we introduce the following notations:

n  E1SÎn2Ç)COS20 i 

J f l =  ’
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r b = — /gl_ -3- (K " )2sin 2(p +  e b 2sin2(p -  e), (27)

_  £1sin2(/)
~~ 4e4mB- '

m— j
It is clear that —  »  JHfl, —3  »  r b, r a, r b,A, thus r a, r b, A are quantities of the

first power of small parameter ea and they give small additions to the expression for 
tensor y in the case of isotropic dielectric

f  =  Z = T»+ — V (28)

This expression definitely follows from (22) for the case of an isotropic medium. 
In the vacuum or with high accuracy in the air (e, = 1, fii = l,n  = 1) refraction vector 
m and wave normal a coincide. Let us rewrite relation (26) in the context of such 
assumption (m„ = cos0i5 b = sin©^

1 = ~ f  =  (29)
mn

Now, we are ready to derive Fresnel’s reflection and transmission operators. 
Using approximate formulae (26) and (29), it is easy to obtain from (6) tensors of 
reflection and transmission, generalizing usual Fresnel’s coefficients. One has:

d = d0 + dlt r =  r0 + r1 (30)

where norms of tensors d0 and f0 are much more than norms of tensors dlt f t : 
HdJ «  \\d0\\; ||rA || «  ||r0||. The zero-order approximations for d0 and r0 have been 
written in the following form:

J J - . J - _  2mn - , 2 - _  2 ^ 0 0 8 0 ,·
^0 “  ^oaTo + dobTb ~  v  Ta + A Tt> — f —

V mnA  -yj £.COS0j +  COS0o

+ _ _ 2 v 5 cos0 ol_ t 

COS0,. +  \ / i c o s ®O *

- - * . 2m_ . „
*0 =  TQaTa + TQbTb =  [ — - l ) T a+ m.A l i .

y j £flC O S 0 | — C O S0O ^ -y^£flC O S 0o — COS0,· „
— 7— ta j— I'b*

y j  £^COS0j +  C O S0o ^ / £ 4C O S 0o +  C O S0f

4  =  1 + 4 ,  K = m .+ ^ .
m. £„

(31)

(32)

(33)
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Direct comparison shows that tensors f0 and d0 have two eigenvectors a0, b0 and 
two non-zero eigenvalues —coefficients before the corresponding dyad projectors. 
These eigenvalues exactly coincide with Fresnel’s reflection and transmission 
coefficients (see, for example, [15]). Thus, operators â0 and f0 (31), (32) give us 
appropriate coefficients for reflection and transmission of TE- or TM-plane mono­
chromatic wave at the isotropic media interface. One can obtain by direct calculation 
the equality

f„ + ù =  à0, (34)

which means that tangential components of strength vector of magnetic field are 
continuous on the boundaries in the main approximation. Taking into account the 
second equality (5), we can write

*i = d1. (35)

so it is sufficient to find only the first-order approximation for reflection operator. 
The further operation produces the formula

“ T v [ ~ + X(j» r  m"f* y  } (36)

With the help of (27) and (33) this expression is reduced to the following form:

„ E J Ï l ^ U ^ C p C O S 2 © ^  £1mn(sin2ç)(cos20 o + sin20 i) - l  „ 
r i = , _— \2 T«------------- ."I. M---------------------zb

+

m n ( e q ™ n +  m n  f  a

Elmnsm2(pq*(— t b- m nTt
__________ W i_______

2 (m~ +mn)(Eqmn + m~)

mn (mH +mny

(37)

or with proper designations:

= riJ i,+Titib+ flab (38)

where r la, rlb are scalar coefficients and f lab is the second-rank tensor. The initial 
tensors of reflection and transmissions r and cl can be obtained by combining 
equations (30)-(33), (35), (38):

f  = rai a +  rbi b + f !, d = daxa + dbi  b + ,
ra = To a  + rla, rb = rob + Tlb, da = d0a + ru , db =  d0b + rlb. (39)

Our subsequent scheme includes the following procedures:
1. To deduce vector Ht (3) from the given vector amplitude of incident wave 

E  and refraction vectors
2. To cut vector amplitude Ht at the plane interface of two media (4), defined by 

the vector q.
3. To calculate tangential component of reflected wave (or transmitted wave as it 

is needed) Hrt with the help of expressions (5), (39).
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4. To restore vector strength of electric field of reflected wave Er from the vector 
Hrt using the restoring operator v [3]

E  =  tiHt, v = -q * y  + -q ® (a  + q£qx y). (40)
e«

Taking into accout that the first medium is isotropic and yr = — y (29), we may 
simplify (40):

i ,  =  W .  ûr = m„q*-ia+ —
m .

(41)

Finally, we obtain the desired expression connecting the electric field of incident 
and reflected waves by uniting equations (3)—(5), (41)

K  =  k cE, (42)

where amplitude reflection operator for electric field is defined as

k E =  vrfm ? . (43)

Substituting relations for vr (41), f  (39) and for tensor zn*dual to the refraction vector 
of incident wave m? =  b*+mnq* into (43) gives us the final formula

Re = mJaK -  *o )(t4+ ffc) -  m2nr j b+ rab2xq-  rbi a - c m nq* (fa -  fb)

+Ab*(za + f€) (44)

where

ff = ____ e' m"S'm2v____ . (45)
2(m„+m„-)(£^„+m-) 1 1

This expression is written in a very useful form for applied calculations because 
all terms are explicitly connected with the natural basis of boundary problem 
(a0> Ao> Q)·

3. Reflection configuration of
nonlinear polarization spectroscopy detection scheme

Now, we try to apply the obtained results to reflection-transmission problem in the 
scheme of nonlinear polarization spectroscopy. A powerful normally incident 
pumping wave induces the anisotropy structure in nonlinear medium. This anisot­
ropy is taken properly into account through the complex dielectric permittivity 
tensor e (43). Thus, we use covariant expression (44) to derive the vector amplitude of 
reflected probe wave. Let obliquely incident plane wave E0 pass through a linear 
polarizer described by unit vector Up. So, we have the incident (at MLIA) wave in 
the form E-t =  PE0, where dyad P = Up® Up is related with the polarizer action. 
If the reflected beam
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Er =  k EPE0 (46)

is blocked by the crossed analyzer, described by dyad operator A =  UA® UA, where 
UA is parallel to analyzer axis, we may write the detected field as

E  = AEr = AReP Eq. (47)

For definition let us take one of the characteristic polarizations of incident wave, for 
example, TE-wave of unit intensity. The polarizer transmits this wave without losses, 
which means that

*0 “  ®0> = *0» = ^ E 0 =  {JJp&o)TJp — 8.Q.

Then, from (42)—(44), it follows that

Er = k Ea0 =  ( - r bTa-a m nqxTa + (rbxiJ a 0 =  - r ba0-a m n(qx a0) + c(bx a0)

= ~  rba0 -  oimnb0 + bq). (48)

Fig. 2. Illustration to the projective dyad of the crossed analyser

Here, we took into consideration that i ba0 =  x4"a0 = 0, faa0 = a0, (qx  a0) = b0, 
(b0 x a0) = — q. Projective dyad of crossed analyzer has an axis

UA =  — cos© ^—sin©^ =  —mnb0 — bq (49)

as one can see in Fig. 2. Therefore, the resulting electric field behind the analyzer is 
reduced from (47), (49)

Ecx = AEr =  (UAEr)UA =  (cj m2H + ob2)UA = cUA. (50)

Finally, for the detected signal in our approximations, we have

(51)

In (51), we took into account that and m~ may be complex quantities due to 
absorbing properties of nonlinear medium.
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Thus, we theoretically verified the principal possibility of using the reflection 
scheme in nonlinear polarization spectroscopy as it was noted for the first time in 
paper [16].

4. Concluding remarks

A very general method based on a wave operator formalism has been proposed to 
describe reflection at the interface between isotropic medium and MLIA. In the 
configuration in which both pump and probe beam copropagate onto the surface of 
an investigated sample, the polarization of reflected wave is related with nonlinear 
additions to the dielectric permittivity tensor. As a result, one can extract the 
spectroscopic data from the detected signal. On the other hand, the general 
theoretical expressions obtained seem to be very useful in the light of recent 
experimental research on nonlinear selective reflection [17], [18].
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