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Moiré deflectometry
as a method for measuring wave aberrations

M. Rottenkolber*

ROTECH GmbH, Bergweg 47, 83123 Amerang, Germany.

Moiré deflectometry is a technique for measuring wave aberrations with high precision without 
using temporal coherent light The sensitivity is adjustable and so it can close the gap between 
white light and interferometric methods. This is of major importance for measuring of optical 
surfaces like aspheric lenses. In moiré deflectometry usually two fringe patterns are generated, each 
providing a piece of information about the measured wavefront The interpretation of these fringe 
patterns is more complex than in the case of ordinary interferograms. Therefore, in this paper, the 
properties of deflectograms, corresponding to various aberration types are analyzed numerically 
from computer generated deflectograms. Further, deflectograms of aberrations introduced by an 
aspherical surface are calculated. The ray matrix approach is proposed for calculation.

1. Introduction

Traditionally, the optical properties of lenses or optical surfaces are measured by 
interferometric methods. In interferometry, a wavefront with defined geometrical 
state is distorted by the object under investigation and then compared to a reference 
wave. The specimen may be a phase object (measured usually with a Mach — 
Zehnder interferometer), a lens, or a specular reflective surface (measured with 
a Twyman —Green interferometer). The main disadvantage of the interferometric 
method is that the sensitivity is not adjustable and it is in the range of wavelength of 
the light used. However, in many applications, i.e., when measuring surfaces with 
strong asphericity, interferometry may be too sensitive and the fringe density is too 
high for further processing steps. The principle of two-wavelength interferometry 
may be used to avoid these disadvantages. Here, a synthetic wavelength is generated 
by a coherent source emitting two waves with different wavelength. However, this 
method is not frequently used since the requirements for stabilization of the light 
source are rather high [1].

Another possibility to overcome this problem is shearing interferometry. The light 
reflected from the surface is correlated with the light coming from the same surface but 
with a slight geometrical shift (“shearing”). The sensitivity is adjustable by the amount 
of shift The carrier of the information is, like in interferometry, the phase of the optical
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wave. For this reason, the light used has to be temporally and spatially coherent. The 
principle of moiré deflectometry presented here (in literature well known as Talbot 
interferometry) is an incoherent analogy to shearing interferometry and is based on 
superposition of intensities.

The distored wavefront coming from the object causes deformation in the regular 
line structure of a grating. The shadow of this grating is compared to a reference 
grating. In this way, a moiré deflectogram is formed. As this method deals with the 
superposition of intensities there is no need for temporaly coherent light. Expensive 
light sources can be avoided and instead, cheap diode lasers with a high power 
output can be used. The sensitivity is adjustable and it is comparable to that of 
shearing interferometers.

2. M oiré deflectometry

2.1. Fundamentals

In deflectometry, a moiré effect is generated by a distored optical wavefront coming 
from the specular reflective object. The wavefront impinges on a pair of gratings that 
are placed at a certain distance from one another (Fig. 1).

Deflected ray

Wavefront

Deflectogram

Incident ray

SpecimenCollimated
beam (specular surface)

Camera

Fig. 1. Basic moire deflectometer setup: a collimated beam illuminates the specular reflective surface. The 
light is reflected and directed on a pair of gratings G1 and G 2 The resulting moire pattern is observed directly 
behind grating G2 on a mat screen (deflectogram). The spacing of the two gratings is p, the distance 
between them is d. A light ray making an angle a with the optical axis produces a local displacement dx of 
the shadow of G1 on G2. The sensitivity in measuring of a is adjustable by varying the ratio p/d
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The wavefront produces a distored shadow by passing through grating Gl, which 
corresponds to the geometric properties of the initial wavefront. The shadow is 
compared to the second reference grating. The resulting superposition of intensities 
leads to a moiré pattern. This pattern is called moiré deflectogram [2]. Moiré 
deflectometry as a kind of grating shear interferometry has been well known for 
many years. It can be used for study of phase objects. It is realized by means of 
Talbot interferometers with a spatially coherent light source. Moiré methods in 
grating shearing interferometry are well documented in literature [3], [4].

The sensitivity is adjustable by varying the distance d between the gratings and 
the gratings pitch p. The local displacement ôx of the shadow at G2, caused by a ray 
creating an angle a with the optical axis is given by 5x = ad. The accuracy in 
determination of the angle a depends on the distance d of the gratings and on the 
spatial frequency p -1 of the gratings. Assuming that the minimal detectable 
displacement is dx = p, one can find the minimum resolvable deflection angle 
a =  pjd.

Fig. 2. Coordinate system used for calculation: the beam direction is given in spherical coordinates <p and 
a that can be expressed in terms of ax and ar  ax lies in the xz-plane, ay — in yz-plane. q> is used for rotation 
of the x'-plane around the z-axis to generate a 2D-surface, a — perpendicular to the wavefront element 
(see the text)

If Ronchi rulings are used and the two gratings are oriented parallel to each 
other, the resulting fringe pattern indicates contours of constant deflection angles, 
which are directly related to the partial derivatives of the impinging wavefront (i.e., 
to the components of normals to the wavefront (Fig. 2)). The resolution of the 
deflection angles is limited by diffraction effects. Generally, the distance d between
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the two gratings has to be chosen smaller than pa/L Only in this case do the lowest 
(± ls t and zeroth) diffraction orders overlap and form a deflectogram (a is the 
aperture size).

When a pair of gratings with zero angle between the stripes is used, such 
a configuration is called an infinite fringe mode. In this case, a contour map of ray 
deflections with an increment p/d between adjacent fringes is observed in the moire 
deflectogram.

22. Moiré effect for the infinite fringe mode

The information about the wavefront which enters grating G1 can be treated as 
a phase modulation at the location of G2 of the intensity transmission function Tt. 
This can be represented as the convolution of a locally displaced rect-function with 
a Dirac-comb

Tl(*,r) =  rec t(2(* —g(*’^ V z  * (* -« ,). (1)
\  V J «=-00

This intensity distribution is superposed by multiplication with that of the reference 
grating G2

K*,y),y) =  rect( 2(X - y ^ ) / z ^ ( x - n p ) [ : r e c t(y )*  £  <5(x-mp)J (2)

where the right-hand term in brackets denotes the intensity transmission function of 
the grating G2 that has not been distorted. Equation (2) serves as a basis for 
numerical calculations.

Fig. 3. Optical setup of moire deflectometer for measuring curved surfaces



Moire deflectometry as a method for measuring wave aberrations 201

23. Measuring spherical surfaces

Figure 3 shows a possible setup for determination of the topography of a spherical or 
nearly spherical curved surface. An observation lens LI is used to convert the 
spherically curved wavefront reflected from the investigated surface to a plane wave, 
which is then evaluated by a pair of gratings G1 and G2 [5] —[8]. If the centre of 
curvature S coincides with the focus F, no fringes will be visible in the deflectogram 
plane (in aberration free case). From the minimal resolvable angle (one fringe on the 
deflectogram) one can find a minimum difference dR in the radius R of the surface S: 
dR t z f 2p/ad.

3. First-order aberrations and their representation 
in the moire deflectograms

Let us consider an arrangement shown in Figure 3 with a wavefront W(x,y) targeting 
grating Gl. In first order aberration theory, the wavefront distortion W(x,y) can be 
expressed as [9]

W{xty) =  A(x2+ y2)2 + By(x2+ y2) + C{x2 + 3y2)+D(x2+ y2) + Ey+ Fx  (3)

where A  denotes the parameter for spherical aberration introduced by lens LI, 
B stands for coma, C — for astigmatism, D is the defocusing parameter, E and F are 
tilting parameters. The deflection angles otx and ay are given by the partial derivatives 
of W

dW
a. x =  —  = 4 xA(x2 +  y2) +  2Bxy + 2Cx + 2 Dx + F, 

dW
ay =  —  = 4yA(x2 +  y2) + 2 B(x2 +  3y2) + 6Cy + 2 Dy + E. (4)

From Equation (4) we see that, except for the cases of pure coma and astigmatism, ctx 
and cty are symmetrical, i.e.t the deflectograms are symmetrical, too.

Figure 4 shows the case of pure coma A, C, D, E, F = 0, B =  1.0 m -2, calculated 
numerically from Eq. (2). Figure 4a is a 3-D plot of the wavefront W(x,y). Figures 
4b,c show the distribution of the deflection angles ctx and ar  In Figure 4d and e, the 
calculated x- and y-deflectograms are displayed for the case of pfd =  8 x 10“ 5 and 
the aperture size 10 mm by 10 mm.

Figure 5 shows the deflectograms for pure spherical aberration (A =  1600 m~3). 
For pure astigmatism or defocusing (parameters C, D) one can see from Eq. (4) that 
the deflectograms are in form of equally spaced lines, because of a linear dependence 
of the deflection angles on the x- or y-coordinate.

4. W ave aberrations introduced by an aspherical object

4.1. Ray matrix approach

We consider wave aberrations arising from an optical system shown in Figure 6. The 
observation lens LI illuminates the specular reflective specimen. LI is considered to



202 M. Rottenkolber

Fig. 4. Geometry of wavefront W{x,y) for the case of pure coma, parameter B =  1.0 m -2 (a). Distribution 
of deflection angle ax (b). Distribution of deflection angle ay (c). Computer generated x-deflectogram 
generated from Eq. (2), with pitch p =  10 pm, with distance between the gratings d =  125 mm (d). 
Computer generated y-deflectogram with the same parameters, in (d) and (e) the aperture size is 10 mm by 

10 mm (e)



Fig. 5. Computer generated deflectogram for the case of pure spherical aberration, parameter A =  1600 
m -3 . a — computer generated x-deflectogram generated from Eq. (2), pitch p =  10 pm, distance between 
the gratings d — 125 mm, b — computer generated y-deflectogram with the same parameters, the aperture 
size is 10 mm by 10 mm

plane L1

Surface
normal

Fig. 6. Optical arrangement for calculating the relation between the radius of curvature and the 
corresponding deflection angle and location in the deflectogram plane. Coordinate systems: x-plane
— principal plane of objective, x! — coordinate system for object, x '  -  deflectogram plane. Parameters: 
r, — incident (collimated) ray vector, r2 — resulting ray vector after double passing LI and the object, ax
— deflection angle, R 0 — basic radius of curvature of the object on the optical a x is ,/ — focal length of LI

be free from any optical errors. The light is reflected from the specimen and again 
passes LI. The wavefront W{x,y) which is distorted by the object examined is 
evaluated by a pair of gratings and observed in the deflectogram plane xn. The 
specimen has nearly spherical surface and it has a local radius of curvature R(x',yr) 
and a basic radius of curvature R0 on the optical axis. The centre of the circle with 
radius R0 coincides with the focal point of LI.

We are interested in a relation between the geometry of the emerging wavefront 
W(x,y) and the surface topography of the object examined. Deviations of an ideal 
plane wave can only arise if the surface geometry R(x',y') of the specimen deviates
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from an ideal spherical surface with the radius of curvature R0. This relation will be 
calculated applying a ray matrix approach [10], i.e., the relation between the 
variables x' and x" (deflectogram plane) depending on R(x’,yr) and, further, the 
dependence of the deflection angle a* on the local radius of curvature R(x'iy') will be 
taken into consideration. We briefly illustrate the process for the one-dimensional 
case (x , jc,,.R(x /)). In the paraxial approximation, the x  and y coordinates can be 
treated independently.

In ray matrix approach, a ray is represented by a vector r =  (a,x), where the first 
component a corresponds to the angle between ray and optical axis and the second 
component x represents the distance from the optical axis. Any changes introduced 
by an optical system (refraction, translation, reflection) result in a modified vector r2, 
which can be calculated by multiplication with the system matrix S. The advantage 
of this approach is that more complicated optical systems can be treated in an easy 
way (a more general approach, which does not require paraxial approximation is 
shown in [11]).

In our case, the system matrix S is given by seven transmission stages: 
1 — refraction of starting vector rl by lens LI (L), 2 — translation x-plane 
-* x'-plane {THx.), 3 — refraction on specimen (Af), 4 — reflection on specimen (R), 
5 — translation x'-plane - ►  x-plane (TX.B), 6 — refraction by lens LI (L), 7 — trans
lation x-plane -*■ x"-plane (TBx..):

S = TBx..LTx.BRM TBx.L, (5)
r2 =  Sr, (6)

where L is the ray matrix of the observation lens, Tx’H> TBx. are the translation 
matrices from the principal plane HH' to the x'-plane and vice versa, TBx.. is the 
translation matrix from the principal plane HH' to the deflectogram plane, R stands 
for the reflection at the object M is the matrix for the specimen and it can be 
represented by

M =
1

0

(7)

We examine only small deviations from an ideally spherical surface. For this reason, 
we can approximate K(xO by

1 _ 1 dR(xO

R{x*) * R0 R2o ’

Now, the matrix elements of the system matrix S can be calculated:

(8)

(9)
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S22~ D 2S ,2+ 1 - 2 J r Q - - ^ ,  (9)

R0 is the basic radius of curvature of the specimen on the optical axis, D2 is the 
distance between the deflectogram plane and the principal plane of objective L I , /  
is the focal length of the objective.

The deflection angle a* between optical axis and the resulting ray vector r2 can be 
derived from Eq. (9) and given by

=  St2x  =
2A R M

fRo

The relation between x" and x' is described by the following formula: 

x* = S22̂ y .
R,

(10)

(11)

From Equations (10) and (11) we are able to map the change in radius of curvature 
onto the deflection angle and the location in the deflectogram plane. This solution 
can be expanded to the general 2-D case, if the x-, x7- and x"-axes are rotated around 
the z-axis by an angle q> (Fig. 2).

42. Specimen with the 2nd order elliptical surface

Now, as an example the influence of a 2nd order elliptical surface on the properties of 
the x and y-deflectograms is discussed. As shown in Eqs. (9)—(11), the knowledge 
about the difference in radius of curvature AR for determining the deflection angles is 
required. When we restrict our considerations to 2nd order elliptical surfaces, R2 and 
AR for the x'z-plane will be given as:

R2{9,q>) =  R2J c o s23 + ^ ^  sin29,

aR(9,(p) = R0- R 2(3,cp) (12)

. x'
with S «  —— . From Eq. (12) and radius function R^tp) which describes the rotation

around the z-axis, we can construct any ellipsoid with the three main axes 
R i(<p =  0) (radius in direction of the x'-axis), R^cp =  n/2) (radius in direction of the 
/-axis) and R2(q> =  0, S =  n) (radius on the z-axis). For the simulations shown 
below, R^tp) was chosen to be in the following form:

Rx(<p) = \lrjcos2(<p +  e) + r i s i n g  + s). (13)

In order to gain more knowledge concerning the interpretation of deflectograms, 
the transmission of basic aberration types into the deflectograms was studied by 
numerical generation of deflectograms. Depending on the type of aberration one gets 
different forms of symmetry in the single deflectogram and in both the x- and 
y-deflectograms. Table summarizes the parameter values for simulations 1—4.
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Overview of the parameters used in the simulations

Sim. *i(3X
rotation around z-axis

* 2(SX
function in x'z-plane

Ro,
basic radius

p/d

1 Eq. (13X rx — 7.98 mm, r2 — 7.86 mm 
e »  0 (see Fig. 8)

Eq. (12X 
R2 *= 7.86 mm

R0 »  7.86 mm 2-l0~s

2 Eq. (13X r, =  7.98 mm, r2 =  7.86 mm 
e =  n/4 (see Fig. 8)

Eq. (12X 
R2 — 7.86 mm

R0 =  7.86 mm 2T 0_S

3 Rx — const — 7.98 mm, e =  0 Eq. (12X 
R2 =  7.86 mm

R0 =* 7.86 mm 2 1 0 ' 5

4 Rx -  const =  7.80 mm, e  =  0 Eq. (12X 
R2 =  7.87 mm

R0 =  7.86 mm 2-10-*

Fig. 7. Model for simulations 1—3, the specimen has a radius of curvature R0 on the optical axis z (second 
main axis of the ellipse), the origin of the coordinate system coincides with the focal point of the 
observation lesn LI, the first main axis o f the ellipse is given by Rx((pX which is variable when rotating 
around the z-axis (for the lunction RjfaX see the text). The rotated surface forms an ellipsoid (a). Model for 
simulation 4, the second main axis has a length R2 and differs from R0 (T>)

Fig. 8. Radius function R x(<p) for simulations 1 and 2, the solid function produces a surface with 
90°-astigmatism (e =  OX the dotted curve is used for producing a 4S°-astigmatism (e =  te/4)
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Fig. 9. Difference in radius of curvature AR for simulation 1 (a). 3D-plot of x-deflection angle ax as 
calculated from Eqs. (10) and (11) (b). 3D-plot of y-deflection angle af (c)

Fig. 10. x- and y-deflectograms for simulation 1 — the specimen is aspherical (“deformed” ellipsoid), the 

rotation function R 2(<p) is given by: R^cp) =  y/f\cos2<p-|-r^sin2cp, with rx =  7.98 mm, r2 =  7.86 mm, the 
aperture diameter is 30 mm, the ratio p/d =  2-10"5, R2 = R0 =  7.86 mm

The models for the generation of the surface are illustrated in Figures 7a and b. 
The surface has a radius of curvature R0 on the optical axis z (second main axis of 
the ellipse), the origin of the coordinate system coincides with the focal point of the 
observation lens LI, the first main axis of the ellipse is given by R^cp), which is
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Fig. 11. x- and y-deflectograms for simulation 2, the specimen is aspherical in q> (“deformed“ ellipsoid), the 

rotation function Rj(<p) is given by: R2(<p) =  ^/rjcos2^  4- it/4) +  r*sin2(<p+ n/4), with r, =  7.98 mm, 
r2 ”  7.86 mm, the aperture diameter is 30 mm, p/d =  2-10-5 , R2 = R0 =  7.86 mm

Fig. 12. x- and y-deflectograms for simulation 3, the specimen is aspherical in q> (symmetrical ellipsoid), the 
rotation function ^(«p) is given by: R 2((p) =  const =  7.98 mm, the aperture diameter is 30 mm, 
p/d =  2 1 0 -5, R2 =  R0 =  7.86 mm

variable when rotating around the z-axis. Figure 7b shows the model for simulation 
4, the second main axis has a length R 2 and differs from R0.

The function R i for simulations 1 and 2 is plotted in Fig. 8. The solid function 
produces a surface with 90°-astigmatism, the dotted curve is used for producing 
a 45°-astigmatism.

Figure 9a shows the difference in radius of curvature AR for simulation 
1 (90°-astigmatism). In Figure 9b, the 3D-plot of x-deflection angle olx calculated 
from Eqs. (10) and (11) is demonstrated. The 3D-plot of y-deflection angle ay is 
drawn in Fig. 9c.
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Fig. 13. x and y-deflectograms for simulation 4. The specimen is aspherical (symmetrical ellipsoid), 
the rotation function is given by: f?,(«p) =  const =  7.80 mm, the aperture diameter is 30 mm,
p/d =  2 1 0 “*, R2 — 7.87 mm, R0 =  7.86 mm. The deflectograms appear smaller because of different radius 
of curvature on the optical axis (Fig. 7b). The low density fringe spacing in the outer region (horizontal 
in the x-deflectogram) indicates locations where the ellipsoid intersects the sphere with radius R0

In Figure 10, we see x-and y-deflectograms for simulation 1 (90° astigmatism). 
The specimen is aspherical (“deformed” ellipsoid). The rotation function R t(y) is 
given by R t(y) =  v rfc o s^ + rfs in V »  with rA =  7.98 mm, r2 =  7.86 mm, the 
aperture diameter is 30 mm, the ratio p/d = 2x  10-s , R2 = R 0 = 7.86 mm. Both 
deflectograms show symmetry but there is no symmetry between them.

Figure 11 presents the x- and y-deflectograms for simulation 2 (45° astigmatism). 
The object is aspherical, the rotation function R ^y)  is given by: R^y) =
\ f r 2cos2(y + n/4)+ r 2sin2(<p + 7t/4), with rl =  7.98 mm, r2 =  7.86 mm, the aperture 
diameter is 30 mm, p/d =  2x 10"5, R 2 = R0 = 7.86 mm.

Figure 12 demonstrates as an example a symmetrical ellipsoid (simulation 3), 
the specimen is aspherical, the rotation function R ^y)  is given by: 
Ri(y) =  const =  7.98 mm, the aperture diameter is 30 mm, p/d = 2 x l 0 ~ s, 
R2 = R0 = 7.86 mm.

In Figure 13, the result for a distorted symmetrical ellipsoid is illustrated. The 
object is aspherical (symmetrical ellipsoid), the rotation function R ^y)  is given by 
R t(y) = const =  7.80 mm, R2 =  7.87 mm, the aperture diameter is 30 mm, 
p/d = 2 x 10-4, R0 = 7.86 mm. The deflectograms appear smaller because of different 
radius of curvature on the optical axis. The low density fringe spacing in the outer 
regions (horizontal in the x-deflectogram) indicates the locations where the ellipsoid 
intersects the sphere with radius R0 (Fig. 7b).

5. Conclusions

In this paper, the principle of moiré deflectometry for measurement of wavefront 
aberrations is briefly discussed. When measuring aspherical optical surfaces, for 
example, contact lenses or the human cornea, it is necessary to find a relation 
beetwen the local radius of curvature and the deflection angles, respectively, as well 
as to find a relation between the degree of distortion of the wavefront depending on
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the properties of the object under study. A ray matrix approach was applied to solve 
this problem. The computer generated moire deflectograms for different types of 
aberrations can serve as a basis for further examinations of real optical surfaces. The 
results presented here can be useful for the evaluation of deflectograms obtained 
experimentally.
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