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Generalized treatment of Fourier
transforming by lenses*
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Institute of Physics, Technical University of Wroclaw, Wroclaw, Poland.

So far we have found in literature the Fourier transforming properties of thin lenses, only.
This paper considers, in general, transforming of properties a thick lens and their influence on
the spatial frequencies of Fourier spectrum. Finally, a comparison between the spatial frequen-
cies of spectrum obtained by a thin and by a thick lens is shown.

Introduction

It is well known that the complex amplitude distribution in the output plane of an
elementary optical system can be expressed by the Fourier transform of a distribu-
tion in the input plane. The papers so far published were exclusively concerned with
the problem of Fourier transforming by thin lenses. An exception is the paper [6]
which considers the Fourier transform properties of a plano-convex thick lens. The
present work is devoted to the case of double-convex thick lens.

Fig. 1. An elementary optical system to obtain the Fourier transform

Consider a perfectly corrected lens system shown in fig. 1, where the lens is
infinitely thin. Using the Huygens-Fresnel principle with assumption that the distan-
ces of and s2 are much greater than the maximum diameter of the lens aperture
and the diameter of the respective regions in the (x0,y0) and (£, rj) planes, the com-
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plex amplitude at points (x,y) and (£, rj) can be written as

.
HX, y) = Uogxo.y0) ZRLEL axo ayo (1

and

2)

X Y

respectively, where the obliquity factor is approximated by one. Since functions
U0(x0,y0) and H'(x, y) are equal to zero outside the apertures {X0, Y0) and (X, Y),
the superposition integrals (1), (2) can be written with infinite limits. Assuming the
Fresnel approximation [1], we can write the superposition integrals as a convolution
of UO(x0,y0) (or of H'(x,y)) with the weighting function

H.X>y):41j.o(,y)0exp| 3

u(l )= A2/ H'(I ) oexp | @
[ii (S2r,wW)1\’
where
exp (ikSi) exp (iks2)
T islA T is21

It is well known, too [1] that a plane wave normally incident on a lens forms a spheri-
cal wave behind the lens. Thus we observe the field transformation as a quadratic
approximation to a spherical wave. If the focal length of the lens is positive (conver-
ging lens), then the field distribution behind the lens is written as

H'(x>) = H>y)exp [ Yjr (x2+ yZ)J exp (iknd), (5)

where H(pc, y) is the field distribution in front of the lens. Of course, we assume that
the slope angles of incident rays are small enough to make the formula (5), valid for
thin lenses, applicable to the thick lenses, as well. By combining the expressions (3)
(4), and (5), we obtain the following form of field distribution in the output plane
1 o
U(lv) =~ p f fff WX

o |l - 2,9
m M(y—.lﬁ deyledy, (6)
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where the constant phase factor has been dropped. By integrating the field distribu-
tion in the lens plane (x,y) we obtain

= n
exp [ I 6}2’5]
ua, rmy = [ ) J [ U0(x0,y0)exp [, 00+>0)j
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Xexp u |£ i dx0dy0. @)
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W v fo

Expression (7) represents the field distribution in the output plane at any distances
of the input and of the output planes from the lens. Two cases are very important.
First is when the output plane is the image of the input plane, and the second case
when the complex amplitude distribution in the output plane determines the Fourier
transform of the input distribution. We are interested in the second case which takes
place when 7 = s2=1f0. Then the resulting amplitude distribution is given by

U(g.ri)=1i i JJ uo(xQyOexp| - iy OoI+Jov)J dxodyOm (8)

Thus the field distribution in the back focal plane is seen as the two dimensional
Fourier transform of the amplitude distribution in the front focal plane with the fol-
owing spatial frequencies

©

Modification of the focal length of a lens and phase transformation

Consider a thick converging lens with two spherical surfaces surrounded by air.
Assuming a perfectly corrected lens the object-image correspondence can be studied
with good accuracy if the two principal planes which characterized the investigated
lens are introduced. Certainly, the principal planes of a thin lens are covered with
each other. Figure 2 shows the object principal plane P and the image principal
plane P' in a thick lens. Its focal length can be determine from the equation

11 1
T~70~L

(10)

where
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Fig. 2. Ray-tracing of the diffracted light between two focal planes F, F' of a thick lens represented
by its principal planes P, P’

s the optical power of a thin lens with the curvatures J/Rt, 1/R2, respectively, and
1_ (n-Hd
fd nR\Ri >

represents an additional optical power introduced by the thickness d of the conside-
red lens. Thus we see that the focal length of a thick converging lens is longer than
the focal length of thin lens with the same curvatures. Therefore we can analyse the
lens considered as an optical system containing two thin lenses (one converging and
the other diverging) very close to each other. If the radii of the first lens are Rx and
i?2, respectively, the radii of the second lens are defined by

iR2

R2= B& <o, (11)
NRxR?

R* = - g <° (12)

where n is the index of refraction of the lens medium, and d is the thickness of the
thick lens measured along its optical axis.

If the image principal plane of the considered lens overlaps the principal plane
of the thin lens having the same curvatures and the same index of refraction, then
the suitable image focal planes are shifted relatively to each other. The distance
between the two image focal planes is determined by

fi
Al fd~i0 (39
and is shown in fig. 3. Remember that the phase delay suffered by the wave at coor-
dinates (x, y) in passing through the lens depends on the focal length only [1], [6].
Assuming a constant value of the axial thickness (d — constant) of the lens, the multi-
plicative phase transformation may be represented by

exp(ikiul)exp I+ - d— 14
p( )|oL 40 (14
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Fig. 3. The distance between the two image focal planes of the thin and of the thick lens, respectively

thus the light distribution behind the lens described by expression (5) takes the form
HXX, y)= H(x, y)exp(iknd)-expJr-i

The equation (15) shows clearly the dependence of the phase transformation on the
lens thickness. We see that in a special case when the thickness d tends to zero, the
general form of expression (15) takes the form (5), or

H'(x,y) = H(x,j)exp [ -, (x2+y2)

Spatial frequencies of Fourier spectrum realized by a thick lens

It is clear that a lens is a useful device for performing the Fourier transform upon
a light field distribution in its input focal plane. An optical system can be construc-
ted by arranging a sequence of lenses which forms a succession of Fourier trans-
form planes. Let us then consider the complex amplitude distribution as a signal
U0(x0,j 0) in the input focal plane of a thick lens which can be imagine as an optical
system of two thin lenses. This optical system can be represented by its object and
image principal planes, and is shown in fig. 2. Inserting into the expression (2) or (4)
the function H'(x, y) described by (15), instead fo function (5), and putting the dis-
tance sx —s2 =/, we obtain the field distribution in the image focal plane of the
considered lens. If the constant phase factor is neglected, the field distribution beco-
mes

U(f, ) = ff Uo ,Jo)eP ij i (x|+i22)s dx0dy0.

We see that the complex amplitude distribution in the output focal plane of a thick
lens is also determined by the Fourier transform of distribution in the input focal
plane. There is moreover a difference refering to the description ofthe Fourier trans-
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form ofthe input function in a thin lens system and in a thick lens system. The point
is that in a thick lens system the intermediate functions H(x, j) and H'(x, y) are
determined in two planes, i.e. in the two principal planes which are in a certain distan-
ce from each other, while in a thin lens system these functions are defined in one plane
passing through the middle of the lens. Obviously, this plane is simultaneously the
object and the image principal plane. Therefore, in both the cases of thick and thin
lenses the optical path lengths ri and r2in the object and image regions, respectively,
have the same form (figs. 1 and 2). Take notice of

1= [f2+(x-X0)2+(y-yo) 3112

r2= [f2+(x-Z)2+(y-ri) 23112 (17)

Expression (16) describes the Fourier transform of the input field distribution,
evaluated at radian spatial frequencies

Denoting by coOx — —— ,co0y = —— the radian spatial frequencies performed
*fo *fo
by the thin lens, we get the following relations:

(19)

This means that the spatial frequencies obtained by a thick lens have smaller valu s
than the appropriate frequencies realized by a thin lens. Suitable relation is plotted
in fig. 4. The. relative error of the spatial frequency produced by a thickness of lens
is a linear function of the thickness and expressed in the following form

(Og— @ _ fo

(20)

<9 fd
The graph ofthe error function presented in fig. 4 has been plotted for three different
values of focal length assuming that the curvature of RJ1 — and the index of

refraction n — 1.5.

Conclusion

From the above considerations it follows that the spatial frequencies of Fourier
spectrum obtained by a thick lens depend on the lens thickness. It is shown that
a thick converging lens can be represented as a system containing two thin lenses.
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Fig. 4. Relative error of the spatial frequency expressed in percent as a function of the thickness of
a lens

Therefore the phase transformation induced by thick lens differs from that produced
by the thin lens, since the focal length is a function of thickness of the first lens.
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O6006LeHHas TpaKToBKa TpaHcdopmauum ®ypbe,
OCYLLLECTB/ISIEMOIA NIMH3aMU

MpeobpasoBaHue dypbe, NPUMEHSEMOE B PeLUEHUM OCHOBHbIX BOMPOCOB COBPEMEHHOW OMTUKW,
OCYLLLECTB/ISIETCA C MOMOLLbIO (hOKYCMPYIOLLMX OMTUYECKMX 3/1eMeHTOB. [lybanKyemble B suTe-
paType paboTbl 13 3Toli 06/1acTV KacatoTcs TpaHcopmauumn dypbe, NOYyYeHHOW B cucTeMe ¢ bec-
KOHEYHO TOHKOW SIMH30A.

B HacTosLein paboTe onucaHbl TpaHhOPMUPYIOLLMe CBOMCTBA TONCTONM NIMH3bI U UX BAUSAHWE
Ha MPOCTPaHCTBEHHbIE YacToTbl crekTpa dypbe. 3aMeTHble PasINYMS MPOCTPAHCTBEHHbIX 4acToT
CMeKTPa, OCYLLECTB/SIEMOr0 C MOMOLLbIO TO/ICTOM SIMH3bI, a TakKXe CMeKTpa, Peasn30BaHHOro
C MOMOLLLbI0 TOHKOI NIMH3bI, 06yCNOBMEHbI PA3HOCTLIO OMTUYECKOW CUMOIN 3TUX NUH3. HakoHeL,
Ha npuMepe TPEX NIMH3 C PasUYHBbIMU (DOKYCHbIMU PACCTOSIHUSIMU MOKasaHbl OTHOCUTESbHbIE
pasHOCTW MPOCTPAHCTBEHHbIX YaCTOT, BblPaXeHHble B MPOLIEHTaX, B 3aBUCUMOCTM OT TOMLUHbI
9TUX JINH3.



