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The paper contains an analysis of the higher order aberrations for point-sources 
of the w avefronts tak ing  part in  holographic im aging. The form ulae for higher  
order aberrations are g iven  together w ith  the vanishing conditions for the latters. 
A sim ple m ethod allow ing to  accelerate the convergence of the aberrational e x ­
pressions w ith in  classical binom ial expansion as w ell as enabling to  determ ine 
the com plete aberrations outside th is expansions is presented.
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Introduction

The sum of aberrations for each of the reconstructed imaging wavefronts 
&R, and Ov is determined by the difference of their respective phases and 
the phase of the corresponding Gaussian reference sphere

® r ,v - ® gr  v =  <Pc T(p0±(Pr- ® gRsV- (1 )

The conscise notation (fig. 1) of each of the wavefront phases <pq given by

allows to determine quickly the higher order aberrations and their ex- 
aminatioivThe square roots appearing in the expression (2) may be represen­
ted in the form of a series

which is absolutely convergent for |f| <  1 .

* This work w as carried out under the Research Project M .R. 1.5.
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Let us consider the first square root in (2). For the sake of convenience 
we write its expressions accurately to (3) so, that the numerical coefficients 
following from the expression (3) are ignored, and we restrict our attention 
to expansion of Vl  +  (p —pq)z. The Pascal triangle which is associated with 
this expansion has the form

( p z) ~ 2 ( P ’ Pq)

( / )  - 4  (.P2) (P ■ Pq) +  [2 (p*) (p\) +4 (p- pq)>] - 4  (pi) (p · pq) +(p*a) (4)
(/>‘) - 6(/>‘) (p-p1) + ......  - 6(/>‘) (p-pt )+(p\)

(pn+')-(n+  1 ) ( / .“-* )  (P-Pp)+ · . .  · · · ·  + 0 > r 1)

Due to lack of space the two (3-rd and 4 th) subsequent rows of this 
expansion are writen in extenso below.
The third row:

( / ) - 6( / )  (p-pq)+[3(p4) {pZg) + 12 (/>a) {p-pqf }
- [ 1 2 (p2) (Pi) (P-Pq)+8{P-Pqf ]

+  [3(p·) (p4)+12(p2) (p-pq)2]~6(p4q) (p-pq)+(p6g)
The fourth row:

( / ) - § ( / )  (P -Pg) +  [4 (p6) (pq) +24 (p4) (p-pq)2]
- [ 2 4 (p4) (p\) (p-Pq)+32(p*) (p-pQ)3]

+ [6(/>4) (^)+48(/>2) (p2q) (P-Pq)2+1Q(P-Pq)4]

- [ 2 4 (p*) (p4q) (p-pq)+32(p2q) (p-Pg)3]

+  [4(p2) (pq) +24(/?4) (p-pq)2] - 8 ( p 6q) (p'Pq)+(pl)-

The structure of the next row will be obtained multiplying the previous 
one by [{pz) —2(p-pq) —(pi)]. The correctness of the performed operations 
may be easily verified. After rearrangement of the polynomials according 
to the power of p the sum of the numerical coefficients occurring within 
parentheses — grouping the terms of the same power of p — should be 
equal to the respective (”) of the Newton binomial.

After performing all operations required by (2) in the triangle (4), 
the terms with the expansion coefficient (£;£}) will be cut outv while the 
phase differences defined n (1 ) will give in the first row

1  V 1 2 71 (p*)~2 (p 'Pq)
2 jŁj Xą zq

1 2n / (p2) —2 jp-pc)
2 Ac \ zc

(p'z) —2(p'-p0) , (p'*)-2(p'-pr)
------------------- ±[X--------------------

(p*)-2(p-paRV
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if the possible changes in both the scaling (p =  mp '), and the wavelength 
((x =  Ac/A0) which may occur during the reconstruction are admitted. This 
expression represents the Gaussian imaging. When compared to zero it 
allows to determine the coordinates xGr v, yOR v, zQr  of the Gaussian 
sphere. The phases corresponding to the second row ordered in a similar
way define the third order aberrations, while those given in the

a
fourth row represent the aberrations of fifth order etc. 

a

The structure of aberrations

The aberrations defined in the way explained above are determined 
along the ray. Each of the components of the aberration of given order 
describes the wavefront deviation from the sphere and constitutes a defined 
aberrational surface. With the increase of the aberration order the number 
of types of such surfaces increases, beside those existing in the previous 
row there appear some new ones. Fig. 2 presents symbolically the Pascal 
triangle with the marked directions of summing the contributions to the 
particular kinds of aberrations.

G a u s s i a n  im a g in g  1__________ 2

The nomenclature connected with the higher order aberrations and 
used in the literature is poor. The names of effective field curvature, circu­
lar coma, elliptical coma taken from the lens system terminology and cited 
after Buchdahl [1 ] do not exhaust all the possibilities. The effective
field curvature — the aberration with the coefficients is com­
posed of field curvature and astigmatism. Their mutual relation may be 
fixed on the base of the relation (4).

Due to the central position of the term describing the astigmatism and 
the field curvature of the third order (fig. 2) the expressions lying symmetri­
cally with respect to the effective field curvature with the coefficients

8 — Optica Applicata X/4
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(n _̂1) , and those lying on the symmetry axis of the traingle in every 
second row starting with the third row, i.e.

[2 (p2)(p*)+4(p.pg)2]

[3 (p4) (Pg) +  12 (p2) (p Pg)2 ] ..... [3 (p2) (pj) +12 (p2) (p -pg)2 ]

[4(P6) (Pg) +  24(P4) (p · Pg)2].... [6 (p4) (pj) +  +16 (p-pg)4 ]...[4 (p2) <p|) +  24 (pj) (p · Pq)2]

(»ii)

may be called the astigmatism and field curvature of the second and third 
kind as it is suggested by their structures.

The summation aiming at determination of the complete aberrations 
of given kind and realized by transposing the infinite number of terms 
of the series is here admissible. This transposition will not change the sum 
of the series, since the series (3), which is the basis for the definition of 
aberrations is absolutely convergent. Some doubts may arise due to quick
increase of the ^  values, while approaching the symmetry axis of 
the Pascal triangle. On the axis of symmetry the coefficient of Newton

(n+1\
binomials expansion is I » + i 1. As it may be easily shown the radius

of convergence of the series is equal to 1 , similarly as for the remaining 
directions of summation. The physical realizability of the aberrations 
imposes the requirement of convergences for the series representing those 
aberrations, our formalism fulfills this condition.

Some aberrations of higher orders and their coefficients
Let n = 3 , 5 , 7 . . .  denote the order of aberrations, an — the numerical 
coefficient of the given order of aberration following from the development 
into series (3). The aberrations and their coefficients will be defined accord­
ing to the convention proposed by M e i e r  [2 ]  for the third order aberra­
tions*. The discussion will be carried out for the wavefront &R. All the 
aberrations are expressed in the 2,njXc units.

A . The spherical aberration
The complete spherical aberration is defined by the sum

n = 3 a Q m=3

(5)

* Higher order aberrations in  Champagne convention [3] are obtained easily  b y  

expanding B g \^  1 +  —— i nt o series (3) instead of (2) and w ritting the structureJRq
of binom ial expansion  (p2 — 2 p -p g)n instead  of (p —pq)2n in  a w ay analogical to  (4).
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where

s * f = - 4 = f **z~ mn+lz" ±  m"+1 znr z%RV (6*
is the coefficient of spherical aberration of n-th order. For the wavefront 
<Z>R

SR = 1 1 1* 1 Z1 (x 1 , v· 1\»
mre+l zo mn+1 z? U

1i1 ̂
 

1

m2 z j  * (6a)

(6b)

If zc — zr =  oo (keeping in mind that n is an odd number):

S * = _ i L  ( / J L p - d J i
“ »*+■ U m)I z“

and disappears for |x =  m.
If, however, in the face of (6 a) zr =  zQ1 then the spherical aberration 

is always equal to zero independently of zc, fx, and m.

B . Circular coma

The complete circular coma is determined by
“ „re—1

~ 2 2 j a n [ n i l ) £ i i r  ( p ' p" ) =  -
9 .  r e = 3w = 3  q

x (C* r cos 6 +C^ rsin 0), (7)
where C^F, CR̂ V — the coefficients of the circular coma of n-th order of 
the form

rjR.v —  —  =p ^ I ^ ^
z? mw z”

x,° R ,V

mn z nr
Eor the wavefront

( 8 )

_ X C

Hx Zn„
(X a?0

m n z?
l·1 x r J i  M

z” \z c m z0 m zr /
fx 1 +  J i

1 \re—i _5ifi l 1 1
m2 z0 m2 v '  = *<, L*? 1 u m2 *0 ma

__ f*_ r 1 _ | f 1 1 1 )r ' l 1
m *0 L (■™ zX - 1 1lZc m2 m2 1 J1

+  J i r 1 _if 1 1 1)n 1
m L (mzr)w_1 1

Uc m2 m2 1 Jr
i n

x (—
\*o

(8a)

If zc =  zr — oo , x j z c, and a?r/0r need not be equal to zero in the 
general case, and n —1 is an even number, then we have

= - P r — P f -  - - ( ( - r , - i ) + — - 1 · <8b>W 2 z „ l  l z e \\ ji / I  m s , J
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The aberration disappears if the slopes of the reconstructing and 
reference beams fulfil the conditions {xjzc) =  — ([ixrlmzr), and ( y j  zc) 
=  —([iyrlmzr), for additionally satisfied |x =  m. On the other hand, for 
zr — z0 (8 a) is transformed into

V- I 1 1 llxr x0\
m  1. (rriZof-1 « " ‘ J U  *o)

(8c)

The circular coma disappears at xr =  x0, yr =  y0 or, independently 
of this condition, at zc — ±m z0.

C. Elliptical coma
Elliptical coma is defined by

- I I
n —5 q

+

e r 5

(" + 1) 7̂“ [("jj ' j -  1 1 ' ]

(/>-/'s)3} =  -  j ?  0 +  C^sinfl)
n= 5

, 2 __ 1  " I

— --- \Q3{Ce 3cos30+3<7" cos20sin0
2 J xA

+3C " cos0sin20+O '' sin30)l.
a-y2 v3 J

The indices n, B, V are here omitted for the sake of convenience. For 
example, two from six coefficients of this aberration are of the form

jn—3
c: n

“c
~n—5

^  P -  Qo 3 , f2· Qnr 3Xr T —---- — X0 ± ---~---- ---X~
m c z:

=X3 zn |J· e " -  :Ą  ±  — —

n - 3

z ri X° R ,V '
ZGr , v

w-5
® °R ,V  3

(10)

m c 7 n ® R ,V '
z Gr , v

Under conditions zc =  zr =  oo, and {xjzc) =  — (\xxrlmzr) the relations 
(10) for 0 R are transformed into

(10a)

and the elliptical coma disappears at [x =  m.
For zr =  z0 and the fulfilled condition {xjzc) =  —(\xxrl<mzr)
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This coefficient disappears for

4  = (£Tm2zl or /_Mn 35 l =

\ J %r \%o) %0
On the other hand,

V-
C; , = m c

disappears for

M*rv* - ferur - fePfer-
For [i =  m the first disappearance conditions for G'e , and C'J pass® 2*3

into one common for disappearance of the elliptical coma zc =  ±mz0. 
The second kind of conditions assuring disappearance of elliptical coma
is xr\yr =  x j y 0.

D . Astigm atism

Astigmatism is defined by

[ > + A 1 / » + iVl ? r 3
[ \  2 ) ~ Y l - l  ).J Znan= 3 q 

oo% ~i yi% —p
=  2 j e*(AnxV cos2 0+2A *£cos0sine + A fyv sin20),

«=3

where the coefficients of astigmatism of n-th order are of the form 

Qe~3 ,.2_  V-Qotn~3 II nn~3
a R ,V  _  ec 2 -p  V-flo 2 ,

2 ,̂n o 
o ■m/z;

, n — 3

2*” r

n - 3
6 g R ,V  2

®gr ,v  f
° R ,V

(11)

0” ^ c 2 / c ±  m 3^  x ° V o ±  m 2z n x rVr x GR> vyGRtV

(12)

The dependences (1 2 ) , for zc=  zr =  oo, and the slopes fulfilling the 
conditions {ccM = - { [ i x rlmzr), and {yjze) =  -{y.yrlmzr), take the 
forms

II ____ |A_
m 2

A nXy
i* /

m 2 \

(12a)
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The astigmatism disappears under an additional condition [x =  m.
On the other hand, for zr =  z0, and for such a choice of the reconstruc­

ting wave source {xjze) =  — (y.xrlmzr) and (y j z c) =  —^ y rlmzr) the depend­
ences (12) take the form:

(12b)-

The disappearance of the n-th order astigmatism occurs inder the addi­

tional condition zc =  — (— ) [izQ or (x j y 0) =  {xrlyr)·

£ . Astigm atism  of the second kind

It is defined by the sum

[> + n 1 /w+l\·]  ̂ 3|\  2 ) ~ ~ 2 l 1 /J 4

n=5

22
n— 5 Q

n 2~1 Qn~l [ ^ f cos20 + 2 ^ fcos0sin0 + ^ r sin20],

(13)

where the coefficients of the n-th order aberrations are of the form

T P < 1   ̂ «V
n ** ^  — 1 n mn_1 zn.

x,
g r , v

Z° R ,V

fR'.V
nxy

Xcyc T V Xoy0 V- XrVr XGR,vyGR,V
m  · an — 1 —1—

(14)

z“ mn 1 zr‘ m' *r *Gr v

For zc =  zr =  oo, the slopes fulfilling the conditions 
(xcK )  =  —(y-xrlmzr) ? and (yc/zc) =  -(y.y tlmzr)

in~l zn0 L1 \ m j  J ’ mn~l znQ L \™ ) J
(14a)

.n—1

m"

Under these conditions this aberration disappears if p =  m. For zr=  zQ, 
and (xjzc) =  — ({jixrlmzr), and (yc/zc) =  —{\iyrlmzr) the relations (14) 
take the forms

(14b)
* [ H· 11 1

M M  h f lm2 1 «3
1 to 1

mn" 3 * r 2JlU o) U r )  J

r  ̂ , 1 1 I f  ®oVo xrVr~\
m2Ur2mn~3 *T *JL 4  4  J
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This aberration disappears at z“~2=  -[xmn-3z"-2 , or at (x0ly0) =  (xr!yr).

F . Field curvature

It is defined by the sum

n = 3 ff ® n = 3

where the coefficient of the field curvature of n-th order is
n - l

Q<*r , vf r . v
x  n

1 T 1 f* Qr 1I n  «1 ■ ■ 1 -
m 2^  m 2

(16)

For zc =  zr =  oo, and the slope fulfilling the conditions (ocJzc) 
=  -(yJCrlmZr), and (yc/*c) =  - ( M rlmzr)

F r  = V- 1
/ e . r

m 2 U o)
(16a)

The field curvature disappears at fz =  m .
However, in the case when 2r =  z0 and (xc/zc) =  — ([ixrlmzr), and 

( y M  =  " ( ^ r K )

The conditions 3C =  

of this aberration.
■  - ( £ ) “ mz0 or q0 =  ± Q r  assure the disappearance

G. Field curvature o f the second kind

It is defined by

i  / * + i \  t T 1
J  u n

n= 5 qn=5 q ® »=5
where

g r R ,V  _ 6c | l1 go , M- Qr __ @°r , v  

n *nc m"-1 znQ ±  m*1" 1 znr Zqr v (18)

is the coefficient of n-th order of this aberration.
For zc =  zr =  oo, and the slope of the reconstructing beam fulfilling 

the conditions (xjzc) =  - { p z rlmzr), and (y jzc) =  ~(^yrlmzr)

(18 a)
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The condition of the aberration elimination is (x =  m.
In the case when zr =  z0, and the position of the source of the wave 

(pc fulfills the conditions (xjzc) =  — (\ixrlmzr) and (yc/zc) =  ~{[iyrlmzr)

r 1 1
m2 |\_mn 3 znQ 2 mi-m »»

The aberration disappears for 0” 2 =  —(xmn 3 0” 2 or q0 =  ±pr. For n =  3
=  K -

H . Distortion

Distortion is defined by
00 n —1 00

(/>·/>») =  -  « * (»+ !)e

x[D«;Fco se+ i> ^ sin fl], (19)

where D^’F, D?,F ... are the coefficients of the distortion of the n-thnx 7 ny
order

D ? ’F =
„ » - l ^  p e" 1 , M· e? 1

# C " F ------------------■nT ------------------ ® r  —m znn m zZ

n - \
Qg R ,V

%
Xq

R .V
R, V ’

(20)

Independently of z0, z r, z c, for fulfilled conditions (xc/zc) =  —([LXrlmzr)f 
and (y jze) =  - ( \f.yr\mzr)

(20a)

The coefficients , D j become simultaneously equal to zero for (x =  m,
or {xrlyr) =  (Xjy0)·

As it may be seen from the above analysis the simultaneous elimination 
of all the aberrations occur if [x =  m under condition that the plane waves 
of properly chosen slope angles are used for the recording and the recon­
struction of hologram. If zr =  z0 and the proper choice of the reconstructing 
wave source position is made (i.e.(a;c/0c) =  —(yixrlmzr), and (yc\zc) =  —{\iyrl 
mzr)) this condition [x =  m is also required. Owing to the assumption 
of (x =  m all the additional conditions for disappearance of coma, astigma­
tism, field curvature, etc. are reduced to a single condition. The aber­
rations of all orders for 0 R disappear if additionally 0C =  — [X0O. This 
means that for sources of the wavefronts <p0 and 9vr lying in one plane, the 
source of the wavefront <pc should be positioned at the points xc =  — \ixr, 
yc =  —y*yr, zc =  — [X0r. The other set of conditions for the aberration 
elimination, valid for the phase Or at zr =  zQ, requires that the conditions 
xr =  x0 and yr =  y0 be fulfilled which means that the sources of wavefronts 
<pr and (p0 are located at the same point. The condition p0 =  pr does not
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satisfy the physical condition imposed on the problem. This means that 
in the lensless Fourier hologram only the spherical aberration becomes 
equal to zero [2].

Far region aberrations. Acceleration of convergence

In practical applications it is often necessary to determine the far region 
aberrations. At the limit of hologram resolution the aperture angles of 
order of one radian may be accounted. For large apertures the series 
describing the particular aberrations obtained from the expansion (3) 
converges very slowly and for |£| >  1 the series (3) becomes divergent. 
Following the method proposed in [3] allowing to extend the determina- 
bility of the spherical aberration outside the range of the classical binomial 
expansion, we shall do the same with the other aberrations. There are no 
physical reasons, for which the aberrations should be cut out at £ =  1 . 
This difficulty is eliminated by chosing such Jc for each £ that ((£—&)/ 
( !+&))< 1 , then

A  +  f  =  l / l + f c + f  —fc = / l + i | / l  +  I I , (21 )

Vi+ £— fe
1 +fc

may be developed into convergent series of the form (3).

Depending on the values P - P q each of the roots in the

expression (2) for the phase <pq may be developed into series according to 
(3) or (20).

Eg. with great ——— and —  and the values of z0, zr, and zc close.to
%q %q

each other, as it is the case at the limit of resolution, the expression for 
the phase cpq becomes the following

4 i v ,i+*

■ D C

(v7.^ y, JfcU
1 / 2 1  3 fc 2

‘ “ r "ix(f/1/2l 1 l1,2\ 2kU ' l ' l + i  '  2  ' ( 1 + A ; ) 2 +   ̂3 / ( 1  + f e ) 3O
/ 1 / 2 1  /3 1 k __ 
\ 3} \il (1 +fc)3

/ l / 2 i  4  k3
' 4 ' (1 +Jc)4 

r l / 2 i  / 4 1  k2

zqV 1 + &

..·] [ (y y r ■- ( f  n

0(1( 1  + k)2 V 3 / \ 1 /  ( 1  + f c ) 3 ' \ 4  / \ 2 /  ( 1 + a ) 4

- r i O w - l K y ? ) 8- ^ ) · !

| (22)
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The phase difference 0 R>V — 0qv r written down by using (22) gives 
the Gaussian reference sphere in the first row, while in the second and next 
rows we find the aberrations of third, fifth and further orders taken with 
the corresponding coefficients. Denoting by w2yw4, w61 and so on, the 
polynomials appearing in the expansion and keeping in mind the structure 
of the aberration represented in the form (4) it is possible to represent the 
far region aberrations by using several aberration coefficient taken with 
the proper weighting factors.

For instance, the spherical aberration is described by the sum

^ f /l+ i : (w 1S f - V  +  «’6S f V  +  «’8S?,V  +  w.oSf’V 0+  (23)

while the coma by

]/1 +ft[4*04(C^Fcos 0 +Cf^Fsin0) + 6w6(C ;̂Fcos 0 +(7^Fsin0)

8w8(<7f,Fcos0+(7f’Fsin0)e7 -f 10w10((7f,Fcos0+Of,Fsin0)e9 . . .].  (24x  y x  y

The other aberrations may be expressed similarly. For this purpose 
it is necessary to take the factor, proper for the given aberration,
according to the scheme in fig. 2, and the relations (4), and next multiply 
it by the aberration expression of the suitable order. The advantage of 
this procedure is obvious. In the example for spherical aberrations given 
in [4] it was necessary to take more than 20 orders of aberration to calculate 
the complete aberration in the vicinity of (g /zQ) <  1 (much slower con­
vergence may be expected in the case of other aberrations). The same 
result was obtained by calculating for 1c =  1 only 5 initial coefficients 
of aberration and summing up the aberrations of particular order with the 
respective weighting factors according to (22).

For small p j z q it is convenient to use the expansion of the expression

Two new terms will appear in the aberrational expressions, i.e.

2 n -ra [m-m
+  " _ 7 n r ] ' ·

(26)



and

+̂ T+icuT6-(*f))| + (i'I+F*.- (T))! + ···]·
The coefficient associated with zq tends to zero, when the number of 

terms in the expansion tends to oo. Since we are forced to take into account 
several terms of the expansion it is necessary to preserve this term for 
numerical calculations. The structure of the expression (27) reminds that 
of spherical aberration, the difference being that (27) is referred to q 
and not to q.
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(27)

Conclusions

For the analysis of the aberration influence on the imaging quality, it is 
necessary to know the form of the higher order aberrations, and, consequent­
ly, the complete aberrations of the given kind. This knowledge is also 
necessary when aiming at diminishing the given aberration. The suggested 
method of accelerating the convergence, allowing also to determine the 
aberrations outside the classical binomial expansion supported by the 
proposed form of aberration structure facilitate this task. By referring to 
the local properties of the functions accounted the proper choice of 1c 
allows to determine the full aberrations with the needed accuracy.

The expressions given in section Far region aberrations. Acceleration 
of convergence do not represent all the possibilities. Generally speaking, 
for z0, zr, zc, and q0, gr, qc differing considerably from each other, the 
expansion of each of the phases <pq with the same accuracy will require 
a different choice of 1c. Under these conditions it seems that the concept 
of a modified coefficient of aberrations may be introduced, to assure that 
each of phases <pq be represented in the respective expansions with the 
same accuracy. This problem will be the subject of the next publication.
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Аберрации высших порядков в голограммах

Работа содержит анализ структуры аберрации высших порядков для точечных и сточников 
волновых фронтов, участвующих в отображении. Приводятся выражения для аберрации 
высших порядков, а также описываются условия их исчезновения. Предлагается простой 
метод, позволяющий ускорить сходимость аберрационных выражений в пределах двучлен­
ного разложения, дающего возможность также определить полные аберрации вне пределов, 
этого же разложения.


