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Evaluation of rigid body displacement by differential 
holographic interferometry*

I van PRikril

Laboratory of Optics, Palacky University, Olomouc, Czechoslovakia.

The evaluation of a small change in the position of a diffused object by means of differential 
holographic interferometry is the subject of this paper. The equations of interference fringes 
will be derived for a quite general displacement of rigid body and for a quite general shape 
of the object surface. For the plane surface of the object the interference pattern will be ana
lysed in details, and the method for determining the displacement of a rigid body from one 
interference pattern will be shown.

Introduction

Let us consider an object with optically rough surface. We want to evaluate the 
displacement of the object caused fly some agent. Assume that the displacement 
is so small that the differential holographic interferometry can be used. Hereafter, 
the displacement is understood as a change in the object position without any de
formation of the object, i.e. the object is considered as a rigid body. Then the dis
placement vector A of any point on the object surface can be analytically expressed 
as a function of its coordinates with the help of only six a priori unknown con
stants in contrast to the case in which a deformation of the object is also admitted 
and the dependence of the displacement vector A on the coordinates of object 
surface can be an a priori quite unknown function. That is why the displacement 
of a rigid body is much simpler to study than that of an object which may suffer 
from simultaneous deformations of its surface. Nevertheless, in papers dealing with 
estimation of the rigid body displacement, e.g. in [1 —7], this problem is discussed 
in an even simpler form, i.e. the treatment is there reduced to the rigid body dis
placement considering only basic displacement as the pure translation in a known 
direction or the pure rotation round a known axis of rotation.

Our chief object in this work is first to find and then to analyse the interference 
pattern belonging to a general change in the rigid body position. The investigation 
are restricted to an interferometric arrangement in which the entrance pupil of the 
optical system is situated at infinity with respect to the examined object, so that 
the interference fringes are localized on the object surface [8], For the object illu
mination a coherent spherical wave is used.

* This paper has been presented at the Fourth Polish-Czechoslovakian Optical Conference 
in Rynia (near Warsaw), Poland, September 19-22, 1978.
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Theory
The interference fringes are loci of the constant optical path difference <5. The equa
tion for an interference fringe of Ar-th. order lying on the object surface can be 
written

d'rs(u, v)) =  kX, (1)

where X is the wavelength, ys, zs) is the position vector of the object surface 
and the variables u, v are some curvilinear coordinates of the object surface. In di
fferential holographic interferometry for the path difference <5 the following well- 
-known relation holds

S =  ( s - Si)J ,  (2)

where si(pi, q(, m,·) and s(p ,q ,m ) are the unit direction vectors of incident and 
reflected rays, respectively. When looking for the shape of interference fringe we 
may take account of the principal reflected rays of the observing optical system, 
only. By substituting (2) into (1) we can write

v))] ‘A (rM> v)) =  M> (3)
where the direction vector s is constant for all the principal rays, the entrance pupil 
of the observing optical system being situated at infinity. The vector is given by

*,· =  (rs - ri)lRi> (4)
where r {xt, yh zf) is the position vector of the point source illuminating the object, 
and R{ is the distance along the ray from the point source to a point of the object 
surface. This distance can be expressed by

Ri(rs) =  HwrMlMr,), (5)

where Ri0 is the constant which equals the distance Rt of the reference ray that 
goes from the point source to the reference point of the object surface. The reference 
point of the object surface is chosen somewhere in the middle of the illuminated 
part of the object surface (see also fig.). For not too large angle subtended by mar
ginal rays the quantity ARS is approximately given by

ARi =  (rs- r so)sio, (6)

where the subscript 0 denotes the quantities which belong to the reference ray. 
Applying (5) and (6) to (4) we get

8i(rs) =  (r - ri)l[Rio+(rs-rs0)sio\. 0 )

The quantities Ri0, r ; , rs0, si0 and s are the constants of the given interferometric 
arrangement. Inserting the expression (7) into the equation (3) we have

{* \Rio+ (rs- rso)8io \-(rs- ri)}A(rs) =
=  H [i^ 0+ ( r a- r s0)si0], ( 8 )



Evaluation o f  rigid body displacement .. . 5

where the vector rs is still the function of the coordinates u, v.
Now we want to investigate more closely the vector function A(rs). The general 

change of the position of a rigid body can always be broken down in a pure trans
lation and a pure rotation. The axis of rotation can pass through any point of 
the space. For every axis of rotation having the right direction given by the 
unit vector o(a, ft, y) such angle of rotation xp and such vector of translation 
t(a ,b ,c)  can be found that both these motions give together the investigated 
change of the object position. If the axis of object rotation goes through the origin 
of the coordinate system, the displacement vector A at an object point given by 
the position vector rs can be expressed by

A =  (oXrs)xp+t (9)

or introducing the rotation vector 0{A ,B ,C ), where

A =  axp, B =  ftxp, C — yxp, (10)
it may be written as

A =  O x iy f t .  (11)

The angle xp is positive or negative, depending upon the counter clockwise or clock
wise rotation, respectively, when looking against the vector o and assuming the 
right-hand coordinate system.

Substituting (11) into (8) we easily find
([Orss]+ ts-kX )[R i0+  (rs- r 50)si0] + [O rsr{]+  t ( r - r s) =  0 . (12)

Now let us introduce the position vector rj(xr, yr, zT) to determine the plane 
of the interference pattern in the object space of the observing optical system, and 
let the position vector rJ0(pcI0,y l0, zI0) determine the point of intersection of this
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plane with the principal ray reflected at the reference point of the object surface. 
Further, let us choose the Cartesian coordinate system with the axis z perpendi
cular to the plane of the interference pattern, and let

u =  x j - x l0, v =  yJ- y I0. (13)

Then the curvilinear coordinates k, v of the object surface are simulataneously 
Cartesian coordinates in the plane of the interference pattern. For the sake of bre
vity we introduce the vector g(u, v, 0). This vector may also be interpreted as two- 
-dimensional position vector in the plane of the interference pattern. Then

g  =  ri~ rro (14)
holds. If V =  V(u, v) is the distance along a principal ray from a surface point 
(xs, ys, zs) of the object to a point («, v) of the plane of the interference pattern, then 
the position vector rs can be expressed in the following way:

rs =  g + r I0+ V s. (15)

The distance V(u, v) can be found by solving the equation

F (g+rI0+Vs) =  0, (16)
if

F(rs) =  0 (17)

is the equation of the geometric surface averaging the microstructure of the illuminat
ed part of the object. Substituting (15) into (13) and writting explicitly the vector g  
after a suitable rearrangement we get the following equation of the interference 
fringe of k-th order in the plane of the interference pattern

u2 (Cq-Bm)pi0+ v 2 (Am-Cp)ql0+uv(Cq-Bm)qi0+  (Am-Cp)pi0+
+ u {([ OrI0s]+ ts —kX)piQ —a+ C{y^qM ) -B {zi-\-mM)}+

+v{([Or/0s]-j-t* -kX)qiii-b + A {z i+m M )-C {xi+pAI)}+
+([O rI0s ]+ ts —kX)M +  [Or/0r J +  t(r l~ r J0)+  (18)

+  uV(u, v) (Cq—Bm)ssi0+vV(u, v) {Am-Cp)ssi0-\- 
+  F(w, v){([OrI0s]+ ts —kX)ssi0-  [Orts]—ts} =  0, 

where the notation

M =  Ri0+  (r /0- rs0)s/o (19)
has been used for brevity.

Additional analysis can be made if the concrete spahe of the object surface is 
given. The simplest case is that when the object surface is a plane. Hereafter 
we shall investigate only this case.

Let equation (17) of the object surface be

(r s- r s0)n  =  0, (20)
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where n(pn, qn, mn) is the unit normal to the plane surface of the object. Then the 
distance V(u, v) has to obey the relation

(g + r ,o+ V s - r M)n =  0 (21)

for each point (u, v) of the plane of the interference pattern. From (21) it follows

V(u, v) =  (rs0 g  rJ0) njsn. (22)

If substituting the expression (22) into the equation (18) we should obtain the 
equation of second order with respect to the variables u, v for the interference 
fringe in the plane of the interference pattern. If the object surface is a plane then 
it is suitable to identify this surface with the plane of the interference pattern, because 
in this case the interference fringes, localized on the object surface, are localized 
simultaneously on the plane of the interference pattern. Then V(u, v) == 0 holds. 
When rI0 =  rs0 then also holds M =  Ri0. Substituting V =  0 and M  =  Ri0 into 
(18) we get the following relation for the interference fringe of A>th order lying in the 
plane of the interference pattern

u2 (Cq—Bm)pi0+ v2 (Am -  Cp)qi0+ uv [(Cq-Bm)ql0+  (Am -  Cp)pi0]+
+u {([OrI0s]A-ts-kX)piQ-a-\-C(yi+qRiQ)-B (z i+mRi0)}+
+ v {([ OrI0s ]+ ts —kX)qi0 -b + A  (zi+mRi0) -  C(x/-f-Jpi?i0)}+

+([ OrI0s]+ ts-kX ) Rl0 +  [ OrIQr^+ 1 ( r - r I0) =  0.

This equation is of second order with respect to the variables u, v of the following 
type

ai l u2+a22V2+ a 12uv+a13u+a23v+ct33 =  0. (24)

The interference fringes described by such equations are conic sections.
Before starting an analysis of the equation (23) let us turn some attention to 

a simpler case when the wave illuminating the object is a plane instead of spherical 
one. Then Ri0 tends to infinity and s; =  si0 — constant. The equation for an inter
ference fringe can be obtained by dividing the equation (23) by Ri0 and putting 
Ri0 =  oo. Hence we get the linear equation

u[C(q~qi) ~B (m -m,·)]+v[A(m -m ,) -C (p  - p t)]+
+  [ Or/0 (s—sf)]+ 1 (s—sj)—kX =  0.

This equation represents straight parallel interference fringes. We immedia
tely see that of the investigated displacement of the object was a pure translation, 
i.e. A =  B — C then the interference fringes would disappear and the whole field 
of view be covered with constant intensity.

Now let us come back to the equation (23) which is valid for a spherical illuminat
ing wave. From this equation it easily follows that the interference fringes become 
straight lines, i.e. the equation (23) becomes a linear equation, if at least one of the 
three following cases occurs:



8 I. PftlKRIL

(i) The rotation vector 0(A , B, C) is a zero vector.
(ii) The vectors 0(A ,B , C) and s(p ,q ,m )  are collinear i.e. the axis of the 

object rotation is parallel to the direction of view.
(iii) The componentspi0 and qi0 of the vector si0(pi0,q i0, mi0) are equal to zero. 

It is the case when the point source positioned on a normal to the object surface 
at the reference point illuminates the plane surface.

These three conditions can be expressed shortly:

(i) ip =  0.

(ii) A — pip, B =  qip, C =  mip. (26)

(iii) Pio=4to =  0- ■ ■
By applying any from these three conditions to the equation (23) we obtain in 

each case a linear equation of the type

u (d± ~\~h± K)~\~ v(d2~\~h2 ̂ )~\~d3~\~h3 k =  0, (27)

where for brevity we have used new coefficients d1} h1} d2, h2, d3, h3. From this 
equation it is seen that the straight interference fringes create the bundle of lines 
converging at the point (uT, vr). Using the well-known relations of analytical geo
metry we can derive for these coordinates

uT =  (d2 h3 h2 d3)j (di h2 hi d2~), (28)
vT =  (ht d3—di h3)l(di h2 d2).

If
dt h2 — hid2 (29)

holds, and simultaneously, the numerators in (28) are not equal to zero, e.g. when 
Pio — Qio — 0, then the convergence point of the bundle of the lines lies at the in
finity and the interference fringes are parallel. It is to be noted, that the interference 
fringes can also be detected as parallel straight lines if the convergence point of their 
bundle is sufficiently far beyond the field of view of the observing optical system.

If the interference fringes are not straight lines then the small discriminant of the 
conic section (24) defined by

, flu flj2
D'=, (30)

a 1 2  a 2 2

becomes
D' =  -  [{Cq - Bm)2 qf0 +  (Am -  Cp)2pf0 +  (Cq —Bm) (Am—Cp)pi0 qi0\ (31)

in the case of the conic section (23). Since

(Cq —Bm)2qf0 +  (Am—Cp)2pf0 > 2 (Cq-Bm)(Am—Cp)pi0qi0 (32)

holds always the investigated small discriminant D' is always non-positive, becoming 
equal to zero in certain case leading to straight interference fringes. If the discriminant D
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of the conic section (23), defined by

#11 a12 #13 
D — #12 #22 #23 (33)

# 1 3  # 23  # 3 3

is not equal to zero then the negative value of small discriminant D' means that 
the observed interference fringes are hyperboles. If the discriminant D is equal 
to zero for some interference fringe then this interference fringe degenerates into 
two intersected straight lines.

The previous analysis discovers the connection between a general rigid body 
displacement and the interference pattern. Let us consider the question how to use 
one interference pattern of the the interference fringes described by the equation 
(23) to evaluate a general rigid body displacement, which is fully given by the vectors 
t(a ,b , c), 0(A ,B ,C ). Before looking for the answer let us underline that the 
coefficients of the interference fringe equation (23) are linear function of the inter
ference order k and of the quantities a, b, c, A ,B , C.

In the first place let us consider the case when the interference fringes are hyper
boles. It is well-known in analytical geometry that a conic section is given unambi
guously by five points lying in a plane if no three of these points lie on a straight 
line. If any three points are lying on a straight line then the conic section is singular. 
If the position of some five points of a conic section is known then it is given by 
the equation

where ui , vx up to us , v5 are the coordinates of the given five points. Inserting the 
numerical values of the coordinates of the five points, suitably chosen in a concrete 
interference fringe of k-th order, into the equation (34) and then comparing this 
equation with the equation (24) we obtain the numerical values of the coefficients 
aik of the equation (24) valid for the investigated interference fringe. Without loss 
of generality we may assume that the coefficient an  differs from zero. It can always 
be ensured by a suitable rotation of the coordinate system round its axis z. When 
the coefficient axl differs from zero the equation (24) with the concrete values of the 
coefficients aik may be divided by the coefficient ax A. The new coefficients — let 
us denote them bik =  (aik/al l ) — may be compared with their analytical expression 
obtained from the equation (23) being divided by (Cq—Bm)pi0 ^  0. In this way 
five linear homogeneous equations are obtained usually for the seven unknowns 
a, b, c, A ,B , C, k. From the interference pattern we can get one more equation

#2, uv, v2, w, v, 1
u\, uxvx, v2, ut , vx, 1

(34)
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bringing a new information about relations among the interference fringes. To 
find this sixth equation the system of the five linear homogeneous equations should 
be derived also for the interference fringe of (k+  n)-th order. For this purpose the 
first equation, valid for the interference fringe of k-th order is substrated from the 
first one, valid for the interference fringe of (k+n)-th order, and this subtraction 
is repeated also for the second to fifth couples of equations. Finally we get

b*+n) =  b%

b%+n) =  (35)
b^+n) =  b^+nXqi0l(Bm-Cq)pi0, 
b f t n) =  b«l+nXRi0l{Bm-Cq)pi0.

One from the last three equations of the system (35) (last seeming to be the most 
sutable) can serve as the sixth equation. In such a way we obtain the system of six 
linear unhomogeneous equations with the seven unknowns a, b, c, A, B, C, k. 
We assume that the difference n between the orders of interference fringes is known. 
Obviously, a system of six linear unhomogeneous equations with seven unknows is 
not unambiguously solvable. Fortunately, the case without any a priori information 
about the investigated position change of the object can be hardly found in 
practice. Usually one of the quantities a,b,  c, A, B, C , k  is known before the 
evaluation. Such cases are solvable with the help of the proposed method.

If the interference fringes are not hyperboles but they create the bundle of straight 
lines, then at least one of the three conditions (26) must be satisfied. Let the inter
ferometric arrangement be chosen in such a way that the third condition (26) does 
not hold, i.e. pi0 =  qi0 =  0 is not valid. It means that the interference fringes are 
straight lines if either xp =  0, i.e. A =  B =  C — 0, or A =  pxp, B =  qip, C =  mxp 
holds. That is why we have now only the five unknowns a, b, c, xp, k. Applying 
the second condition (26) to (23) for the bundle of straight interference fringes 
we get the following equation

u [(ts-kX )pi0 - a  -fxpimyt-qzf)]+
+ v [(ts—kX)qi0 —b+xp (pzf—mx,)] +  (36)

+  (ts-kX)Ri0+ t( r i- r J0)+xp(srl0ri] =  0.

Like in the case of curved interference fringes we can also find the concrete 
numerical values of the coefficients of the equation of the straight interference fringe 
of k-th order. The coordinate system can again be turned round the axis z in such 
a way that the coefficient at the variable u differs from zero. Dividing the equation 
with numerical coefficients by this coefficient and comparing the obtained equation 
with its analytical expression (36) being divided by ( ts— kX)piQ—a+xpirnyf—qzt) #  0 
we get two linear homogeneous equations for the five unknowns a,b,c,xp,k.  Next 
equation can again be obtain with the help of the interference fringe of (A:+«)-th 
order in the same way as in the case of curved fringes. Thus we get the system of three
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linear unhomogeneous equations for the five unknowns. That is why the unambi
guous evaluation is conditioned again by the a priori known change of the object 
position. If, however, we are not interested in the magnitude of the angle ip the inter
ferometric arrangement can be chosen in such a way that the vectors r, and s is 
collinear. Then the interference fringes will not depend on the quantity ip as it follows 
from the relation (36).

The evaluation of the interference pattern caused by general change of the object 
position would be substantially more complicated if the shape of the object surface 
was not plane. Then the distance V(u, v) would be a nonlinear function of u,v  
and the equation (18) of higher order (than the second one) with respect to the 
variables u, v. In such case as well as in the cases when the object surface is plane 
but the displacement is not unambiguously solvable with help of the previous me
thod, it seems to be most suitable to look for the change in the object position by 
applying the well-known method of single or multiple hologram analysis [9] on three 
surface points of the object. These three points must not lie on one straight line. 
We shall obtain three displacement vectors A. With help of these three vectors A 
and with help of the relation (11) we shall be able to get just six linearly independent 
linear equations for the six unknowns a , b, c, A,B,  C.
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Onpe^ejiemie cMeinemm TBep^oi o Tejia 
MeTO/iOM rojiorpatjiHHecKOH iniTep êpoMeTpiiii

Co^epacaHHeM craTtH «BjweTca oiiemca He3HaTHTeJn>m>ix H3MeHeimii nojioaceHna mnl><i>y3Horo 
npemdeTa c noMOmwo ronorpa^HHecKoii HHTep$epoMeTpHH. npHBe^eHO ypaBHemae Hirrep- 
4>epeHiiHOHHbix JH1HH0 m w  o6iiihx cMememfi TBep^oro Tejia j^oSott 4>opMi>i noBepxHocTH. 
npoH3BefleH nonpobHHfi aHajiH3 HHTep4)epeHimoHHbix cneKTpoB njw cayraa nJiocKOfi npeAMeraoii 
noBepxHocTH, a  Taxace noxa3aHO, xax H3 ohhoU HHTep4)eporpaMMi.i Moamo onpeneaHTb 
cMemeime TBepnoro Tena.


