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Simplified interference measurement of the refractive 
index distribution in the slices of preforms 
and waveguides.
Destructive method of plane reference wave and some 
of its variants
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A simplified interference measurement method of refractive index distribution in slices of both 
preforms and light waveguides is presented. Different variants simplifying the measurement 
were described. The measurement errors introduced by the accepted simplifications were analysed. 
Also, the interference measurement methods for determination of the refractive index differences 
between the coat of either preform or waveguide and the immersion liquid are described. 
A simplified method of thickness distribution in the given slice is presented. The proposed 
destructive measurement methods may serve as a controlling pattern for the nondestructive 
methods.

1. Problems associated with the typical assumptions 
of the nondestructive interference methods

In the course of elaborating the nondestructive interference methods there appear
ed the problem of measurement accuracy estimation [1] — [9]. When analysing these 
accuracies numerous questions were to be answered to make the analysis both 
complete and unique. The purpose of this work is to answer some of these 
questions.

Many nondestructive interference methods are based on the measurements 
during which the object is located in a cuvette filled with an immersion liquid of the 
refractive index equal to refractive index of the coat of the object examined (Fig. 1). 
Such a procedure is justified since it makes the measurement result independent of 
both the geometry and the refractive index value of the coat as well as simplifies the 
calculations. Some of the methods do not require the equality of the said refractive 
indices but they are charged with an error introduced by the deviation of the coat 
geometry from the cylindric form.

When a plane wavefront g0, emerging from a collimator, passes through the 
examined object, the deformation of this front due to nonuniformities of the core 
(measured with respect to the nonperturbed front passing through the coat of the 
examined object) is equal to [7], [8]
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zo
5g(x) = 2 j  ón(r)dz. 

o
(1)

This is valid under assumption that the refractive index distribution in the core 
changes in a continuous way and is the function of the radius r only (Fig. 1), while 
z — ^Jt1—x 2. The function <5n(r) is a difference of the refractive index distribution in 
the core n(r) and the refractive index nc of the coat of the examined object. The 
difference operator is <5. After having changed the integration variables in (1) the 
shape of the relative wavefront is given in the form

* / v / f  5n(r)rdr
(2)

while after having applied the Abel transformation, the relative distribution of the 
refractive index is obtained

* * ) - ( !  « 1 »  (3)
r s j x  — r

As we see, the spatial distribution of the refractive index may be determined by 
exploiting the information about the one-dimensional wavefront g(x). But for this 
purpose the following assumptions must be made:

1. The core and the coat are of cylindric symmetry and are concentric.
2. The refractive index in the core is a function of the radius r only.
3. The refractive index in the core is a continuous and smooth function. 
However, it is known from practice, that these assumptions are never fulfilled

completely. Therefore, the question must be answered of how great the deviation is 
in each case and how it influences the measurement result. This is especially essential 
when analysing the measurement accuracies for the nondestructive methods. The 
answer to this question may be found by comparing the results offered by the 
nondestructive method with those given by the destructive one; the destructive 
method [10] being considered as a standard for the nondestructive one.

The following goals should be achieved in this work:
i) Elaboration of the destructive measurement method and performing of the
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measurements of the real distribution of the refractive index in the slices of optical 
preforms for the case of surveying the slices along the preform axis. Only the 
destructive method enables the measurement of the real distribution of the refractive 
index.

ii) Measurement of the geometry of the examined objects (core and layers in the 
core).

The measurements of geometry should give the answer to the following 
questions:

1. What are the maximal and typical deformations of the core?
2. Do the deformations of the external part of the core convey to all the layers in 

the core?
The measurements of the refractive index distribution (together with geometry 

measurements) should give the answer to the questions:
1. How do the measurement results of the refractive index distribution corres

pond to refractive index profile obtained from the nondestructive method?
2. What are the maximal and typical errors of the nondestructive method?
3. Is it possible to increase the accuracy of the nondestructive method and to 

what degree by taking account of the core deformation (its ellipticity, for instance).
In the present paper only the destructive method is presented. The partial 

answers to the other questions are available in the works concerning the measure
ment errors of the nondestructive method [1], [2], [4] —[6], [II] —[14].

In the work [15], a very accurate method allowing us to measure the refractive 
index distribution as well as the thickness distribution in the phase objects was 
discussed. The method requires the production of three interferograms, and it is 
unnecessary to insert the object in an immersion cuvette. In practice, not always 
a very high measurement accuracy is required. In this work, some simplified meth
ods have been analysed for which two or just one interferogram are produced. The 
given ways of simplifying the related formula allow us to reduce significantly the 
number of data subject to the analysis, with simultaneous knowledge of the increase 
of the measurement error associated with such simplification. In the measuremental 
practice, especially when the number of the measurements to be performed is great, 
the measurement simplification becomes both important and justified economically. 
The given versions of the simplified measurements concern the preform and 
waveguide slices. By the suitable slight modifications, however, they may be easily 
adjusted to the examination of other phase objects.

2. Interference measurements of the refractive index distribution in slices 
— destructive method

2.1. Measurement setup

The measurements are performed in a Mach—Zehnder interferometer adjusted to 
the observation of fringes of equal thickness. The light source is a He-Ne laser 
(A = 632.8 nm). The collimator produces at its exit a broadened parallel beam of
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Fig. 2. Mach—Zehnder interferometer for measurement of the refractive index distribution in the slice of 
preforms or optical waveguides. L — laser, C — collimator, BS1 and BS2 — beam splitters, and M2 
— mirrors, P — sample slice located in the immersion cuvette, Ob — objective imaging the slice 77 in the 
plane 77'. The wavefront g after having passed through both arms of the interferometer, gives two 
wavefronts g and g'

plane wavefront g0 (Fig. 2)). This beam is split at the first beam splitter BS1. The first 
of the split beams passes through the BS1— M l — BS2 interferometer arm suffering 
from deformation when passing through the cuvette containing both the immersion 
liquid and the examined slice P located in the plane 17. At the exit of the 
interferometer arm a deformed wavefront g is obtained. The deformation of the 
wavefront depends on the distribution of the refractive index in the slice of the 
examined object and the slice thickness distribution. The slice is transilluminated 
along the symmetry axis of the core. The other (reference) beam is transmitted along 
the BS1—M2 —BS2 interferometer arm and reaches the objective Ob as a wavefront 
g’. The refractive index distribution in the core is measured with respect to the 
refractive index of the coat of the examined object The objective Ob images the slice 
P in the plane IV. The latter may be the object plane for the eypiece (in the case of 
immediate observation) or the plane of the film of a photocamera or the detection 
plane of a TV CCD camera connected with a computer (IBM with Frame Grabber, 
for instance).

The interferograms (static images with interference fringes) are subject to 
scanning during which the position x  of the interference fringes, i.e. that of the orders 
m(x) on the scanning lines is determined. The interference orders being the numbers 
of the fringes are the whole numbers. In the case of relative measurements, as it 
happens for majority of interference measurements, the relative values of the 
interference orders (differences of orders) are needed rather than their absolute 
values. It is most important to know in which direction the orders increase. This 
is determined by observing the dynamic fringes (during regulation of the inter
ferometer mirrors). The orders increase in the direction from the optical wedge
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edge. The edge of the wedge is a place in which the dynamic fringes converge (during 
the motion of the mirror) when the distance between the moving fringes diminishes. 
The analysis of the interferogram consists in performing an approximation of the 
m(x) function defined on the set of sampling data which provide the information 
about the orders and their positions on the scanning line in order to find the analytic 
function m(x).

2.2. Principle of measurement

In order to choose a suitable measurement method and determine the errors 
associated with the simplifying assumptions two interferograms will be considered.

The first interferogram 1 was produced in the setup from Fig. 2 where a slice 
of the examined object is located in the cuvette with the immersion liquid. 
The second interferogram 2 was produced in the same setup with the same 
immersion cuvette but without the examined object On the interferogram 1

Fig. 3. Interferogram 1. a “longitudinal” section through the cuvette with the slice (the refractive indices 
and thicknesses of the due media are marked), b — “transversal” section through the cuvette with the slice 
(the regions of three structures of fringes are presented)

(Fig. 3) the optical path difference between the wavefronts g and g' encoded in the 
form of interference orders =  (g—g')/X is determined. The front g represents the 
deformations introduced by the first arm of the interferometer, the immersion cuvette 
and the examined object. The wavefront g' represents the deformations caused by the 
second arm of the interferometer. In contrast to this on the interferogram 2 (Fig. 4), 
the optical path difference between the wavefronts g" and g' is recorded being 
encoded in the form of the interference orders m2 = {g"—g')IK where g” is the 
wavefront emerging after the plane wave g0 have passed through the first arm of the 
interferometer with an immersion cuvette but without the examined object (slice).
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Fig. 4. Interferogram 2. a -  “longitudinal” section through the cuvette (the refractive indices and 
thicknesses of the due media are marked), b — “transversal” section through the cuvette (the regions of 
single fringe structure are marked)

Both the interferograms are produced while the position of the mirrors and M2 
is unchanged (after recording the interferogram 1 the position of the mirrors MA and 
M2 remains the same), 
a b

Fig. 5. Systems of interferogram scanning, a — parallel scanning lines , b — scanning lines for radial 
system

The interference orders recorded on interferograms are two-dimensional. During 
the analysis of such interferogram the whole interferogram is covered by the 
scanning lines (Fig. 5). The further dependences describe the one-dimensional 
relations (x-direction) which are true for any scanning lines.

In order to obtain a quantitative description of the phenomena the following 
reasoning has been carried out. From the whole beam passing through the cuvette 
with immersion liquid (and eventually with the examined sample) two rays are 
separated. The current scanning ray passes through the running point x on the
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interferogram, while the reference scanning ray — through the reference point x 0 
with respect to which the magnitudes n, m1, m2, L, Lit Lg, La ... (Fig. 3) are 
measured The difference (operator of changes) of the corresponding magnitudes of 
the coordinates x and x 0 is denoted by S (for instance, 5n(x) = n(x)—n(x0)).

Interferogram 1 (produced in an interferometer with the examined object in the 
cuvette). The optical path differences for two rays are:

CAi(x) —Lg(x)] ntt+ [£f (*)—Lj(x)] ng +  [Lj(x) — L(x)] Tit 4- L(x) n(x) =  AmA(x), 

and

C4(*o) -  Lt(x 0)] na+ [L,(x 0) -  L^Xq)] n% +  [L,(x0) -  L(x0)] nt

+ L(x0)n(x0) =  2mA(x 0), (4)

respectively, where m is the interference order, na, ng, nt, n(x) are refractive indices of 
the respective media, X is the wavelength of the light in the interferometer. For the 
interference orders the following notations have been assumed: the first index shows 
the interferogram number (1 — interferogram with a slice, 2 — interferogram 
without a slice), the second index (Fig. 3 b) denotes the area of the domain of the 
interferogram 1 (without index—core, c — region of the coat, i — region of the 
immersion liquid). After having subtracted the suitable sides of Eqs. (4), we obtain: 

i) In the region of the core

dLa(x)na+ SLg{x)(ng -  na) +  <5L;(x)(wi “  ng)+ 5L(x){n{x0) -  nj

+ <5n(x) [L(x0)+ <5L(x)] =  Xdm^x) (5)

where SLana represents the slope of the wavefronts caused by the interferometer 
itself (i.e. by the position of its mirrors).

ii) In the region of the coat

SLa(x)na + 5Lg(x) (ng- n j  + ¿Z^xXn, -  ng) +  5L£x)(nc(x0) - n j  + Snc{x) [Lc(x0)

+ 3Lc(x)-] = X5mic(x). (6)

If the coat is uniform (<5nc(x) = 0), Eq. (6) reduces to the form

SLa(x)na +  5Lg(x)(ng -  n j +  d l^ ix )^  -  ng)+ 3Lc(x)(nc -  n*) =  X5mlc(x). (7)

iii) In the region of immersion

dLa(x)na+ 5Lg(x) {ng -  na) +  SLiix) fa  -  ng) = X5mu(x). (8)

Note that the interferogram 1 has three separate domains of the interference 
orders (Fig. 3b). The most convenient point of reference x0 is the point at the 
core-coat border. Let us assume that the continuity of interference orders is 
preserved, i.e. n(x0) = nc(x0) and L(x0) = Lc(x0).

Interferogram 2 (produced in an interferometer with cuvette without the 
examined object).

Writing the differences of optical paths in the way it has been done for the 
interferogram 1 in the formulae (4), and subtracting suitable sides of Eqs. (4), an
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equation is obtained being true for the interferogram 2 in three regions: core, coat 
and immersion.

i) In the core region

L8(x) na -f 5Lg(x) (ng—na)+5L ¡(x) (nt -  ng) = Xdm2(x). (9)

ii) In the coat region

5La(x) na+ 5Lg(x) (ng—n j-f  <5L ¿(x) (n, -  ng) = X5m jx). (10)

iil) In the immersion region

S L ^ + d L ^ - n ^  + S L · ^ - ^ )  =  X8m2i(x). (11)

In this case, for the inside of the immersion cuvette the interference orders are 
continuous and smooth at the borders of those regions and create one system of 
fringes (Fig. 4b). Note that for the domain of the immersion region the interference 
orders are the same for both the interferograms 1 and 2, i.e. mlf(x) =  m2i(x). The left 
hand sides of Eqs. (9)—(11), described by the orders of interference from the 
interferogram 2, occur in Eqs. (5)—(8), and describe the influence of the position of 
the interferometer mirrors, geometric dimensions of the cuvette and the differences of 
the refractive indices.

The refractive index distribution in the core may be determined by using only the 
interferogram 1, but it may also be done by using simultaneously the two 
interferograms 1 and 2. In the first case, from (5) we have

<5n(x) =

X5mi (x) -  [<5La(x)na + 5Lg(x) (ng -  na)+ ¿¿,(x)(n< -  n„) + 5L(x){n(x0) -  nj]
L(x0)+5L(x) ’ y }

While, in the other one, we get from (5) and (9)

<5n(x) =
X{5ml{x) — <5m2(x)) — <5L(x)(n(x0)—nf) 

L(x0) + SL(x)
(13)

where n(x0) is the refractive index of the examined object in the point x0 and L(x0) is 
the object thickness in this point For a uniform coat and continuous orders of 
interference in the refractive point we have n(x0) =  nc. As continuous orders the 
interference orders of fringes of continuous distribution in the interferograms will be 
understood. Note that the formula for Sn(x) becomes much simpler (13) when using 
two rather than one interferogram only (12).

If the coat is nonuniform, then from (6) and (10) we have

Snc(x)
X [Smlc(x) -  óm2c(x)J -  SLc(x) [nc(x0) -  n j  

Lc(x0) + SLc(x)
(14)

For an accurate determination of 5nc(x) it is necessary to know the interference 
orders in the coat region for both the interferograms, the geometry of the examined
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sample in the same region and the difference (nc(x0)—nj of the refractive indices of 
the reference point in the coat and the immersion liquid, respectively.

• Comparing Equations (10) and (7), it may be seen that their left hand sides are 
the same and thus the sets of fringes will be the same for the interferograms 1 and 
2 in the region of coat, when the coat is uniform and when nt =  n*. Then, for the 
interferogram 1 the set of interference fringes is continuous at the coat —immersion 
border. If, however, n, differs from ne but the coat of the examined object is uniform, 
we have from (7) and (10)

A[<$mic(x)-<5m2c(x)]

(flc-Hj)
(15)

Mismatching of the refractive indices of immersion and the uniform coat enables 
to determine the exact geometry of the examined object in the coat region when the 
value of mismatching is known, i.e. if we know the difference ne—n,. For a uniform 
object, Eq. (15) represents the relation between the interference orders of both the 
interferograms in the domain determined by the region of the uniform object 

Principal method. From the analysis carried out above, it follows that in order to 
find the distribution of the refractive index in the core (from (13)) two interferograms 
1 and 2 must be produced to get the information about the interference orders in the 
core region. The absolute thickness of the examined object in the reference point 
L(x0) must be known, while from the other measurements the change of the 
thickness 5L(x) of the object in the core region must be determined (most 
conveniently along the scanning lines). The absolute thickness of the reference point 
can be measured for each scanning line separately or (if it is given for one principal 
scanning line passing through the reference point) the method of measurement and 
calculation of the thickness in the reference points on the remaining lines must be 
established. The method described is a principal method with the help of which the 
most accurate results may be obtained. It will be a basis for the approximate 
methods to be proposed below. First, however, the simplifying possibilities will be 
considered.

23. Thickness measurements

23.1. Principal method — the mechanical measurements

In order to calculate exactly refractive index distribution, the geometry of the 
examined object must be known. In accordance with the analysis carried out in this 
work, the expressions for thickness L(x) in the arbitrary place have been divided into 
those for the thickness of the object in the reference point L{x0) and for the relative 
changes of the thickness <5L(x), where L(x) =  L(x0) +  <5L(x). The measurement of the 
thickness distribution is somewhat troublesome. In practice, it suffices to perform the 
thickness measurement with an optimeter in several points, which under assumption 
of continuity of the surface allows us to make calculations in the knots of the 
scanning network as it has been described above in the principal method.
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Since, as we showed, the distribution of the thickness changes in a uniform coat can 
be calculated from the analysis of the interference orders we present the approximate 
methods of calculation. In practice, these methods simplify significantly the measure
ments. Obviously, the absolute thickness of the object in one reference point of the 
principal scanning line should be measured using another method (optimeter, 
micrometer gauge, etc). Equation (15) may be used in some of the approximate 
methods.

If we assume for a moment that also the core is uniform and of the same 
refractive index as the coat n = the set of fringes visible in the coat would be 
visible in the core as well. From this set (given the difference ne- n )  changes of the 
slice thickness in the region of core could be calculated from the formula

SL(x) =  W i . M - 'W * ) ]  (16)
ne ~ nl

In contrast to this, in the case of nonuniform core the set of fringes in the core region 
is different Note that the coat region surrounds that of the core. Thus, knowing the 
fringes in the region of coat, we can determine them approximately in the core. The 
asterisk associated with interference orders in (16) means that what counts here are 
not the real orders visible in the core but rather the ones which are obtained in the 
region of core as a result of the said approximation (Fig. 6a). Thus, the asterisk 
means that the approximation of the m(x) function have been done, this function 
being based on the data described by the indices of interference fringes. As a result of 
this approximation, the interference orders in the domain of the core are calculated. 
The thickness distribution (16) is obtained with the accuracy depending on: the ac-

a b

2 Jl2. Interference measurement from two interferograms

Fig. 6. Determination through extrapolation of the supposed sets of fringes m* (a) and m*2 (b). From the 
interferogram 1 the orders of interference (white circles] are found based on known position of orders 
(black circles). Two ways are shown -  along the scanning lines and along the interference fringes
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curacy of approximation carried out, the precision of the surfaces of the examined 
object and on the coat-to-core areas ratio. The calculation of m\e in the core region 
may be performed with the help of different methods. It may be an approximation 
carried out for each scanning line separately, based on the data concerning the 
position of fringes (in the coat region) on the same scanning line. It may be also the 
approximation carried out separately for each fringe. The data for the approximation 
of the fringe positions are then collected from many lines in the coat region. The 
position of this fringe is calculated after determining its intersection points with the 
scanning lines.

233. Interference measurement from one interferogram

Previously, we took advantage of two interferograms during calculation of the 
thickness distribution. Since the regions of immersion and coat surround the core, 
the interference orders in the core may be calculated from the interfero
gram 1 by suitably extrapolating the fringes from both the coat and the immersion 
(Fig. 6). The orders of interference in the coat due to their extrapolation to the core 
region give the values of dm\c (as previously). The orders from the immersion 
region due to their extrapolation to the core region give dm\t. Equation (15) then 
takes the form

Ô L(x)
A[ôm\c{x)—ôm\i(x) 

("c ~nd
(17)

The way of approximation (extrapolation) may be different as it has been described 
earlier. The data necesary for the approximation may be collected from the suitable 
regions along the scanning lines or along the interference fringes, i.e from different 
scanning lines.

Due to the relatively great distance of the immersion region, relatively large core 
region and unknown quality of the surface of the subject examined the degrees of the 
approximating polynomials should be very low (max. third degree). Then the 
probability of good approximation of the real course of the thickness distribution in 
the core region will be the highest For significant simplifications the approximating 
polynomial may be reduced to the first one. Note that here we have to do with 
extrapolation rather than approximation.

23.4. Case without the measurement of the thickness distribution

A drastic simplification is to assume that the thickness of the examined object is 
stable (5L(x) =  0). This is admissible only for relatively thick objects. This case will 
be considered in more detail later on.

2.4. Analysis of the interference orders
2.4.1. Accurate analysis of the interferograms according to the principal method

Equation (13) allows us to determine in an accurate way the refractive index 
distribution in the core even when the quality of optical elements of both the
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interferometer and the cuvette is poor. Then the interferograms 1 and 2 are needed 
together with an additional measurement of the thickness distribution (the latter 
done by another method). By carrying out the analysis of the interferograms 1 and 
2 in the region of the core in order to calculate 5n(x) from (13) no simplification is 
applied. This is the principal measurement method.

2.43. Analysis of one interferogram

In order to calculate Sn(x) from (13) only one interferogram is necessary. Having 
produced the interferogram 1 and carrying out the approximation (extrapolation) 
of the interference orders from the immersion region to the core region, we obtain 
8m\i in the same way as it was the case for simplified measurement of the thickness 
ditribution. When exploiting the simplified analysis of the interferogram 1 only, 
Eq. (13) takes the form

<5n(x) = ¿[¿m^x) -  ¿mj,.(x)] ~  0L(X) l>(*o) ~  ”j] 
L(x0) +  <5L(x)

(18)

This is a simplified method.

2.43. Simplified method of single interferogram

The other approximation is suitable for the case of such positioning of the 
interference fringes that the fringes in the immersion region are maximally broadened 
and when it is reasonable to assume that in the core region ¿mi,(x) =  0. This 
simplifies correspondingly Eq. (18).

25. Measurement of nc—n(

In the above given relations there appears the difference nc—n*. For a uniform coat 
n(x0) =  nc The difference nc—ni of the refractive indices in the uniform coat and the 
immersion makes the measurement sometimes more difficult and sometimes easier 
(as it is the case when the thickness distribution of a uniform object is determined). In 
order to realize the measurement of <5n(x) and <5L(x) the said difference must be 
measured in the same measuring setup or using the same measurement method, 
which assures good accuracy. In the principal method, the measurements described 
in Subsections 25.1 and 2.5.2 are applied.

23.1. Measurement with a refractometer

The refractometric measurement consists in direct measurement of the refractive 
index of the coat nc of the examined object as well as that of the immersion liquid nf 
with the help of a refractometer. The lateral side of the coat of the examined object 
must be slightly ground to enable the entrance of the light to the coat, when the 
object is measured by the refractometer.

233. Immediate interference measurement of the ae—at difference

The difference nc—nt may be measured by exploiting the examined slice which is 
usually of the wedge shape (Fig. 7) and has a uniform coat In this case, however, the
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Fig. 7. Measurement of nt—nt when a uniform coat of the examined object and a special wedge are 
exploited, a — section through the cuvette, b — for the rare fringes 5Mt(x) = y(x)/y„ c — for the dense 
fringes SMfx) = m(x)—m(x0)

measurement of the absolute thickness must be performed in two points — in the 
coat region (Lc(x0) and Lc(x)). These points must be marked in the coat in such a way 
that the measurement of the interference orders 5MC in the coat region could be 
measured between these points. For calculation of ne — nt the following dependence is 
used

n -r ii
X5Mc(x)
&Lc(x)

(19)

where 5Mc(x) is a relative interference order, while <51*. (x) is a relative thickness 
difference of the slice in the coat region. The dependence (19) is true for maximal 
broadening of the fringes in the immersion region (uniform background, i.e. 
5mu(x) = 0).

For the destructive method, thin slices of the examined object are usually cut off 
a long object If the long object is inserted in a cuvette filled with immersion liquid 
(the same as used for measurement of slices) as it is the case for nondestructive 
examinations (the symmetry of the object axis being positioned perpendicularly to 
light beam in the interferometer), we get a setup for measuring the difference nc—nt 
(Fig. 8 a). Such a measurement is then possible to perform in the same interferometer. 
The interference fringes in the immersion region are set perpendicularly to the axis of 
the examined object (Fig. 8b). As it may be easily shown [11], [12] in the zero order 
approximation we have

n -r ii
A<5Mc(x)

(20)

where re ^  |x| ^  R, re and R are the radii of the core and coat, respectively. The most 
accurate measurement will occur when the measurement of the relative interference 
order is performed for the coordinate x  in the vicinity of the core. This method is the
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most convenient since it enables a direct measurement of ne— nt in the same 
interferometer.

In a particular case when we have to do with a uniform bar (of the same 
refractive index as that of the coat), i.e. an object without core (rc =  0), then

nc-rii =
X5Mc(x = 0) 

2R
(21)

where 5Mc{x =  0) is (maximal) relative change of the interference order along the bar 
symmetry axis.

When measuring nc— the most convenient way is to choose the reference point 
of the coat—immersion border. The measurement of the relative change of the 
interference order SMC in the region of uniform coat can be made using the method 
of deviation of the fringes from rectilinearity (Fig. 7b and Fig. 8 b) or the 
approximation method (Fig. 7c and Fig. 8c). For a small optical path differences

Fig. 8. Measurement of nc—nt when the sample is surveyed as in the case of nondestructive measurements, 
a — section through the cuvette, b — for the rare fringes 5Me{x) = y(x)/yt, c — for the dense fringes 
5Mc(x) = m(x)—m(x0)

(below several orders) the method of deviation from rectilinearity is applied for which 
SMc(x) = y(x)/yit where y(x) is a deviation from the rectilinearity, while yt is the 
interfringe distance in the immersion region (Fig. 7b and Fig. 8b). The approximation 
method is applied when the optical path difference is above several orders. The 
interference M orders are approximated as well as their position on the scanning line 
(Fig. 7c and Fig. 8c). From the approximation the relative order 5Mc{x) for an 
arbitrary x (in the region of the coat) is calculated. Instead of approximation we may 
apply an immediate measurement of <5Mc(x), evidently, with less accuracy.

253. Independent measurement of n, and ai

As such a measurement also a refractometric measurement may be employed. Here, 
the mixed method will be presented. If we have no long object of the refractive index 
nc equal to that of the coat of the examined object, it is most convenient to per
form an indirect measurement To measure nt a bar of known refractive index
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n' is used and the formula (21) applied in which instead of ne the index n' appears. 
The bar of the refractive index n'c and of the known radius R  may be inserted to the 
cuvette and we measure 5M(x =  0). From (21) we calculate n(. Instead of the uniform 
bar a uniform wedge of the refractive index n' may be used (Fig. 7). Equation (19) 
will have the form

, X5M(x)
'  -  25xtan(a/2)

(22)

where a is a wedge angle. Hence we calculate n{. The above result is true when the 
fringes in the immersion liquid are set perpendicularly to the uniform wedge edge or 
when the fringes in the immersion region are maximally broadened (uniform 
background, i.e. Smu(x) =  0). For the high differences ric—nt the fringes in the wedge 
may be set arbitrarily (Fig. 7c) but in the liquid they should be maximally broadened 
(uniform background). The measurement of nc of the examined object may be carried 
out in a refractometer as it was the case in Subsection 2.5.1.

25.4. Simplified measurement

Such a measurement consists in assuming that nc—nt — 0 in the formulae for ôn from 
Subsection 2.2. If, in order to determine <5n(x), the thickness distribution is necessary 
and when an interference method is used to the latter, we must measure ne—n,. 
If the value of the difference nc—n, is small, the accuracy of thickness distribution 
determination by the interference method (in accordance with Subsection 2.3.2) may 
be insufficient In order to determine the thickness distribution, nc being known, we 
may apply an arbitrary fluid of known refractive index and thus of high value 
of ne—n,. When the objects are thick and the difference nc—ni is small usually the 
approximation that nc—n, =  0 is assumed. The measurement of the thickness 
distribution is then usually neglected (<5L(x) = 0). The due analysis may be useful to 
determine conditions under which such a simplification is justified.

2.6. Analysis of the expressions for ôn and simplified versions of the measurements

On the basis of the modifications of the principal method described above, we may 
state that to determine the refractive index distribution in the core, the knowledge of 
the thickness distribution of the examined sample in the core region as well as that of 
nc—nt is necessary in addition to the analysis of interferograms. Let us assume that 
an arbitrary method described in Section 2.5 is applied to determine nc—nt and this 
method will be of interest only so far as the measurement accuracies are concerned. 
This will be the only criterion for selection of this method for different modifications 
of the principal method. In Table 1 we give the formulae for the refractive index 
distribution for the introduced modifications and simplifications of the principal 
method. These modifications include: analysis of one or two interferograms, the way 
of determining the thickness distribution and two cases when the refractive indices of 
the coat and immersion are different and equal, respectively. The dependences in 
Tab. 1 contain the magnitudes following from the interference measurement of the 
thickness distribution.
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3. Measurement results

The measurement methods described above have many variants. The results 
presented here are only an illustration. An exemplified interferogram is presented 
in Fig. 9, and the measurement results — in Fig. 10. The measurements were carried 
out in a Mach—Zehnder interferometer [3], (X =  632.8 nm). The reults presented 
concern the case in which only a linear compensation of wedge of the examined 
sample was performed (5L(x) assumed to be linear on the basis of the thickness 
measurement in three points in the coat region).

Fig. 9. Example of an interferogram of a preform slice (L(x0) = 243 mm)

Fig. 10. Refractive index distribution in the exemplified preform slice
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4. analysis of the measurement accuracy

The measurement accuracies depend above all on the measurement method and the 
simplifications applied to both measurements and calculations. We shall analyse first 
the accuracies of determination of interference orders, ne—nt differences, and 
thickness distribution measurements.

4.1. Accuracy of the interference orders distribution

In order to determine the measurement accuracies first the domain in which the 
interference measurements are possible will be determined. From (13) we have

¿n(x)[L(x0)+<5L(x)] 5L(x)(n-n}
X X *

¿m1(x) —¿m2(x) (23)

The difference of the interference orders between two interferograms is composed of 
two fractions. The first one on the right hand side describes the influence of the 
refractive index nonuniformity Sn(x) in the examined region, while the other one 
describes the influence of its geometry SL(x) and the mismatching of the refractive 
indices nc— n{. And thus for X = 6318 nm, for instance, and for 5n(x) = 0.01 the first 
fraction takes the values given below.

U.Xo) 5L(x) [mm]
Lmmj

0.0001 0.001 0.01 0.1 1

0.01 0.16 0.17 0.32 1.74 15.96
0.1 1.58 1.60 1.74 3.16 1738
1 15.80 15.82 15.96 17.38 31.61

10 158.03 158.04 158.19 159.61 173.83

For Sn(x) higher (or lower) by one order of magnitude these magnitudes increase
(decrease) also by one order of magnitude.

The second fraction for the same wavelength takes the values given below.

5Ux) [mm]

«*-«i 0.0001 0.001 0.01 0.1 1

0.0001 0.000 0.000 0.002 0.016 0.158
0.001 0.000 0.002 0.016 0.158 1.580
0.01 0.002 0.016 0.158 1.580 15.803
0.1 0.016 0.158 1.580 15.803 158.03

The optimal fringe density is equal to 20 — 40 in the examined region. For fringes 
distributed more densely or more rarely the relative errors increase slightly and must 
be accounted during the due analysis. Let us assume that the optimal difference
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Sm^x)—Sm2(x) is about 10 (this value may be changed significantly). Note also that 
the fringe density in both the interferograms may be influenced by bending the 
mirrors of the interferometer. The edges of the two wedges generating the optical 
path difference may be on the same side of the interferometers or on the opposite 
sides. The components of Eq. (23) may have the same or opposite signs (influence of 
Sn(x), SL(x), ne—n^  There is a number of possibilities and the range of the domain of 
the orders measurements is not quite strictly limited. From the immediate compari
son of the components of Eq. (23), it may be seen which conditions must be fulfilled 
to eliminate the influence of the thickness difference of the examined object (the 
second component is small compared to the first one).

The accuracy of determination of the interference orders depends above all on the 
applied method of the interferogram analysis and to a less degree on the interference 
fringe density and the measuremental conditions. For an optimal density of 
interference fringes, the absolute error determination of the relative interference 
order c(5m(x)) is equal to: 0.1—0.05 for visual measurements, and 0.01—0.005 for 
the measurements with the scanning device. In the present paper, the orders with 
asterisk occur, as well. They concern the extrapolation (approximation) of the 
interference orders from one region (either coat or immersion) to the other (core). 
Both the regions are separated while the first surrounds the other. The accuracies of 
the interference order determination in this case are less. They are limited by both 
the way the extrapolation (approximation) is performed and the number of data 
available for approximation. The error of the order Sm\£x) is influenced predomi
nantly by the way the processing of the sample surface is carried out. The errors 
<5mij(x) (as well as ¿m^x)) are influenced by the shape of the surfaces of the 
interferometer mirrors, interferometer beam splitters (and cuvette) and by the 
uniformity of the splitters (and cuvette). The errors of this kind are, as a rule, 
less, since the quality of the mentioned elements is high. For the order Sm\fx) the 
errors are slightly greater than for Sm\£x). This follows from the fact that the domain 
of the immersion data region is more distant from the sought domain of the core 
than the domain of the coat region. It may be assumed that for optimal density of the 
interference fringes the absolute error <r(<5mic(x)) amounts to: from 0.5 to 02 for the 
visual method and from 0.2 to 0.1 for the scanning device. Similarly, the absolute 
error a(5mu{x)) is: from 0. 2 to 0.1 for the visual method and from 0.1 to 0.05 for the 
scanning device.

4.2. Accuracy of the difference nc—ni determination 

4.2.1. Refractometric measurements

The measurements of the refractive indices nc and n, are made individually with the 
aid of a refractometer. The accuracies depend on the class of the refractometer. For 
high accuracies, the measuring conditions must be accounted. The measurements of 
nc and n, should be made at the same temperature in which the measurements of 
<5n(x) and SL(x) are performed. This is especially important for the immersion liquid. 
It may be assumed that for typical measurements <r(nc) =  0.0001 and a(nD =  0.0002. 
The error of the refractive index difference amounts to a(nc- n j  =  0.0003.
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The interference measurement of the difference nc—n, with the help of a wedge 
(examined slice) is described by the relation (19), from which we obtain the error

423. Direct interference measurement of ae—mt

+ I ^ L c(x))

K -* i) X 5MJ,x)
T

SLJx)

The first component of the sum may be neglected, since it is very small for the laser 
light The second component, for optimal density of the fringes (about 20 — 40 in the 
examined region) amounts to: 0.0025 for the visual method and 0.00025 for the 
scanning device. For the method of fringe deviation from rectilinearity this value is 
higher and for <$Afc(x) =  1 is as high as the absolute error of the interference order 
determination a{5Mc(x)). The third component depends on the device used to 
measure the absolute thickness of the examined object and on the thickness of this 
object As it may be seen (from Subsection 4.3), the last component, for optimal 
fringe density, has a decisive influence on the relative error of the ne— n, difference 
measurement This error takes the values given below.

a{nt-n^A.nc-nd

<SLc(x))
[mm]

SLe(x) =  0.001 
[mm]

3
?

 
-4“ 1
•O 1--1

=  0.01 5Lc(x) = 0.1 
[mm]

6Lt (x) = 1 
[mm]

5Le(x) = 10 
[mm]

0.0001 0.1 0.0125
Visual scanning 

0.0035 0.0026 0.00251
0.001 1 0.1 0.0125 0.0035 0.0026
0.01 10 1 0.1 0.0125 0.0035

0.0001 0.1 0.01

Scanning device 

0.00125 0.00035 0.00026
0.001 1 0.1 0.01 0.00125 0.00035
0.01 10 1 0.1 0.01 0.00125

For the method of interference fringe deviation from rectilinearity the values in 
the above table are correspondingly higher. The absolute error depends on the value 
of the measured ne—nt difference, and on the relative error from the above table.

For the measurement of the difference with the help of a bar (21) of diameter 
2R the whole above analysis, including formula (23), is correct however, 5Lc(x) 
should be replaced by 2R  and a{5Lc(x)) by S(2R).

423. Independent measurement of ac and ai

Interference measurement of nt is a relative measurement for the known value of n'̂  
In the final analysis the measurement accuracy for n'c—n, (as it was the case in 
Subsection 4.2.2) as well as the accuracy of a(n'c) and tr(nj must be accounted, 
i.e. S(ne— =a(ric— n j +  <x(n') +  ff(nc). For intance, in order to determine nt
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a bar of known refractive index n'c and diameter 2R =  10 mm, a(2R) = 0.05 mm 
and c(n') =  0.0001 is applied. From the visual measurements we have, accord
ing to formula (21), n' — n, =  0.001. Hence, a{n'c — n^ =  [0.0025 +
+0.05/10]0.001 = 7.5*10"6, and thus this error is negligible. From the refracto- 
metric measurement we know nc with the accuracy c(nc) =  0.0001. Hence, 

=  ff(nc “  wi)+ o(K)+ <r(wc) =  0.0001

43. Accuracy of the thickness distribution measurement

The errors of the absolute thickness measurement L(x0) are the same as those 
described in Subsection 4.3.1, since these are mechanical measurements. The errors 
of the thickness distribution measurements will be described below.

43.1. Mechanical measurement

These errors depend on the devices applied. Such devices may be: optimeter 
(ff(L(x0)) =  0.001 mm), micrometer gauge (a(L(x0)) = 0.01 mm), or special electronic 
gauges (<7(L(x0)) =  0.0001 mm). The thickness distribution is estimated by measuring 
the thickness in many points. The errors of thickness distribution would be twice 
that of a single thickness measurement since 5L(x) = L(x)—L[x0). As we make an 
approximation (which smoothes the results of measurements), the error of the 
thickness distribution becomes slightly less. This depends on the shape of the 
measured sample and on the density of the data taken to the approximation. In 
practice, however, it can be assumed that the error of the thickness distribution 
measurement is the same as that of a single measurement

433. Interference measurement from two interferograms 

From the analysis of (16) we get

<àU A ) m 1 a\ôm\c(x) — <5m2(x)] 1 O K  ~ nÙ
ÔL(x) X

+
Sm\c(x)-ôm 2(x)

+
ne- n ,

The first component on the right hand side of this equality may be neglected. The 
second component, when assuming the optimal fringe density and when the 
denominator amounts to about 10 and for the data from Subsection 4.1, is equal to: 
0.06—0.025 for the visual method, and 0.021—0.01 for the scanning device. The third 
component depends on the applied measurement method (Subsect 4.2). The method 
may be chosen in such a way that this component be small as compared to the 
second one. Thus, it may be seen at once which· requirements for the measurements 
should be imposed to receive the required accuracy. For example, if a scanning 
device is used for the measurements when 5L£x) =  0.1 mm and a{5Lc(x)) =  0.001 
mm, the relative measurement error of the thickness distribution ranges between 
0.0725 and 0.0375.

433. Interference measurement from a single interferogram

From the analysis of (17) we obtain the dependence identical with (25). The only 
thing to do is to replace dm2{x) by <5m*lt{x). The whole analysis will be the same
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as that in Subsection 4.3.2 but the second component, when dm \£x)—dm \l{x) = 10, 
will amount to: 0.07—0.03 for the visual method, and 0.03—0.015 for the scanning 
device.

4.4. Accuracy of the refractive index distribution

In Table 1 the dependences for the refractive index distribution both for the principal 
method and for the derivative simplified methods are shown. Comparing these 
dependences, it may be seen immediately what the simplifications consist in, and thus 
the errors may be easily calculated. The dependences for the principal methods are 
given in the frames. The remaining dependences describe the derivative (simplified or 
modified) methods. Below, we shall give the dependences describing the relative 
errors of the methods. These errors will be calculated from the dependence

<x(<5n(x)) =  Z A t. (26)

4.41. Principal method

From the analysis of (13) we obtain:

A
Smi (x )—5ni2(x)

L(x0)+«5L(x)

a 2 =

A 3 =  

A 4 =

X

L(x0) +  <5L(x)

L(x0)+SL(x)

Sn(x)

L(x0)+<5L(x)

[fl-^m^x)) +  ff(<5m2(x))], 

l> K (*o))+ ff(wi)]>

< L { x  o)),

As —
- ( n c-n D ~ S n (x )

L(x0)+<5L(x)
(27)

For the interference measurement methods for the thickness distribution, the 
errors a(5L(x)) may be calculated from the dependence (25) and <r(Sn(x)) from (27), 
respectively. Taking advantage of the dependences given in Tab. 1 (for the 
measurement of SL(x) from the interferograms), the errors may be calculated which 
for the analysis of two interferograms (and the dependence in Tab. 1, line 2) are 
equal to:

Ai =
Sn(x)L(x0)

<t(X),
XB

A 2 =  I X/B M dm Jx)), 

dn(x)X
A 3 =

A 4 =

(ne- n ^ B
a{5m2(x)),

[ - 1  -¿n (x )]2

(ne- n №
a(5m\e(x)),
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Fig. 11. Absolute error of the refractive index distribution measurement o(5n) for the principal 
method. The error calculated according to (27) under assumption that o(L) = 2a(dL\ 5m 2 — 5m2 = 10, 
X = 632.8 nm, o(nc) + ot/ij =  0.0003. The logarithmic scale, a — visual method o{5m1 — 5m2) = 0.2, 
b — method with the scanning device a(5ml —5m2) =* 0.02



T a b l e  2  Absolute o(5n) and relative a{8n)l8n and percentage contributions of the error components (dm — 8m2{x))

8L —0.001 mm a[8m) -  0.1 a{8m) — 0.01

o(8L) Am 

[mm]

L{x o) <Sn)

[mm]

o{8n)

8n

C%]

Error components [%] tr(8n)
o{8n)

Error components [%] 
8n

c%]

^1 a 2 A 2 ¿4 ■¿3

-0 .1; n j -  0.01 " r-« l -0 .1; —»tj -  0.01

0.001 1 0.01 ao3032 626 0.0 37.9 3.0 145 44.5 0.019966 412 0.0 3.8 4.5 220 67.6
0.1 a00245 46.4 OO 512 4.0 21 426 0.001320 25.0 0.1 95 7.5 4.0 79.0
1 a000237 44.6 0.0 532 42 02 423 0.000124 232 0.1 102 8.1 0.4 812
10 a000024 44.4 OO 53.5 42 0.0 423 0.000012 232 0.1 10J 8.1 0.0 81.4

10 0.01 0.12454 220 01 92 0.7 41.3 48.6 0.114184 202 0.1 1.0 0.8 45.1 53.0
0.1 0003573 5.8 02 35.1 28 17.1 44.8 0.002445 4j0 0.4 5.1 4.0 25.0 65.4
1 0000250 40 04 506 4.0 25 425 0.000136 22 a7 9J 7.3 46 78.0
10 0000024 3.8 0.4 53.0 42 0.3 421 0.000012 20 0.8 10.1 8.0 0.5 80.6
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T a b le  1  continued

¿ L -  0.001 mm o{5m) -  0.1 oiôm) -  0.01

o{0L) Am ¿<*o) o{5n)
o{5n)

5n
Error components [%] o(5n)

o{6n) 

Sn
Error components [%]

[mm] [mm] [%] [%]

Al A2 A, A* A, Ai Aa Aj A* Aj

nt —n -0.001 ; - n j - 0.0001 -0.001; i -0.0001

0.001 1 0.01 0.02206 38.4 ao 512 0.0 23.7 24.1 0.0117 20.4 0.1 9.8 0.1 44.6 45.4
0.1 0.001389 212 a i 902 0.1 4.5 51 0.000261 41 0.4 48.0 0.4 23.7 27.5
1 0.000129 20.4 a i 98.1 0.1 0.5 1J 0.000015 14 0.7 83.7 0.7 41 10.8
10 0.000013 202 a i 99.0 0.1 0.0 0.8 0.0000014 21 0.7 90.5 0.7 0.4 7.6

10 0.01 011627 20.2 a i 9.9 0.0 45.0 45.0 010592 18.4 0.1 1.1 0.0 49.4 49.4
0.1 0.002514 40 04 49.8 0.0 24.7 25.1 0.001386 21 0.7 9.0 0.1 44.7 45.4
1 a o o o u i 12 0i7 89.6 01 4.5 51 0.000027 0.4 3.6 461 0.4 23.1 26.7
10 01000013 10 a s 97.4 01 0.5 1J 0.0000016 0 J 61 79.0 0.6 3.9 101

0.0001 1 0.01 0.012577 21.9 a i 91.5 01 4.1 41 0.002222 3.9 0.4 51.8 0.4 23.5 23.9
0.1 0.001268 203 a i 89.8 01 0.5 0.6 0.000141 21 0.7 89.1 0.7 4.4 5.1
1 0000127 201 a i 99.7 0.1 0.0 0.1 0.000013 11 Oh 96.7 0.8 0.5 11
10 0.000013 201 a i 99.7 0.1 0.0 0.1 0.0000013 10 oh 97.6 0.8 0.0 0.8

10 0.01 002207 3.8 a4 511 0.0 23.7 23.7 0.011717 10 0h 9.8 01 44.6 44.7
0.1 0.001389 12 a7 902 0.1 4.5 4.5 0.000261 0.4 3 h 48.0 0.4 23.7 24.1
1 0.000129 10 0.8 98.1 0.1 0.5 0.6 0.000015 01 6.6 83.7 0.7 41 4.8
10 0.000013 10 a s 98.9 0.1 0.0 0.1 0.0000014 01 7.1 90.5 0.7 0.4 11
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A< =
5n(x)X[m\Xx) -  <5m2(x)]

( n - n f B  

A6 =  |—Sn(x)/ B\<r(L(x0)), 

where

¿[<5mlc(x)—<5m2(x)]

<r(ne- n j ,

B = L(x0)+
ne-* t

(28)

Dependences (27) concern analysis for two interferograms. For analysis of one 
interferogram, the two dependences become the same. The only thing is to replace 
<5m2(x) by <5mi,-(x). This dependence is rather complex. It is most convenient to draw 
up the tables of measurement accuracies, according to which the suitable measuring 
conditions are selected. Table 2 contains a small fragment of such a large table 
of errors. Figure 11 illustrates the absolute errors of refractive index distribution 
measurements. These errors illustrate the influence of the most essential factors 
upon the measurement accuracies. These factors are: ne- n it L(x0), o(5L(x0)), 
<r(L(x0)).

4.4.2. Derivative methods

The most accurate measurement method (of those discussed in this paper) is the 
method of analysis of two interferograms and with mechanical or interference 
measurement of the geometry 5L(x) of the examined sample. Below we are going to 
discuss successive simplifications which introduce more and more significant 
measurement errors:

1. Simplified analysis of two interferograms (when 3m2(x) =  0) with mechanical 
or interference measurement of <5L(x).

2. Analysis of a simple interferogram with mechanical or interference measure
ment of <5L(x).

3. Simplified analysis of single interferogram (when 5m\i(x) = 0) with interference 
measurement of 5L(x).

4. Simplified analysis of either two interferograms or a single interferogram when 
the measurement of <5L(x) concerns only the linear factor.

5. Assumption (for calculations) that ne—nt = 0 when this difference is small.
6. Simplified analysis of either two interferograms or a single interferogram when 

the measurement of sample geometry is neglected, ie. 5L(x) = 0.
Ad 1, 2. The errors are calculated from (27) or (28). It is assumed that <5m2(x) =0  

and the error c(8m2(x)) is estimated visually depending on the quality of both cuvette 
and interferometer.

Ad 3. For the method of single interferometer analysis, the dependences are the 
same as that described by (28) but the term Sm2(x) should be replaced by <5m*lc(x).

Ad 4. If the measurement of geometry <5L(x) refers only to the linear factor, the 
analysis of errors is the same as that given by (27) or (28), but the errors of geometry 
measurements a(5L(x)) may approach the half of the maximal change of the 
thickness difference for the estimated sample (in the examined region).
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Ad 5. The exploitation of the dependence given in Tab. 2, line 5, for nc =  n{ 
(then ne—n, =  <r(ne—nj) leads to errors, which for analysis of two interferograms 
are as follows:

A l =  15 n ( x ) I X № ,  

5n(x)
A 2  = 

A 3 =

A< =

A6 =

A 7  =

Sml(x)—3m2 (x) 

—Sn(x)

[ff(dm1 (x))-ba(dm2 (x))]f

L(x0) + 6 L(x)

- SL(x)ff(ne-n¡)

M L (x0)) + <j(5L(xm,

L(x0 )+5L(x)

A 4  a 4

SL(x) L(x0 )+5L(x) 

- A 4

L(x0) + 5L(x) 

— 5L(x)
L(x0) + SL(x)

<x(L(x0)),

a(ric- n ;). (29)

Ad 6. The neglection of the thickness distribution measurements results in drastic 
simplifications (dependence in Tab. 2, line 4), which is independent of nc- n { and 
SL(x) and the errors of which become

A l =  \5n(x)/X\o(X), 

dn(x)
¿ 2  = 5mi (x) — 5m2 (x)

A 3 = \ — Sn(x)/L(x0 )\(j(L(x0)),

A* =  

A 3 =

¿ 6 =  

A 7  =

Aa —

-¿L(x)[(ne- n i)-h5n(x)]
L(x0) + SL(x) 

— 5n(x)5L(x)JA

L(x0 )+5L(x)

— A<5L(x)/L(x0) 

L (x0)+<5L(x)

— 5L(x)
L(x0 )+ SL (x)°{n‘ 

- L ( x 0) [ (n ,.-n i)+ 5 n (x )]

[L (x 0)+ 5 L (x )]2
o(SL(x)),
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a 9
5 L m n -n d + 5 n (x)(2 + 5 U x)/L (x0)y]

[L(x0) + <5L(x)]2
(7(L(x 0)). (30)

The components A4 in dependences (29) and (30) represent the errors introduced by 
the assumed simplifications. These errors have a decisive influence on the final 
measurement errors and decide practically whether the assumed simplifications can 
satisfy the required measurement accuracies. In Figure 12, the values of the 
components Aa are shown. Thus, from Fig. 12 or from the formulae for Ax the 
conditions can be determined, under which the measurement based on such

Fig. 12. Value of the Aa component for (30). For dependence (31) 5(nc-n J  should be replaced by 
(nc — +

simplified methods is possible. The case of small differences nc— and the relatively 
thick objects favours the application of such measuremental simplifications. Then, 
even the measurement of the thickness distribution may appear unnecessary. On the 
other hand, if we decide not to measure the thickness distribution, the measurement 
of nc— becomes unnecessary on the basis of formulae for <5n(x). From the formulae 
for Aa it may be seen that in order to diminish Aa the refractive index n,· must be 
chosen in such a way that the condition ne—nt =  — 5nmxJ2  is fulfilled, where 
is the maximal value of <5n(x). For such radical simplifications the conditions, for 
which the total error of the measurement (including the error of simplification) is still 
admissible, may be established on the basis of (29) and (30).
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5. Concluding remarks

During the measurement of the refractive index distribution in the slices of preforms 
or light waveguides the most important factors influencing of the measurement 
accuracies are: thickness distribution of the slice examined and the difference of the 
refractive indices nc—n,. The measurement of these magnitudes makes the measure
ments slightly more complex and therefore they have been discussed in this work 
extensively. The accuracy analysis carried out together with the described variants 
and simplifications of the measurement allows us to select the optimal measurement 
method. This is the method selected on the basis of the admissible measurement 
error and simultaneously on admissible simplifications of the method. These 
simplifications, especially those concerning the measurement of the thickness 
distribution, give significant economic advantages reducing also the time consump
tion. These advantages are especially important when many measurements are 
carried out This work has been done just for the latter case.
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