Letters to the Editor

Remarks on effects of aberrating layers in confocal scanning microscopes

A. Magiera

Institute of Physics, Technical University of Wrocław, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.

In paper [1], the condition for aberration-free immersion layer in aberration-free confocal scanning microscope (CSM) is given as dependent on $\lambda, \alpha, n_{1}, n_{2}$. A spherical aberration coefficient of the first order for the layer is equal to [1]

$$
\begin{equation*}
W_{40}=2 k t\left(n_{2}^{2}-n_{1}^{2}\right) \frac{n_{1}^{2}}{n_{2}^{3}} \sin ^{4}(\alpha / 2) . \tag{1}
\end{equation*}
$$

where: α - semi-angle of convergence, and $k=2 \pi / \lambda$, while n_{1}, n_{2}, t and 0 are defined in Fig. 1.

Fig. 1. Ray incident on a dielectric slab

Assuming the Rayleigh criterion, according to which the maximum of phase aberration must be less than $\pi / 2$ which corresponds to the limiting resolution $\lambda / 4$, the condition for aberration-free layer thickness t has been obtained [1]

$$
\begin{equation*}
t \leqslant \lambda n_{2}^{3} /\left\{2 n_{1}^{2}\left(n_{2}^{2}-n_{1}^{2}\right) \sin ^{4}(\alpha / 2)\right\} \tag{2}
\end{equation*}
$$

In this paper, a correcting term to the condition (2) has been determined as related to spherical aberration β_{040} of CSM depending on $\Delta_{\text {limesm }}, k, \alpha, n_{1}, n_{2}$; where $\Delta_{\text {limCMs }}$ - limiting resolution of CSM, $n_{2}=n_{1}+\Delta n$. A correcting coefficient $W=\frac{\Delta_{\max }}{\Delta_{\text {min }}}$ for an apodized CSM system suffering from spherical aberration has been
introduced, where $\Delta_{\text {min }}$ - minimum value of limiting resolution in CSM with apodization and spherical aberration, $\Delta_{\max }$ - limiting resolution in CSM of uniform type. In further considerations, it has been assumed that the refraction index n_{2} differs only slightly from n_{1}. The intensity distribution in the focal plane of CSM is defined by the relation [1]

$$
\begin{equation*}
I(u, v)=\left|\int_{0}^{\alpha} A(0) P(0) J_{0}\left(\frac{v \sin \theta}{\sin \alpha}\right) \exp \left(-\frac{1}{2} i u \frac{\sin ^{2}(0 / 2)}{\sin ^{2}(\alpha / 2)}\right) \sin 0 d 0\right|^{2} \tag{3}
\end{equation*}
$$

where u, v - optical coordinates which are defined by the axial distance z from the focus and radial distance r from the optical axis in the following way: $u=4 k z \sin ^{2}(\alpha / 2), v=k r \sin \alpha, A\left(\theta_{1}\right)$ for aplanatic system is equal to $A\left(\theta_{1}\right)=\cos ^{1 / 2} 0_{1}$, $P\left(\theta_{1}\right)$ - wavefront aberration, $P\left(\theta_{1}\right)=e^{i \varphi}$. Basing on the formula (3), the limiting resolution of CSM denoted by $\Delta_{\mathrm{HIm} \text { CsM }}$ has been numerically evaluated. The total spherical wave aberration of first order for the combination CSM plus immersion layer fullills the condition

$$
\begin{aligned}
& \Phi_{\max }=\frac{k t}{2}\left(n_{2}^{2}-n_{1}^{2}\right) \frac{n_{1}^{2}}{n_{2}^{3}} \sin ^{4}(\alpha / 2)+\Delta_{\lim }=0, \\
& \Delta_{\lim }=\Delta_{\operatorname{limCSM}} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
t \leqslant 2 \Delta_{\lim } n_{2}^{3} /\left\{k\left(n_{2}^{2}-n_{1}^{2}\right) n_{1}^{2} \sin ^{4}(\alpha / 2)\right\} . \tag{4}
\end{equation*}
$$

For $n_{2}=n_{1}+\Delta n$ we have

$$
\frac{\left(n_{1}+\Delta n\right)^{3}}{\left(2 n_{1} \Delta n+\Delta n^{2}\right) n_{1}^{2}} \simeq \frac{n_{1}+3 \Delta n}{2 n_{1} \Delta n},
$$

and, consequently,

$$
\begin{equation*}
t \leqslant\left[2 \Delta_{\lim } / k \sin ^{4}(\alpha / 2)\right]\left[\frac{n_{1}+3 \Delta n}{2 n_{1} \Delta n}\right] \simeq \frac{2 W\left(n_{1}+3 \Delta n\right)}{2 n_{1} \Delta n k \sin ^{4}(\alpha / 2)}, \tag{5}
\end{equation*}
$$

The limiting value of resolution in a nonapodized and aberration-free CSM amounts to $\Delta_{\mathrm{lim}}=2.89$, which was shown in paper [2]. In CSM equipped with an apodized collector and objective with the apodizer of r^{2} type, the limiting value of $\Delta_{\text {lim }}$ is equal to 1.31. For CMS charged with spherical aberration $\beta_{040}=0.5-1.5$ the limiting value $\Delta_{\text {lim }}$ does not exceed $\Delta_{\text {lim }}$ csm for the uniform case (Tab. 1). With the increase of α from 0.1 to $1.6, \Delta_{\mathrm{lim}} / \sin ^{4}(\alpha / 2)$ diminishes (Fig. 2). The correcting coefficient $W=\frac{\Delta_{\text {max }}}{\Delta_{\text {min }}}$ has been calculated again from formula (3) (Tab. 2) for the respective two cases.

For the classic optical system, for which $\Delta=3.83$ the correcting coefficient W is equal to ~ 2.9. For the sake of comparison, the same intervals for refractive index were assumed as those used in paper [1]. In CSM with $\lambda=633 \mathrm{~nm}$, two cases were

Table 1. Dependence of the limiting resolution Δ_{Um} on α in CSM with apodization of r^{2} type, annular ε and spherical aberration β_{040} (A_{0} - objective, A_{c} collector, ε - circular central obstruction)

A_{0}	A_{c}	$\Delta_{1 \mathrm{~lm}}$	$\boldsymbol{\alpha}$	$\Delta_{\text {umm }} / \sin ^{4}(\alpha / 2)$
Uniform	Uniform	2.976	0.1	476954
r^{2}	r^{2}	1.31		209950
$8=0$	$\varepsilon=0.25$	1.48		237195
$\varepsilon=0.5$	$\varepsilon=0.5$	1.425		228380
$\varepsilon=0.9$	$\varepsilon=0.9$	1.40		224374
$\beta_{040}=0$	$\beta_{040}=0$	2.98		477595
$\beta_{040}=0.5$	$\beta_{040}=0.5$	2.96		474390
$\beta_{040}=1$	$\beta_{040}=1$	2.98		477595
$\beta_{040}=1.5$	$\beta_{040}=1.5$	2.87		459966
Uniform	Uniform	2.976	0.5	794.34
r^{2}	r^{2}	1.31		349.659
$\varepsilon=0$	$\varepsilon=0.25$	1.48		395.035
$\varepsilon=0.5$	$\varepsilon=0.5$	1.425		380.35
$\varepsilon=0.9$	$\varepsilon=0.9$	1.40		373.681
$\beta_{040}=0$	$\beta_{040}=0$	2.98		795.408
$\beta_{040}=0$	$\beta_{040}=1.5$	2.88		768.716
$\beta_{040}=0.5$	$\beta_{040}=0.5$	2.96		790.069
$\beta_{040}=1.5$	$\beta_{040}=1.5$	2.87		766.047
Uniform	Uniform	2.976	1	56.331
r^{2}	r^{2}	1.31		24.7963
$\varepsilon=0$	$\varepsilon=0.25$	1.48		28.014
$\varepsilon=0.5$	$\varepsilon=0.5$	1.425		26.973
$\varepsilon=0.9$	$\boldsymbol{\varepsilon}=0.9$	1.40		26.499
$\beta_{040}=0$	$\beta_{040}=0$	2.98		56.407
$\beta_{040}=0$	$\beta_{040}=1.5$	2.88		54.514
$\beta_{040}=0.5$	$\beta_{040}=0.5$	2.96		56.028
$\beta_{040}=1.5$	$\beta_{040}=1.5$	2.87		54.325
Uniform	Uniform	2.976	1.5	13.785
r^{2}	r^{2}	1.31		6.028
$\varepsilon=0$	$\varepsilon=0.25$	1.48		6.856
$\varepsilon=0.5$	$\varepsilon=0.5$	1.425		6.60
$\varepsilon=0.9$	$\varepsilon=0.9$	1.40		6.48
$\beta_{040}=0$	$\beta_{040}=0$	2.98		13.804
$\beta_{040}=0$	$\beta_{040}=1.5$	2.88		13.3406
$\beta_{040}=0.5$	$\beta_{040}=0.5$	2.96		13.7116
$\beta_{040}=1.5$	$\beta_{040}=1.5$	2.87		13.2943

Table 2. Aberration correcting coefficient in CSM with apodization optimal in uniform CSM ($\Delta_{\text {mla }}$ - limiting resolution in CSM with \boldsymbol{r}^{2} apodization, $\Delta_{\max }$ - limiting resolution in uniform CSM)

α	Δ_{uma}	$\Delta_{\mathrm{uma}} / \sin ^{4}(\alpha / 2)$	$W=\Delta_{\max } / \Delta_{\min }$
1	2	3	4
0.1	$\Delta_{\min }=1.31$	209950	~ 2.27
	$\Delta_{\max }=2.98$	477595	

1	2	3	4
0.5	$\Delta_{\min }=1.31$	349.659	~ 2.27
	$\Delta_{\max }=2.98$	795.408	
1.5	$\Delta_{\max }=1.31$	6.068	~ 2.27
	$\Delta_{\max }=2.98$	13.804	
1.6	$\Delta_{\min }=1.31$	4.947	~ 2.27
	$\Delta_{\max }=2.98$	11.2532	

Fig. 2. Intensity in focal region in CSM as dependent on α (semi-angle of convergence), curve $1-\alpha=0.5$, curve $2-\alpha=1$, curve $3-\alpha=1.5$
calculated. Case 1: $\Delta n=0.01$ (while n_{2} ranging within the interval 1.513-1.523), $n_{1}=1, t_{\text {optcsm }}=19.32 \mu \mathrm{~m}$. Case $2: \Delta n=0.033$ (while n_{2} ranging within the interval $1.514-1.481), n_{1}=1, t_{\text {optcsm }} \simeq 6.25 \mu \mathrm{~m}$. Optimal thickness of the immersion layer should be adjusted to the resolution of CSM which in the first case corresponds to the value $19.32 \mu \mathrm{~m}$, while in the second case to the value $6.25 \mu \mathrm{~m}$.

References

[1] Sheppard C. J. R., Cogswell C. J., Optik 87 (1991), 34.
[2] Magirra A., Atti Fond. Giorgio Ronchi 45 (1990), 873.

