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Extension of finite periodic object image by a partial elimination 
of information

A n d r ze j  K a l e st y&ski

Institute of Physics, Technical University of Warsaw, Warsaw, Poland.

Sometimes in optical data processing we intend to obtain a periodic signal 
extended over a large area.

Selected spatial filtration used in this paper is based on the properly 
matched mascaring. Image extending involves the elimination of a selected 
part of information concerning optical object dimensions. In the case of 
periodic signals this part obviously must be periodically deleted. Now 
we want to lose the information about finite periodic object dimensions 
in Fourier image and in this manner to obtain the infiniteness of the image
(fig. 1).
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Fig. 1. Scheme of coherent optical system

Transmittance of a finite periodic object is
m= + M n=+N

(1)
m=—M n=—N

and its Fourier image:

* { W  =  F {Q (2)

where F  { } — Fourier operator, 0  — convolution symbol.
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For the sake of simplicity we assume that the object, placed at focal 
distance before the lens, is transilluminated by normally incident plane

■» 2 71
wave, where U0 =  U0exp{iJcz), Tc =  —— . One-dimensional diagrams of

A
these functions are shown in fig. 2.

Fig. 2. Diagram of the Fourier spectrum of a finite periodic object

Fourier image (fig. 2) of ttin contains a series of little peaks caused by 
finite dimensions of the periodic object. They lie at distance dx

“  dxJ fM + D ' d* ~ \ ( a i + i  yfrom one another· Thc applied mter
of spatial frequencies have to transmit only the higher peaks from the 
Fourier image of the finite periodic objects. The filter is a black mask with 
transmitting holes disposed at matched distances d =  (dx, dy) . Its transmit
tance is

• m—+ oo «=+oo
= p ( x , y ) 0  d{x-m dx, y - n d y), (3)

m —~oo n ~ — oo

where p (x ,y )  describes the transmittance of an individual hole in the 
mask.

The filter is situated in focal plane of the first lens Lx of the coherent 
optical system.

The second lens formes the image
+ 00 +oo

£  £  P(mdXi,ndVi) x t e(x1-m d Xi, y 1-n d yi). (4)
— oo — oo

1-P(0i,yi)i* =  \F{p(oc,y)}\* is a weighting factor in irradiance distribution. 
It modulates the brightness of the images. Individual pattern images are 
lying at the distances

/2 /2



Letters to the Editor 481

By filtering out the respective spatial frequency the information about 
input dimensions of the periodical object is eliminated. However, the 
information about individual pattern transmittance remains fully restored 
in the image within the possibility of the optical system used. As it can be 
seen in condition for dx, ^  formulated in eq. (3) the employed sampling 
of the Fourier spectrum corresponds to the Whittaker-Shannon sampling 
theorem for individual pattern tc [1, 2]. On the other hand, transmission 
of the harmonic spatial frequencies enables to preserve information about 
input object dimensions.

Fig. 3. Fourier image of finite periodic Fig. 4. The same through the matched 
objects, 3x magnified mask, 3x magnified
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Fig. 5. Image resulting from the matched periodic filtering
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Spatial frequency mask realized approximately according to eq. (3) 
must contain the holes as small as possible. Nevertheless in physical experi
ments they have definite (finite) sizes and shape. This fact will affect the 
image. For a circular hole with radius r0, we have p(x , y) =  circ r, where

circ r/r0 =
1 , r < r 0 
0, r >  r0

and the image light field Uim(xx, yx) becomes
-|-oo

Uim(xi, yx) OC r0 J2^ ” Rr°) tc(x1-m dXi, yx —ndVi) , (5)
— oo —oo

rlJ\{271 RrQ)R~2 acts as a weighting factor on irradiance distribution, where 
R2 =  (mdXi)2+(ndVi)2 and J x — the Bessel function of the first kind and 
order really masks the edges of filtering holes, whichever little they are, 
generates diffracted waves. Hence, the real hole shape introduces the 
above mentioned modulation of images irradiance. An extended image of 
a finite periodic pattern, obtained by matched spatial filtration, is shown 
in fig. 5. The mask transmitted only the principal peaks from the Fourier 
spectrum (see figs. 3 and 4). The holes in the mask used in our experiments 
had dimensions camparable with the peak breadth. Irradianee modulation 
of the extended image is then seen distinctly.
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On a possibility o f the phase recovery from intensity distributions 
generated by differential operators in two-dimensional coherent 
imaging*

PlOTR KIEDRO&

Institute of Physios, Technical University of Wroclaw, Wroclaw, Poland.

It has been shown [1, 2] that the phase distribution in the image plane 
may be uniquely recovered from the intensity distributions at the input 
and output planes of some one-dimensional coherent differential operator. 
The most convenient physical realization of such an operator is to insert 
a transmittance of the form

Tx(u) =  {2niu)n (1)

into the exit pupil of an optical system before measuring the first intensity 
distribution ix(x) in the image plane. The second intensity measurement 
is performed after Tx(u) is replaced with the transmittance

T2{u) =  (2A -u + B )  (2niu)n. (2)

To reconstruct the complex amplitude F(u) in the exit pupil it is 
sufficient to know the both intensity distributions ix(x), and i2{x), provi
ded that the following inequality holds

\BIA\^2u0, (3)

where u0 is the cut-off frequency of the original complex amplitude f{x)  
in the image plane before any differential filtering. In the two-dimensional 
case, however, information contained in the intensities ^(o?, y) and i2{x, y) 
is not sufficient for unique phase reconstruction. In order to give an exam
ple of the possible phase ambiguity, let us examine the following complex 
amplitude of separated variables.

Let us consider a two-dimensional complex amplitude

F ’ {u,v) = F 1(u) -F 2{v) (4)

in the exit pupil before the transmittance Tx(u) or T2(u) is introduced. 
Let us assume that the function

MV) = & {F M } ,  (5)
where SF denotes the Fourier transform, has at least one complex zero 
denoted by z0. Then the both complex amplitudes

F "(n ,  v) =  ? , ( « ) ^  (6)
l y —«0 J

* This work was carried out under the Research Project M.R. 1.6.
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and F' (u,v) generate the same intensity distributions in the image plane if 
the transmittance T2(u) is introduced. Since the transmittance T2(u) 
is independent of v, the complex amplitudes F'(u, v) and F"{u, v) produce 
the same intensity distributions in the image plane during the second 
measurement. The above property of the complex amplitudes (4) and (6) 
is in accordance with the Walther’s theorem [3].

The phase ambiguity may be excluded if the additional third intensity 
measurement is performed. In order to obtain the unique phase recovery 
from three measurements in the two-dimensional case it is assumed that 
the transmittances

Tk(u, v) =  (2A ku+Bk) (2Ckv + D k)

X {2 niu)n (2 niv)mTect

for fc =  1, 2, 3

(7>

n, m being any nonnegative integers, are located in the exit pupil one after 
the other. The constants A k, Bk, Gk, B k are real and have the following 
properties

A 1 = C 1 = 0 , B1 = D X = 1 , (8a)

\B%IA%\ ^  2 u0, G2 = 0 ,  D 2 = 1 , (8b)
\BJG3\ ^  2i70, j43 =  0, B3 =  1. (8 c)

The intensity obtained in consecutive measurements (k = 1 , 2 , 3 )  ta
kes the form

ik{®,y) =  IS (9)
where

OO 00

f k(x ,y )  =  j  du f  dvF(u,v)Tk(u,v)exp27ii(ux+vy). (10)
— 00 —oo

It has been assumed that the support of the function F(u, v) (i.e. 
the area of the exit pupil) is contained within the rectangle [ — u0, u0] 
x [ -«o> «o l·

Under the above assumptions (7) —(10) the unique recovery of the 
complex amplitude F(u, v) is assured. The uniqueness is proved by simple 
reasoning given below.

By using the definitions (7), (8a), and (8b) and from equations (9) 
and (10) the intensity distribution in the first two measurements 
(k = 1 , 2 )  may be written in the following form

«0
H(x iV) =  I J duFy{u) (27iiv)nexp2niux  r, (Ha)

-«o
u0

— I J  duFv(u) (2A 2u + B 2) (27iiu)nexp2niux^, ( l lh )  
I -u 0
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where
r°Fy(u) =  J dvF(u, v) (27iiv)mexp2nivy. (12)

The formulae (11a) and ( l ib )  are identical to the corresponding formulae 
in one-dimensional phase problem solved in [2] for any fixed y. Thus, 
Fy{u) may be determined uniquely with the accuracy up to the constant 
(independent of the variable u) phase factor exp [>e'(y)] for any fixed y 
separately. It means that the left-hand side of the equation:

=/i(tf,y)-exp[*c'(2/)] (13)
is known. By the same means, the intensities i^x , y) and i3(x, y) may be 
expressed by the function

Fx(v) = ? duF(u, v) (2niu)nexp27iiux.
-u 0

Analogically it may be shown that the complex amplitude
= / i (^ ,y )e x p [ ic ,/(a;)]

(14)

(15)
is also known. So far, however, the functions c'{y) and c"(x) have not 
been determined. Next we divide eq. (13) by the eq. (15) and fix 
the variable a? (putting, for instance, x =  0) to obtain the following equation

exp[*o'(y)] /i'(Q>y) 
f i (  0,y)

e x p [—ic"(0)]. (16)

By this procedure the function c (y) has been determined with the 
accuracy to the additive constant component c. This is equivalent to the 
unique recovery of the complex amplitude f x (x, y) or F(u, v) with accuracy 
up to the constant phase factor exp (ic ).

It is easy to verify that the uniqueness is preserved if the first transmit
tance Tx(uf v) is of the form

Tt {Uj v) = ( 2 A 2u + B 2)(2C3v + D 3) (2niu)n (2niv)m

xrectf e ) rectf e )  (17)
while T2(uf v) and T3(u, v) remain identical to those defined in (7), (8b), 
and (7), (8 c), respectively.

It is worth noting that if u0 =  v0, and n =  m , it suffices to rotate the 
transmittance T2(u, v) by the angle equal to n/2 before the third measu
rement. The transmittances, for which the constants A k, Bk,C k, and Dk 
are selected in such a way that Tk(uf v) are nonnegative within the whole 
domain, seem to be most useful, because of their easy production. This 
requires also the normalization of the transmittances, i.e. condition

№ f c ( # > * ) l < l . (18)
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Despite the above restrictions the range of the possible variability 
of A k, Bk, Ck, Dk is still wide. To impose the required properties on the 
applied algorithm a suitable choice of those constants may be needed. 
The paper concerning the application of the Gerchberg-Saxton-Misell 
algorithm [4 ,5 ]  to the method above proposed and the examination of 
its stability is being prepared.
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On estimation of speckling pattern rotation caused by rotating 
object for small angles of rotation*

W a c ł a w  U r b a ń c z y k , Iren eu sz  W ilk

Institute of Physics, Technical University of Wrocław, Wrocław, Poland.

Eecently, the speckling interferometry has been intensively developed 
finding still new fields of applications. One of those fields is the meas
urement of small rotation angles by the method of double-exposure recording 
of the respective speckle pattern. For these reasons the knowledge of the 
correlation between the rotation angle of the speckling pattern and that of 
the rotated object surface becomes of importance. The estimation of this 
correlation is the subject of this letter.

This problem was considered in [1], for a special case when the direction 
of observation (recording) was perpendicular to the rotated object surface. 
Below, we shall discuss the general case of arbitrary orientations of incident 
beam, rotation axis and observation direction and prove that the formula 
derived in [1] preserves its validity. This result will be verified experimen
tally.

For the sake of convenience the ray directions will be determined by the 
respective angles made with the axis of the object rotation. Let P  denote 
the plane perpendicular to the axis of rotation (fig. 1) and let an incident

ray be projected perpendicularly onto this plane. Denote by the angle bet
ween the incident ray projection and the normal contained in the surface P, 
and by <5* the angle between ray and its projection, respectively. The corres

* This work was carried out under the Research Project M. R. 1.5.

Theory

rotation

Fig. 1. Geometry of the setup for the incident beam

12 — Optica Applicata X/4
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ponding angles determining the direction of observation (recording) will 
be denoted by a0 and d0. The angles chosen in this way are mutually 
independent, which means that a change of one of them is not necessarily 
associated with the change of the other. In particular the rotation of the 
object surface affects only the angles oi and aQ leaving the others (i.e. 
Si and d0) unchanged.

In order to determine the change in angular position of the speckling 
pattern elements due to object surface rotation, let us first consider the 
phase distribution* in an elemental square of sizes dl and dr. It may be 
easily noted that the phase distribution along an arbitrary segment parallel 
to dr is determined only by angle, being not affected by the change of the 
angle crf which is due to the scattering surface rotation (as the angle between 
the direction of illuminating beam propagation and the segment dr remains 
unchanged). On the other hand, any change in angle a{ causes some change 
in the phase distribution along the segments parallel to dl. The last change 
may be compensated by the respective change in the observation angle a0.

Let us calculate the optical path difference X { of two rays incident at 
the ends of the segment dl. From fig. 1 we see that:

AB  =  dl,
AC =  dlco&Ci,
CB =  dl sin <rf,
CD =  dl sin a, tan <5*,
AD  =  dl (cos2 <tt +sin a* tan <5i)1/2,
DB =  dZsincrJcos <5,·,
EB =  X {.
From the triangle ABD  we have immediately

X { = E B  =
AB2+B D 2- A D 2 

2BD
dl T sin a,· cos d{ (cos2 <5.· +sm 2 or.· tan2 d{) cos <3, 1 # .=  —  -------- H---------- -  -------- —-------- ----------------- 1 =  dl cos 6j sin Of.
2 L cos sino·,· sin ai J

Analogically, the optical path difference for the rays travelling from 
the ends of the segment dl to the observation point at infinity may be 
estimated as

X t =  dZcos <50sinor0.

Thus, the total optical path difference is equal to

A =  X { —X 0 =  dl (cos sin ai —cos <50sin cr0) .

* For the sake of simplicity we neglect here the micro structure (roughness) 
of the scattering object surface (which in reality creates the speckling pattern structure) 
being interested only in the changes of the speckling pattern position as determined by  
the respective changes in the geometry of the system occurring due to the object rotation
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The change of the optical path difference due to the small rotation of the 
scattering surface, resulting in the respective changes daQ and da0 of the 
angles <t{ and aQ as well as in the change A (dl) of the size dl, amounts to

dA =  dllcosdfcoaafdof— cos<50costr0da0]+zl(di) [cos <5* sin a*, cos <30sinflr0].

However, the respective change A {dl) of dl being usually insignificant to 
the problem may be omitted*. Thus, finally

dA =  dl [cos <5t- cos d — cos d0 cos a0da^\.

This change in the optical path will shift the speckling pattern to such a new 
angular position for which 6(dA) = 0 .  This requirement gives the follow
ing relation

da0 cos cos 0  ̂
cos cos a

dat . (1)

Now, let the rotation angle be dp. Then da{ =  dp and da0 =  d a —dp, 
where d a denotes the rotation angle of the speckle primarily positioned at 
the original observation direction. Substituting these relation to (1) and 
noting that (see fig. 2)

rotation

Fig. 2. Angular coordinates of the incident beam with respect to the scattering object
surface

* The increase A (dl) in the size dl of an elemental scatterer results only in the 
respective increase of its area by the value dr · A (dl). The light contribution from this 
additional area to any speckling pattern element may be considered to consist of 
the amplitude and phase parts, both of them being usually of the same statistical 
nature as those coming from the whole elemental scatterer area. Thus, the statistics 
of the scattered complex amplitude is preserved which, together with the fact that the 
area increment dr-A(dl) is much smaller than the original scatterer area dr ■ dl, makes the 
speckling pattern (being its Fourier spectrum) almost unaffected. This problem is 
in reality much more complex but its rigorous treatment is outside the scope of this 
letter.



cos <3* =  QB/RB, 
cos off = SB/QB, 
cosy* = 8B/RB

and, consequently, that cos <5*cos a* =  SB/RB =  cosy*, we obtain after 
simple rearrangements
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where y* is the angle of incidence of the illuminating beam and y0 the angle 
of observation. Thus, the rotation of the speckle pattern da proved to be 
independent of the orientation of the object rotation axis with respect to 
both the illuminating beam and observation direction.

Experimental

The formula (2) has been verified approximately by using the geometry 
shown in fig. 3. The speckles were recorded at the photographic plate 
located at the distance 200 mm from the object, while the direction of

Fig. 3. The experimental setup used to measure the angle da of speckle pattern rotation, 
for the object rorated around the OX  and OY  axes, respectively

observation was normal to the scattering surface. The O X  and 0  Y  axes 
were consecutively taken as the two different rotation axes. In this case 
the formula (2) is reduced to the form

da — (1+cos y*)d/?.

The experimental results have been collected in the table.
The consequences of the above results to the measurement of small 

rotations by the method of free propagation speckling will be the subject 
of the next paper.
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T a b le

yt =  73°; ( l+ c o s  73°) =  1.292

Rotation 
angle d of 

the scattering 
surface the 

same for the 
rotations 

around the 
OX  and OY  

axes

Calculated 
rotation 
angle da 
of the 

speckles

Measured rotation 
angles da for the 

speckles

For the 
OX  axis

For the 
OY  axis

0.00025 0.00032 0.00029 0.00025
0.00050 0.00065 0.00057 0.00069
0.00075 0.00097 0.00112 0.00085
0.00100 0.00129 0.00132 0.00140
0.00125 0.00162 0.00153 0.00178

=  55°; (1 +cos 55°) =  1.573

0.00025 0.00039 0.00032 0.00040
0.00050 0.00079 0.00085 0.00073
0.00075 0.00118 0.00115 0.00128
0.00100 0.00157 0.00153 0.00169
0.00125 0.00197 0.00215 0.00183

yi =  25°; (1+eos 25°) =  1.906

0.00025 0.00048 0.00042 0.00056
0.00050 0.00095 0.00105 0.00083
0.00075 0.00143 0.00140 0.00187
0.00100 0.00190 0.00207 0.00187
0.00125 0.00238 0.00250 0.00241

References

[1] Gr e g o r y  D. A ., Optics and Laser Techn. 8 (1976), 201.

'Received Ma/rch 5, 1980



Optica Applicata, Vol. X , No. 4, 1980

Flashlamp excited tuned dye laser

Z d zisł a w  K o n e fał , J an  Szczczepański

Institute of Physics, University of Gdansk, ul. W ita Stwosza 57, 
80-952 Gdańsk, Poland

Dye laser have found numerous applications in research and technology 
because of their unique properties. Flashlamp pumping of a laser not 
only simplifies its construction but also makes possible a generation of 
high-power pulses.

The present work concerns a narrow-band timed dye laser pumped 
with air-filled flashlamps. The laser design and performance curves are 
presented.

Schematic diagram of the laser head is shown in fig. 1. So-called dense 
poching with aluminium foil was used. 0-ring seals make the system 
tight and facilitate the lamp replacement in a case of damage. High repe
tition rate can be achieved by water-cooling of the lamps.

Pig. 1. Cross-section of the laser head
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To make the lamp more resistant to shock waves a flexible connection 
to the electrode with a rubber band and a ballast space were adopted 
[1 , 2 ].

Tungsten tips of the electrodes reduce their sputtering. The air is 
pumped out of the lamp by a rotary pump connected to one of the ele
ctrodes through a connecting piece.

To ensure the high efficiency of lasing in a dye laser, losses due to 
the triplet-triplet absorption should be reduced by using short pumping 
pulses [3]. The shape of the exciting pulse depends highly on the electric 
connections between the lamp and the capacitors. Two kinds of arran
gement, as shown in fig. 2, namely the classical circuit and the Blumlein-

Fig. 2. Electric circuit diagrams 
[ a) classical connection of lamps and capacitors, b) Blumlein-type circuit

type circuit were used [4]. Flashlamp light outputs obtained with the cir
cuits are shown in fig. 3. It can be seen that the flash half-time for the 
Blumlein-type circuit was equal to 500 ns, being thus three times less 
than that for the classical circuit.

The relative laser output energy was measured as a function of the 
electric energy stored in the capacitors. The results are shown in fig. 4. 
Solution of 7-methylcoumarin in ethanol was used as working medium 
of the laser. The optimum pressure of 14 HPa was kept in the flashlamps. 
Fig. 5 shows a relative laser output energy as a function of the gas pres
sure in the flashlamps. In this case the energy increases monotonically 
with the pressure to reach the maximum at about 14 HPa.

It follows from the measurements that the effective operation of 
the dye laser requires that the working medium be kept at the same 
temperature as that of the water cooling the lamp. If these temperatures 
are not equal the respective temperature gradient in the working medium
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Fig. 3. Time dependence of the flashlamp output intensity
a) for the classical circuit, b) for the Blumlein-type circuit

Fig. 4. Relative laser output energy Fig. 5. Relative laser output energy as a function 
as a function of electric energy stored of the gas pressure
in the capacitors (Blumlein-type 

circuit)

will reduce substantially the lasing efficiency. To avoid this effect a special 
cooling system of the working medium was used.

Two Fabry-Perot interferometers were placed inside the laser cavity 
to obtain a narrowed laser output spectrum [5]. Plates in these inter
ferometers were placed apart 5 /im and 150 //m, respectively. Output 
beam bandwidths obtained inside the cavity with one and two interfer
ometers are] shown in fig. 6. With two interferometers the spectral width 
amounted to 0.1 nm.
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Pig. 6. Output frequency spectrum 
a) with one interferometer inside the cavity, b) with two interferometers

The laser described in this report has been applied to a remote de
tection of atmospheric constituents using a difference absorption method 
(LIDAE).
Acknowledgements — The authors wish to thank Prof. J. Heldt for helpful discussions.
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