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OD AUTORA 

Modelowanie komputerowe zrobiło w ostatnich latach zawrotną karierę. Złożyło się 
na to wiele czynników, wśród których istotną rolę odgrywają, z jednej strony, gwał-
towny rozwój technologii komputerowych, a z drugiej – ciągle niezaspokojona po-
trzeba lepszego zrozumienia otaczającego nas świata. Włączenie technik komputero-
wych do modelowania i symulacji zjawisk dynamicznych pozwala na bardzo 
elastyczne podglądanie, często niedostępnych w inny sposób zależności. Jest to wielce 
pomocne także w technice – zarówno do analizy zjawisk, jak i do weryfikacji pomy-
słów konstrukcyjnych.  

Zachowanie systemów dynamicznych może być śledzone poprzez analizę ich opi-
sów (modeli) matematycznych. W klasycznym podejściu, model matematyczny zjawi-
ska jest zazwyczaj formułowany w odniesieniu do czasu ciągłego (model ciągły).  

W przypadku komputerowej symulacji, ciągły model należy zamienić na model 
dyskretny. Ta transformacja nie jest jednoznaczna, gdyż różniczkowanie lub całkowa-
nie może być w różny sposób przedstawiane w modelu dyskretnym. Wybór określonej 
metody numerycznej w istotny sposób wpływa na właściwości modelu cyfrowego. 
Należy pamiętać, że właściwości cyfrowego modelu określonego zjawiska w ogólnym 
przypadku różnią się od właściwości jego modelu ciągłego. Zasadnicza różnica jest 
widoczna w dziedzinie częstotliwości: widmo sygnału dyskretnego powtarza się 
z okresem zależnym od wybranego kroku modelowania. Jego ciągły w czasie oryginał 
może być zatem w miarę wiernie reprezentowany przez numeryczną replikę w ograni-
czonym przedziale częstotliwości. Ponadto, porzucenie gładkiej, na ogół, przestrzeni 
czasu ciągłego na rzecz, z natury chropowatej, dziedziny czasu dyskretnego sprawia, 
że nasilają się problemy związane z uzyskaniem stabilnego rozwiązania. Pojawiające 
się w takich przypadkach nienaturalne oscylacje w wynikach symulacji stanów dyna-
micznych stanowią znany problem. Do tego dochodzą także nieuchronne błędy za-
okrągleń arytmetycznych, wynikające z ograniczonej długości słowa w komputerach 
cyfrowych. Na szczęście, ten ostatni problem został w znacznej mierze usunięty we 
współczesnych komputerach.  

Analizując wymienione trudności łączące się z zastosowaniem komputerów do sy-
mulacji procesów dynamicznych można zapytać, jaki jest sens stosowania takich roz-
wiązań w praktyce. Gwałtowny wzrost zainteresowania komputerowymi technikami 
symulacji jest dowodem na to, że z pewnością wskazane trudności można pokonać.  
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W książce przedstawiono metody zmierzające do komputerowej symulacji stanów 
przejściowych w sieciach elektrycznych. Zagadnienie to stało się aktualne z chwilą 
pojawienia się łatwo dostępnych i dostatecznie zaawansowanych komputerów w po-
łowie lat 60. ubiegłego wieku. Działania w tym kierunku zostały wymuszone przez 
konieczność analizowania szybkozmiennych procesów przejściowych związanych 
z różnymi zakłóceniami w złożonych sieciach elektroenergetycznych. Gromadzenie 
informacji na temat przebiegu takich zakłóceń w naturalnym obiekcie jest drogie 
i niezmiernie utrudnione ze względu na losowy charakter zachodzących zdarzeń. 
Sprawny i wiarygodny symulator dawał nadzieję na postęp w tej dziedzinie.  

Klasyczna praca z zakresu cyfrowych metod modelowania stanów przejściowych 
w sieciach elektrycznych z obiektami reprezentowanymi za pomocą modeli o parame-
trach skupionych i rozłożonych, autorstwa prof. H. Dommela, została opublikowana 
w 1969 r. [28]. Utworzona przez niego grupa badawcza, złożona ze specjalistów z za-
kresu elektroenergetyki, metod numerycznych i technik komputerowych, stworzyła 
podwaliny pod dobrze znany pakiet programowy ElectroMagnetic Transients Pro-
gram (EMTP) [30]. Na podstawie sformułowanych wówczas metod powstało wiele 
różnych wersji programu. Większość z nich, to obecnie profesjonalne programy  
komercyjne z rozbudowanym interfejsem użytkownika, co ułatwia ich obsługę oraz 
analizę uzyskanych wyników. Na bazie tego podejścia powstały również symulatory 
pracujące w czasie rzeczywistym, które pozwalają analizować zjawiska elektromagne-
tyczne w sieci, odtwarzając je w tempie zachodzącego procesu fizycznego – wymaga-
ją one jednak zastosowania specjalistycznego, drogiego sprzętu komputerowego.  

Materiał książki jest podzielony na dwie części. W pierwszej z nich znajduje się 
omówienie podstawowych metod, które mają zastosowanie w modelowaniu elemen-
tów obwodów elektrycznych, oraz omówienie sposobów modelowanie podstawowych 
elementów trójfazowej sieci elektroenergetycznej: linii, transformatorów oraz wirują-
cych maszyn elektrycznych.  

Drugą część stanowią Dodatki, gdzie zamieszczono podstawowe informacje na te-
mat struktury i obsługi programu w wersji ATP–EMTP oraz wiele przykładów prak-
tycznego wykorzystania tego programu. Program ten jest wciąż rozbudowywany przez 
międzynarodową społeczność specjalistów, którzy są zorganizowani w Regionalne 
Grupy Użytkowników. Jest to w pełni profesjonalny program, którego licencję można 
otrzymać za symboliczną, drobną opłatę. Dzięki temu jest on szczególnie rozpo-
wszechniony w środowisku akademickim, chociaż jest także stosowany w profesjo-
nalnym zakresie.  

Przykłady zamieszczone w Dodatku C mają na celu pogłębioną ilustrację materiału 
prezentowanego w pierwszej części książki. Pełnią one także funkcję praktycznego 
przewodnika w zakresie posługiwania się programem, zwłaszcza przy tworzeniu wła-
snych modeli. Realizacja tego ostatniego zadania wymagała zamieszczenia zaawan-
sowanych modeli samych obiektów, jak również modeli odpowiednich układów au-
tomatyki. Analiza tych przykładów wymaga niekiedy od Czytelnika posiadania 
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bardziej zaawansowanej wiedzy w zakresie omawianych zagadnień. Mam jednak na-
dzieję, że Czytelnik nie będzie się tym zrażał – tego typu programy są w końcu prze-
znaczone dla profesjonalistów. Każdy ma szansę nim zostać po pokonaniu wstępnych 
trudności.  

Dokonany przeze mnie wybór bazy programowej w postaci pakietu ATP–EMTP 
faworyzuje użytkowników tego właśnie programu. Mam jednak nadzieję, że również 
zwolennicy innych wersji programu z rodziny EMTP znajdą w tej książce wiele poży-
tecznych informacji. Wiadomo bowiem, że większość dostępnego obecnie oprogra-
mowania do analizy omawianych tu zagadnień ma wspólną bazę, a kody danych wej-
ściowych do symulacji różnią się w niewielkim stopniu. Pomocny tu może być wykaz 
stron internetowych podstawowych producentów i ważniejszych grup użytkowników 
tego oprogramowania, który zamieściłem w końcowej części spisu literatury. 

Książkę tę pisałem przede wszystkim z myślą o moich studentach i doktorantach 
z kierunków: elektrotechnika oraz automatyka i robotyka. Mam nadzieję, że publika-
cja ta będzie także pomocna dla szerokiego grona specjalistów zajmujących się pro-
jektowaniem i eksploatacją urządzeń automatyki i pomiarów w elektrotechnice.  

Uzupełnieniem książki są programy komputerowe z numerycznymi obliczeniami 
związanymi z wybranymi przykładami z głównego tekstu – w większości są to proce-
dury napisane w programie MATLAB [85] oraz programy do wszystkich przykładów 
zamieszczonych w Dodatku C. Te ostatnie zostały opracowane w programie ATP- 
-EMTP z edytorem graficznym ATPDraw w wersji 5.5 [8, 30, 104]. Są one dostępne 
na stronie internetowej: http://www.rose.pwr.wroc.pl/przyklady_D/. Mam nadzieję, że 
ten dodatkowy materiał będzie dobrym wprowadzeniem do poruszanych zagadnień 
i zachęci Czytelników do samodzielnego doskonalenia umiejętności w tym zakresie.  

Materiał zawarty w tej książce ulega szybkiemu starzeniu, co jest związane z po-
wstawaniem nowych pomysłów w zakresie metod numerycznych, rozwojem technik 
programowania komputerowego, a w konsekwencji – nowych wersji omawianych tu 
programów do symulacji komputerowej. Zwłaszcza w tym ostatnim zakresie zmiany 
mają szybkie tempo. Sądzę jednak, że nawet po kilku latach zamieszczony tu materiał 
będzie można z pożytkiem wykorzystać. Będę wdzięczny za wszelkie uwagi dotyczą-
ce proponowanego w tej książce materiału. Można je przesyłać na mój adres 
e-mailowy: eugeniusz.rosolowski@pwr.wroc.pl.  

Na zakończenie mam przyjemność podziękować recenzentom: prof. Janowi Iży-
kowskiemu z Politechniki Wrocławskiej oraz prof. Pawłowi Sowie z Politechniki Ślą-
skiej za życzliwość i ważne uwagi merytoryczne. Mam także dług wdzięczności 
w stosunku do wielu osób z zespołu redakcyjnego Oficyny Wydawniczej PWr, któ-
rych pomoc i cenne podpowiedzi doprowadziły tę pracę do ostatecznego kształtu.  

 

Wrocław, wrzesień 2009  Autor 





 

1. DYSKRETNE LINIOWE MODELE SIECI 
ELEKTRYCZNEJ 

1.1. Wprowadzenie 

Celem analizy obwodu elektrycznego mogą być różne szczegółowe zagadnienia, jak 
rozpływ prądów w stanie ustalonym, symulacja stanu dynamicznego, określenie cha-
rakterystyk częstotliwościowych w wybranych punktach sieci i inne. W przypadku 
badania stanów przejściowych, dynamika sieci jest określana za pomocą układu rów-
nań algebraiczno-różniczkowych, odzwierciedlających związki pomiędzy prądami 
i napięciami w poszczególnych elementach sieci oraz stan równowagi całego układu 
(zgodnie z prawami Kirchhoffa).  

Reprezentacja rzeczywistej sieci elektrycznej za pomocą schematu zastępczego po-
ciąga za sobą znane i niekiedy istotne uproszczenia. Najczęściej zakłada się, że roz-
miary geometryczne poszczególnych fragmentów sieci są do pominięcia, co sprawia, 
że skomplikowane zależności wynikające z teorii pola elektromagnetycznego w ukła-
dzie przestrzennym redukują się do znanych związków różniczkowych w elementach 
o parametrach skupionych. Jeśli dodatkowo przyjąć, że rozpatrywany jest liniowy za-
kres pracy tych elementów, to mamy do czynienia z obwodem elektrycznym liniowym 
o parametrach skupionych. Niekiedy, spośród trzech wymiarów przestrzennych prze-
wodnika, trudno jest zrezygnować z jego długości – decyduje o tym czas przejścia fali 
elektromagnetycznej między obu końcami przewodnika. Wówczas odpowiedni opis 
zjawisk zapewnia model o parametrach rozłożonych. W tym rozdziale rozpatrywane 
są sieci jednofazowe z elementami liniowymi o parametrach skupionych oraz rozłożo-
nych.  

W klasycznej teorii obwodów związki zachodzące między prądem i napięciem 
w oddzielnych elementach sieci są przedstawiane za pomocą funkcji ciągłych w cza-
sie. Jeśli analiza obwodu ma być prowadzona za pomocą komputera, to należy zapew-
nić możliwość numerycznego rozwiązania zagadnienia. Możliwe są dwa przeciw-
stawne podejścia do tego problemu:  

– przekształcenie ciągłych w czasie zależności różniczkowych dla poszczegól-
nych elementów sieci w odpowiednie zależności dyskretne, a następnie for-
mowanie na ich podstawie równań sieci i ich rozwiązywanie z uwzględnieniem 
równań obwodowych (metoda modelowania cyfrowego); 
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– formowanie ciągłych równań obwodu elektrycznego i ich rozwiązywanie za 
pomocą metod numerycznych (metoda zmiennych stanu).  

W tym rozdziale prezentowane jest pierwsze z tych podejść. Ponieważ poszczegól-
ne elementy obwodu elektrycznego są tu zastępowane odpowiednimi modelami dys-
kretnymi, więc można w tym przypadku mówić o dyskretnej teorii obwodów [112]. 
Przejście od czasu ciągłego do dyskretnego powoduje znane konsekwencje w dziedzi-
nie częstotliwości (charakterystyka częstotliwościowa układu staje się okresowa), jak 
również może rodzić problemy w zakresie stabilności numerycznej.  

Tworzenie cyfrowych modeli elementów obwodu elektrycznego jest bezpośrednio 
związane ze znanymi matematycznymi modelami tych elementów, odnoszącymi się 
do czasu ciągłego. W przypadku elementów o parametrach skupionych, modele te są 
wyrażone za pomocą równań różniczkowych zwyczajnych. Problematykę tę rozpo-
czynamy od krótkiego wprowadzenia do zagadnień numerycznego rozwiązywania ta-
kich właśnie równań. Prezentowane tu metody są bezpośrednio związane z algoryt-
mami tworzenia cyfrowych modeli elementów obwodu elektrycznego. Do kwestii 
numerycznego rozwiązywania równań różniczkowych w bardziej ogólnym sensie po-
wrócimy jeszcze w rozdz. 3.  

W przypadku linii długich, model matematyczny stanu przejściowego jest określo-
ny za pomocą równań różniczkowych cząstkowych. Stosowane powszechnie modele 
dyskretne tych obiektów wywodzą się z metody charakterystyk rozwiązywania rów-
nań linii bezstratnej. Prowadzi to do bardzo efektywnego numerycznie algorytmu, 
w którym można łatwo uwzględnić także rezystancję linii oraz efekt naskórkowości, 
który objawia się w postaci zależności parametrów od częstotliwości. Bardziej szcze-
gółowa analiza modeli linii elektroenergetycznej jest kontynuowana w rozdz. 4.  

Zastąpienie ciągłych modeli elementów sieci przez ich modele dyskretne (dyskret-
ne w czasie) powoduje, że zmienia się sposób reprezentacji dynamiki sieci: w od-
dzielnych krokach symulacji analizowany system jest traktowany jak sieć prądu stałe-
go, natomiast jej dynamika zostaje odwzorowana dzięki stosownej zmianie warunków 
początkowych w kolejnych krokach symulacji komputerowej. W takich warunkach 
uzyskanie efektywnych algorytmów numerycznych wymaga uważnego podejścia do 
formowania równań sieci. Problem ten jest analizowany w kolejnych częściach roz-
działu.  

W ostatniej części rozdziału rozważane są zagadnienia związane z błędami nume-
rycznych algorytmów modelowania sieci, które mogą prowadzić do niekontrolowa-
nych oscylacji w trakcie obliczeń. Omówione zostały źródła tych oscylacji oraz pod-
stawowe sposoby ich likwidacji. Wnioski płynące z tej analizy mogą mieć 
zastosowanie do poprawnego projektowania dyskretnych modeli rozważanych ele-
mentów, a także złożonych sieci elektrycznych.  
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1.2. Dyskretna reprezentacja równań różniczkowych 

1.2.1. Wybrane algorytmy 

W systemach dynamicznych o parametrach skupionych (dotyczy to także dużej części 
obwodów elektrycznych), spotykamy się z równaniami różniczkowymi o następującej 
formie:  

 ),()( tyf
t
ty

=
d

d  (1.1) 

gdzie: t  – czas; y , f  – funkcje (zmienne) reprezentujące różne wielkości fizyczne.  
Zmienna y  może być określona w wyniku całkowania równania (1.1): 

 ∫+=
t

yfyty
0

),()0()( ττ d  (1.2) 

W algorytmach numerycznego wyznaczania rozwiązania (1.2) poszukuje się war-
tości przybliżonych )()( ktyky =  dla dyskretnych wartości zmiennej niezależnej tk,  
k = 0, 1, ... . Można wówczas zagadnienie (1.2) zapisać w następującej formie:  

 ∫
−

+−==
k

k

t

t
k yfkykyty

1

),()1()()( ττ d  (1.3) 

Często się przyjmuje, że przedział całkowania ma stałą długość T i wówczas: 
ti = ti–1 + T, i = 1, 2, ..., k. 

Różne metody numerycznego rozwiązywania równań różniczkowych (1.1) wywo-
dzą się z odpowiednich sposobów aproksymacji całki w (1.3). Są to metody jednokro-
kowe oraz metody wielokrokowe [1, 113]. W pierwszym przypadku całka ta jest okre-
ślana na podstawie informacji o wartości funkcji f (y, t) w przedziale (tk–1, tk), 
natomiast w metodach wielokrokowych interpolacja funkcji f (y, t) odbywa się także 
z wykorzystaniem informacji z wcześniejszych  etapów obliczeń, to  znaczy w  punk-
tach  tk–m,  tk–m+1, ..., tk–1, tk (m – liczba uwzględnianych poprzednich kroków). W algo-
rytmach modelowania cyfrowego stosowane są zazwyczaj proste jednokrokowe meto-
dy całkowania równań różniczkowych. Ważniejsze z nich są prezentowane dalej.  

Problem numerycznego wyznaczania całki w (1.3) jest pokazany na rys. 1.1. Pole 
określone przez funkcję f (y, t) w przedziale (tk–1, tk) może być aproksymowane pro-
stokątem o bokach równych T  oraz f (y, tk–1). Równanie (1.3) przyjmuje wówczas na-
stępującą postać:  
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 ( )1),1()1()( −−+−= ktkyTfkyky  (1.4) 

Zależność ta jest znana jako jawna (ekstrapolacyjna) metoda prostokątów (Eulera). 
Jeśli się pole prostokąta określi na podstawie bieżącej wartości funkcji f (y, tk), to od-
powiedni algorytm przyjmie następującą formę:  

 ( )ktkyTfkyky ),()1()( +−=  (1.5) 

t

f(y,t)

Τ
tktk–1tk–2tk–3tk–4

f(y(tk–1))
f(y(tk))

1

2 3

 

Rys. 1.1. Całkowanie numeryczne: 1 – jawna metoda Eulera, 2 – niejawna metoda Eulera,  
3 – metoda trapezów 

Formuła (1.5) jest znana jako niejawna1 (interpolacyjna) metoda prostokątów (Eu-
lera).  

Łatwo zauważyć (rys. 1.1), że błędy wynikające ze stosowania obu powyższych 
algorytmów mają przeciwne znaki. Dokładność oszacowania całki można zatem po-
prawić przez uśrednienie obu wyników. Prowadzi to do znanej metody trapezów:  

 ( ) ( )( )kk tkyftkyf
T

kyky ),(),1(
2

)1()( 1 +−+−= −  (1.6) 

Uwzględniając (1.1), zależności (1.4)–(1.6) można także zapisać, odpowiednio, w na-
stępującej formie: 

 
( )

)1(

,)1()(
−=

+−=
kyyt

tyfTkyky
d

d
 (1.7) 

 
1 Określenia: metoda jawna oraz metoda niejawna są związane z możliwością bezpośred-

niego określenia poszukiwanej zmiennej. W metodzie niejawnej zmienna wyznaczana w k-tym 
kroku występuje po obu stronach równania (jak y(k) w (1.5)). 
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Należy zauważyć, że metody jednokrokowe można stosować do rozwiązywania 
układów równań różniczkowych z wykorzystaniem tylko warunków początkowych 
(algorytm samostartujący).  

Przykładem metody wielokrokowej jest algorytm Geara drugiego rzędu: 

 ( ) 3/)),((2)2()1(4)( ktkyTfkykyky +−−−=  (1.10) 

Metody Geara należą do grupy tzw. metod sztywnych (ang. stiff methods), co 
oznacza, że są stabilne w przypadku, gdy w złożonym systemie występują stałe cza-
sowe o bardzo różniących się wartościach [23]. W celu obliczenia wartości funkcji 

)(ky  w pierwszym kroku symulacji ( 2=k ) na podstawie (1.10), należy znać nie tyl-
ko wartość początkową )0(y , ale również wartość pośrednią )1(y . To sprawia, że 
metody wielokrokowe nie są ‘samostartujące’ i do rozpoczęcia obliczeń stosuje się 
zazwyczaj algorytm jednokrokowy [41].  

1.2.2. Dokładność i stabilność rozwiązania 

Do analizy dokładności i stabilności rozwiązania równania różniczkowego metodą 
numeryczną można posłużyć się wzorcowym równaniem, którego rozwiązanie anali-
tyczne jest znane. Wybiera się tu zazwyczaj równanie o postaci [23]:  

 )()( ty
t
ty λ−=

d
d

 (1.11) 

Dokładne rozwiązanie dane jest zależnością: 

 tyty λ−= e0)(  (1.12) 

gdzie: )0(0 yy =  – warunek początkowy, 0>λ . 
Stosując w odniesieniu do (1.11) algorytmy (1.4)–(1.6), otrzymamy: 

 )1()1()( −−= kyTky λ  – jawna metoda Eulera, (1.13) 

 
)1(
)1()(

λT
kyky
+

−
= – niejawna metoda Eulera, (1.14) 
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 )1(
)2(
)2()( −

+
−

= ky
T
Tky

λ
λ  – metoda trapezów. (1.15) 

Aby ocenić błędy pojawiające się podczas jednego kroku całkowania (błędów lo-
kalnych), można porównać te wielkości z wynikiem dokładnym, który w tym przy-
padku określony jest następująco:  

 T
dL kyky λ−−= e)1()(  (1.16) 

Błąd lokalny określa się jako różnicę: 

 )()()( kykyk dLL −=∆  (1.17) 

którą łatwo wyznaczyć dla konkretnych algorytmów. Na przykład dla jawnej metody 
Eulera równanie (1.17) przyjmuje następującą postać:  

 ( )λλ λλ TkykyTkyk TT
L +−−=−−−−=∆ −− 1e)1()1()1(e)1()(  (1.18) 

Po zapisaniu funkcji wykładniczej w postaci szeregu Taylora otrzymujemy nastę-
pujące oszacowanie błędu: 

 ( ) )()(...)1()( 123322 +==+−−=∆ p
L TOTOTTkyk λλ  (1.19) 

gdzie: p  jest rzędem metody (w danym przypadku 1=p ). 
Błąd globalny jest odchyłką między rozwiązaniem dokładnym i uzyskanym w wy-

niku stosowania określonej formuły przybliżonej, która mierzona jest w pewnym 
przedziale czasowym, zaczynając od pierwszego kroku. W rozważanym przypadku 
rozwiązanie dokładne jest określone zależnością:  

 kT
dG yky λ−= e0)(  (1.20) 

natomiast rezultaty algorytmów numerycznych są następujące: 

 0)1()( yTky kλ−= – jawna metoda Eulera, (1.21) 

 kT
yky

)1(
)( 0

λ+
= – niejawna metoda Eulera, (1.22) 

 0)2(
)2()( y

T
Tky

k









+
−

=
λ
λ

– metoda trapezów. (1.23) 

Widać, że w przypadku jawnej metody Eulera, ograniczoną odpowiedź uzyskuje 
się dla 11 <− λT , a więc w celu zapewnienia stabilności rozwiązania (niezależnie od 
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wartości błędu lokalnego) należy wybrać krok całkowania zgodnie z warunkiem: 
λ/2<T . W pozostałych dwóch algorytmach stabilność numeryczna metody jest za-

chowana niezależnie od wyboru długości kroku całkowania.  
Ilustracja przebiegu omówionych błędów jest pokazana na rys. 1.2. Przyjęto: 2=λ  

oraz 100 =y  (rys 1.2a), 98,0=T (rys 1.2b). Widać, że przy założonych warunkach 
błąd globalny jawnej metody Eulera wykazuje słabo tłumione oscylacje o dużej ampli-
tudzie, co wskazuje, że algorytm jest bliski granicy stabilności. Pozostałe dwie meto-
dy, nawet przy dużym kroku całkowania, dają stabilne rezultaty (chociaż z dużym 
błędem lokalnym).  

Powyższą analizę można również powtórzyć dla układów równań różniczkowych. 
Zapis skalarny należy wówczas odpowiednio zastąpić zapisem wektorowym. W po-
dobny sposób można określić dokładność i warunki stabilności innych metod całko-
wania numerycznego [1, 41, 113]. Przy wyborze odpowiedniej metody należy 
uwzględnić fakt, że zazwyczaj algorytmy dokładniejsze (wyższych rzędów) wykazują 
gorsze warunki stabilności, co wymaga stosowania krótszych kroków całkowania 
w przypadku dużych wymuszeń. Stosując natomiast metody niższych rzędów (a więc 
mniej skomplikowane obliczeniowo), można zapewnić wymaganą dokładność wybie-
rając odpowiednio krótki krok całkowania.  
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Rys. 1.2. Przebiegi błędów a) lokalnych oraz b) globalnych: 1 – metoda trapezów, 2 – niejawna 
oraz 3 – jawna metoda Eulera  

Dobrym rozwiązaniem tego dylematu jest stosowanie zmodyfikowanych algoryt-
mów o zmiennym kroku całkowania [7, 40], jednak wówczas znacznie wzrasta sto-
pień złożoności algorytmu. W praktycznych zastosowaniach metod całkowania nume-
rycznego do symulacji zjawisk elektromagnetycznych w sieciach (jak w przypadku 
EMTP) stosuje się dość proste metody (Eulera lub trapezów) ze stałym krokiem cał-
kowania [27, 28, 79].  
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1.3. Modele cyfrowe liniowych elementów obwodu elektrycznego 

1.3.1. Rezystancja 

Rezystancja liniowa R, jako element obwodu elektrycznego, jest reprezentowana 
w modelu matematycznym przez stały współczynnik, określający zależność między 
napięciem i prądem. Odpowiednie relacje pozostają niezmienne również dla czasu 
dyskretnego: 

 )()(1)( kGuku
R

ki ==  (1.24) 

1.3.2. Indukcyjność 

Ciągły model indukcyjności jest określony znaną zależnością: 

 
t
tiLtu

d
d )()( =  (1.25) 

Po prostym przekształceniu uzyskuje się klasyczną postać równania różniczkowe-
go: Ltutti /)(/)( =dd . Model cyfrowy można otrzymać stosując ogólny schemat nu-
merycznego rozwiązania tego równania (1.3):  

 ττττ d)(
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)(d)(
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+== −
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k u
L
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Poszczególne modele cyfrowe indukcyjności uzyskuje się przez zastosowanie róż-
nych metod całkowania w (1.26). Na przykład stosując niejawną metodę prostokątów 
otrzymuje się ( Tktk = ):  

 )()1()( ku
L
Tkiki +−=  (1.27) 

z warunkiem początkowym: 0)0( ii = . 
Zauważmy, że parametr LT /  ma wymiar przewodności, zatem:  

 )1()()( −+= kikGuki , 
L
TG =  (1.28) 

Zastosowanie metody trapezów do (1.26) prowadzi do następującego związku: 
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 ( ))()1(
2

)1()( kuku
L

Tkiki +−+−=  (1.29) 

co, po uporządkowaniu, daje następujący algorytm: 

 )1()1()()( −+−+= kGukikGuki , 
L

TG
2

=  (1.30) 

Można zauważyć, że w trakcie obliczania wartości prądu w kolejnym kroku  
(k = 1, 2, ... ), wszystkie składniki odnoszące się do poprzednich kroków są zmienny-
mi niezależnymi. Ponieważ w (1.30) mają one wymiar prądu, więc można je rozpa-
trywać jako źródła prądowe. W ten sposób algorytm ten przyjmuje następującą formę: 

 )1()()( −+= kjkGuki , )1()1()1( −+−=− kGukikj , 
L

TG
2

=  (1.31) 

Na podstawie (1.28) i (1.31) można podać ogólny schemat zastępczy numeryczne-
go modelu indukcyjności (rys. 1.3). Wartości przewodności G  oraz prądu )1( −kj  
zależą od wybranej metody rozwiązywania równania (1.25), przez co mówi się o mo-
delach stowarzyszonych odpowiednich elementów elektrycznych [23, 110].  
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Rys. 1.3. Model cyfrowy indukcyjności: a) symbol oraz b) schemat zastępczy  

1.3.3. Pojemność 

Zupełnie podobnie wyprowadza się model cyfrowy pojemności. Wychodząc ze znanej 
zależności pomiędzy prądem i napięciem: 

 
t
tuCti

d
d )()( =  (1.32) 

uzyskuje się równanie różniczkowe: Ctittu /)(/)( =dd . Wynik całkowania tego rów-
nania można zapisać następująco (1.3): 
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Odpowiednio stowarzyszone modele cyfrowe pojemności uzyskuje się za pomocą 
różnych metod całkowania w (1.33). Na przykład stosując niejawną metodę prostoką-
tów otrzymuje się ( Tktk = ):  

 )()1()( ki
C
Tkuku +−=  (1.34) 

z warunkiem początkowym: 0)0( uu = . 
Podobnie jak w (1.27), równanie to można także zapisać w postaci prądowo-

przewodnościowej2 

 )1()()( −−= ku
T
Cku

T
Cki  (1.35) 

Parametr TC /  ma wymiar przewodności, a zatem: 

 )1()()( −+= kjkGuki , )1()1( −−=− kGukj , 
T
CG =  (1.36) 

Można zauważyć symetrię między zależnościami (1.28) i (1.36). W przypadku 
modelu pojemności źródło prądowe związane z historią procesu ma znak ujemny. 

Zastosowanie metody trapezów do (1.33) prowadzi do następującego związku: 

 ( ))()1(
2

)1()( kiki
C
Tkuku +−+−=  (1.37) 

co, po przekształceniu względem prądu, daje następujący algorytm: 

 )1()()( −+= kjkGuki ,  ( ))1()1()1( −+−−=− kGukikj ,  
T
CG 2

=  (1.38) 

Podobne algorytmy można utworzyć dla innych metod rozwiązywania równań 
różniczkowych. Struktura modelu cyfrowego pojemności jest pokazana na rys. 1.4. 

u(k)

i(k)

G j(k-1)
i(t)

u(t)

C

a) b)

 

Rys. 1.4. Model cyfrowy pojemności: a) symbol oraz b) schemat zastępczy 

W tabeli 1.1 podane są parametry schematów zastępczych cyfrowych modeli in-
dukcyjności i pojemności dla niektórych metod całkowania. 
 

2 Model prądowo-przewodnościowy (zwany też schematem zastępczym Nortona) jest 
związany z przyjętą dalej metodą potencjałów węzłowych rozwiązywania równań sieci. 
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Tabela 1.1. Algorytmy cyfrowych modeli indukcyjności i pojemności 

Metoda 
całkowania 

Model indukcyjności L Model pojemności C 

niejawna Eulera
(prostokątów) 

)1()1( −=− kikj  

L
TG =

 

)1()1( −−=− kGukj  

T
CG =

 

trapezów 
)1()1()1( −+−=− kGukikj  

L
TG
2

=
 

( ))1()1()1( −+−−=− kGukikj  

T
CG 2

=
 

Geara II rzędu 

( ))2()1(4
3
1)1( −−−=− kikikj

 

L
TG

3
2

=
 








 −+−−=− )2(
3
1)1(2)1( kukuGkj

 

T
CG

2
3

=
 

Ogólny algorytm numeryczny: )1()()( −+= kjkGuki  

 

1.3.4. Gałęzie złożone 

W sieciach elektrycznych gałęzie są najczęściej utworzone z odpowiedniej kombinacji 
elementów R, L, C. W programach do symulacji sieci powszechnie stosuje się model 
gałęzi RLC, która odpowiada szeregowemu połączeniu tych elementów. Zerowe war-
tości poszczególnych parametrów tego modelu decydują o aktualnej konfiguracji ga-
łęzi. Sposób tworzenia zastępczego modelu takiej gałęzi jest zilustrowany na rys. 1.5. 
Modele poszczególnych elementów są przedstawione w formie prądowo-przewodno-
ściowej (rys. 1.5b), jak w powyższej prezentacji, przy czym, dla większej przejrzysto-
ści, w oznaczeniach dodano indeksy, wskazujące na odpowiednie elementy gałęzi. 

Redukcja schematu z rys. 1.5b do postaci ekwiwalentnej, jak na rys. 1.5c, może 
być przeprowadzona na podstawie następującego równania napięciowego: 

 )()()()( kukukuku CLR ++=  (1.39) 

przy czym poszczególne napięcia składowe są określone przez odpowiednie równania 
modeli elementów R, L, C: 

 
( ) ( ))1()(

1
)(,)1()(

1
)(

)(
1

)(

−−=−−=

=

kjki
G

kukjki
G

ku

ki
G

ku

C
C

CL
L

L

R
R

 (1.40) 
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u(k)

GR

i(t)

uR(t)

L

a) b)

jC(k–1)C

c)

R

GL

GC

uL(t)

uC(t)

jL(k–1) j(k–1)G

i(k)

i(k)

uR(k)

uL(k)

uC(k)

u(t)

 

Rys. 1.5. Modele gałęzi RLC: a) schemat modelu ciągłego, b) modele cyfrowe elementów,  
c) schemat zastępczy  

Po podstawieniu (1.40) do (1.39) i uporządkowaniu otrzymamy równanie modelu 
zastępczego (rys. 1.5c): 

 )1()()( −+= kjkGuki  (1.41) 

gdzie: dla metody trapezów: 

224
2

TRCTLC
CT

GGGGGG
GGGG

CLCRLR

CLR

++
=

++
= , 

)1()1()1()1()1( −+−=
++

−+−
=− kj

G
Gkj

G
G

GGGGGG
kjGGkjGGkj C

C
L

LCLCRLR

CLRLCR , 

przy czym: 

R
GR

1
= , 

L
TGL 2

= , 
T
CGC

2
= . 

Widać, że jeśli gałąź jest pozbawiona pojemności, to do powyższych równań należy 
wstawić C → ∞, natomiast w celu pominięcia rezystancji lub indukcyjności należy 
wsta-wić zerowe wartości tych parametrów, co jest zgodne z interpretacją fizyczną. Na 
przy-kład model gałęzi RL jest określony równaniem (1.41), gdzie (dla metody trape-
zów): 
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RTL

TG
+

=
2

,  )1()1(
1
1)1(

2
2)1( −+−

+
−

=−
+

=− kGuki
RG
RGkj

RTL
Lkj

L

L
L  (1.42) 

1.3.5. Źródła sterowane 

Modele niektórych elementów elektronicznych, a także obwodów sterowania, są 
przedstawione za pomocą schematów zastępczych, w których występują źródła stero-
wane. W ogólnym przypadku można wyróżnić cztery rodzaje takich źródeł (rys. 1.6): 
1) sterowane napięciem źródło prądowe o wartości j = kxux, gdzie: ux, – napięcie wy-

stępujące na wybranej parze zacisków w obwodzie (napięcie sterujące), kx – współ-
czynnik proporcjonalności (sterowania); 

2) sterowane prądem źródło prądowe o wartości j = kxix, gdzie ix, – prąd na wybranej 
parze zacisków w obwodzie (prąd sterujący); 

3) sterowane prądem źródło napięciowe o wartości u = kxix; 
4) sterowane napięciem źródło napięciowe o wartości u = kxux. 

j=kuxux

u=kix

ix

j=kix

ix

u=kuxux

a) b)

c) d)

 

Rys. 1.6. Schematy zastępcze źródeł sterowanych: a) źródło prądowe sterowane napięciem, 
b) źródło prądowe sterowane prądem, c) źródło napięciowe sterowane prądem  

oraz d) źródło napięciowe sterowane napięciem 

Modele źródeł sterowanych są proste, natomiast ich uwzględnienie w równaniach 
sieci może łączyć się z pewnymi trudnościami. Zależy to od przyjętego sposobu zapi-
su równań powiązań sieci: równania gałęziowe lub oczkowe [23, 98, 114]. 

1.3.6. Linia długa 

W systemach elektroenergetycznych występują zazwyczaj linie wielofazowe, jednak 
model linii jednofazowej w układzie przewód–ziemia lub przewód–przewód (bez 
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uwzględnienia udziału ziemi) jest ważnym przypadkiem, który może być rozszerzony 
na linię wielofazową. 

Przy rozważaniu sposobu opisu zjawisk elektromagnetycznych w linii, ze szcze-
gólną ostrością stawiany jest problem wyboru modelu matematycznego: model o pa-
rametrach skupionych, czy rozłożonych? Rozróżnienie między tymi dwiema katego-
riami modeli elektrycznych zależy od relacji, jakie zachodzą pomiędzy trzema 
parametrami rozpatrywanego środowiska: przewodnością właściwą γ, przenikalnością 
magnetyczną µ  oraz przenikalnością elektryczną ε. W przypadku modeli elementów 
obwodu skupionego zakłada się, że spośród tych trzech wielkości tylko jedna jest do-
minująca, a pozostałe można pominąć. W ten sposób mamy do czynienia z rezystancją 
( 0== εµ ), indukcyjnością ( 0== εγ ) oraz pojemnością ( 0== µγ ). Ponadto, 
spełniony jest warunek stacjonarności lub quasi-stacjonarności pola elektromagne-
tycznego, co oznacza, że w każdym punkcie rozpatrywanego elementu parametry 
zmiennego w czasie pola różnią się w pomijalnie małym zakresie.  

W przypadku elementów obwodu elektrycznego, z uwagi na warunki quasi-
stacjonarności pola [94], jedynie długość przewodnika jest istotna. W charakterze gra-
nicznej wartości przyjmuje się taką długość przewodnika, na której odkłada się ¼ dłu-
gości fali elektromagnetycznej związanej z analizowanym zjawiskiem. Jeśli zatem 
rozpatrywany jest przebieg harmoniczny o częstotliwości f, to graniczną długość 
przewodnika, który może być przedstawiony w postaci modelu o parametrach skupio-
nych, można oszacować następująco [97]:  

 
f

l
44
c

gr ==
λ  (1.43) 

gdzie: c  – prędkość światła w próżni, 
f
c

=λ  – długość rozpatrywanej fali elektroma-

gnetycznej. 
Jeśli zachodzi związek l<<lgr, to efekt związany z długością przewodnika można 

pominąć. W przeciwnym razie (l ≈ lgr) w równaniach modelu danego elementu należy 
uwzględnić wzajemny wpływ pola magnetycznego i elektrycznego. 

Na przykład jeśli w linii elektroenergetycznej analizowane są przebiegi zwarciowe 
o częstotliwości do 20. harmonicznej ( f = 1000 Hz), to graniczna długość tej linii mo-
że być oszacowana jako lgr = c/(4f ) 105/(4·1000) = 75 km. W przypadku badania zja-
wisk występujących podczas rozchodzenia się fali elektromagnetycznej wywołanej 
uderzeniem pioruna, należy rozpatrywać znacznie większe częstotliwości i już kilku-
metrowe odcinki linii mogą wymagać zastosowania modelu o parametrach rozłożo-
nych. Podobnie jest w przypadku obwodów telekomunikacyjnych.  

Przy wyprowadzaniu równań modelu linii długiej można skorzystać ze schematu 
zastępczego fragmentu linii, reprezentowanego czwórnikiem, jak na rys. 1.7. Umowna 
długość tego odcinka wynosi x∆ . Zakłada się, że odcinek x∆  jest na tyle mały, że 
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w odniesieniu do niego można stosować zależności właściwe dla obwodu skupionego. 
Bilans napięć w oczku i prądów w węźle prowadzi do następujących zależności:  

 
),(),(),(),(

),(),(),(),(

txxi
t

txxuxC'txxuxG'txi

txxu
t

txixL'txixR'txu

∆++
∂

∆+∂
∆+∆+⋅∆=

∆++
∂

∂
∆+⋅∆=

 (1.44) 

gdzie: R' , L' , G' , C'  oznaczają, odpowiednio, jednostkową (w odniesieniu do jed-
nostki długości) rezystancję, indukcyjność, przewodność i pojemność linii. 

R'∆x L'∆x

G'∆x
C'∆x

u(x,t) u(x+∆x,t)

i(x,t) i(x+∆x,t)

x x+∆x  

Rys. 1.7. Schemat odcinka linii długiej 

Po podzieleniu obu równań (1.44) przez x∆  i przejściu do granicy ( 0→∆x ) 
otrzymamy znane równania: 

 

t
txuC'txG'u

x
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∂
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 (1.45) 

Przy założeniu, że linia jest jednorodna (parametry wzdłuż linii nie zmieniają się), 
można te równania rozdzielić względem prądu i napięcia. Różniczkując równania 
(1.45) względem odległości x  otrzymamy ( ),( txuu = , ),( txii = ):  

tx
iL'

t
uR'C'R'G'u

x
u
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+
∂
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−−=
∂
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−
2
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2

 

W ostatnim składniku można uwzględnić wynik różniczkowania drugiego równa-
nia (1.45) względem czasu, w wyniku czego, po uproszczeniu, uzyskuje się: 

 ( ) 2

2

2

2

t
uL'C'

t
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x
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∂
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++=
∂
∂  (1.46) 
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Analogiczne przekształcenia drugiego równania w (1.45) prowadzą do następującej 
zależności dla prądu: 

 ( ) 2

2

2

2

t
iL'C'

t
iG'L'R'C'R'G'i

x
i

∂
∂

+
∂
∂

++=
∂
∂  (1.47) 

Są to hiperboliczne (dla 0≠L'C' ) równania różniczkowe cząstkowe drugiego rzędu, 
znane jako równania telegraficzne [65, 99].  

a) Linia bezstratna 

Bardzo ważnym przypadkiem jest założenie, że 0=R'  oraz 0=G' , co prowadzi do 
równań linii długiej bezstratnej:  
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 (1.48) 

przy czym: 
L'C'

v 1
= . 

Ogólne rozwiązanie równań typu (1.48) zostało podane przez d’Alemberta [49, 
65]. W warunkach brzegowych: 

)(),(
0

ttxu
x

ϕ=
=

, )(),(
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ψ=
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∂

=

 

rozwiązanie równania napięciowego ma następującą postać: 

 ( ) ∫
+

−
+−++=

vxt

vxt

vvxtvxttxu
/

/
d)(

2
)/()/(

2
1),( ααψϕϕ  (1.49) 

Zbiory punktów const.=− )/( vxt  oraz const.=+ )/( vxt , zwane charakterysty-
kami powyższego równania, wyznaczają trajektorie fal reprezentowanych przez funk-
cję ),( txϕ  (rys. 1.8). W linii bezstratnej fale te nie podlegają tłumieniu, natomiast 
zmieniają fazę. Charakterystyki odpowiadają argumentom funkcji ),( txϕ  o stałej fa-
zie. Jeśli granice linii oznaczyć przez 1x  (początek) i 2x  (koniec), to fala poruszająca 
się od początku linii po czasie pt  osiągnie punkt px  (rys. 1.8), przy czym zwiększają-
cej się odległości towarzyszy narastanie czasu tak, że zależność )/( vxt − = constans 
jest zachowana. Podobny związek można prześledzić dla przypadku fali poruszającej 
się w przeciwnym kierunku. Przedstawiona tu reprezentacja w literaturze nosi nazwę 
metody charakterystyk [28, 36].  
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Warunki brzegowe tego procesu można wyrazić za pomocą napięcia i prądu na po-
czątku linii )(1 tu , )(1 ti . Uwzględniając pierwsze równanie w (1.45) (linia bez strat, 

0=R' ), otrzymamy: 

)(),0()( 1 tutut ==ϕ , 
t
tiL'

t
tiL'

x
tut

d
d )(),0(),0()( 1−=

∂
∂
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∂

∂
=ψ  

Podstawienie tych zależności do (1.49) daje następujące równanie: 

 ( ) ∫
+

−
−−++=

vxt

vxt if tiZvxtuvxtutxu
/

/11 )(d
2
1)/()/(

2
1),(  (1.50) 

gdzie: 
C'
L'Z f =  – impedancja falowa linii. 

x

t

x1 x2xp

tp

t–x/v=const.t+x/v=const.

 

Rys. 1.8. Charakterystyki równań linii bezstratnej 

Równanie (1.50) dla końca linii ( lx = ), l  – długość linii, przybiera następującą 
postać: 

 ( ) ( ))()(
2
1)()(

2
1)( 11112 ττττ −−+−−++= titiZtututu f  (1.51) 

gdzie: vl /=τ  – czas propagacji fali wzdłuż linii. 
Powtórzenie powyższego wywodu dla równania prądowego w (1.48) daje podobny 

związek dla prądu na końcu linii: 

 ( ) ( ))()(
2

1)()(
2
1)( 11112 ττττ −−++−++−= tutu

Z
tititi

f

 (1.52) 

przy czym przyjęto, że prąd ten ma znak przeciwny do prądu )(1 ti  (rys. 1.9). 
Odejmując stronami równania (1.51) i (1.52), po uporządkowaniu otrzymujemy 

model linii długiej bezstratnej: 



28 1. Dyskretne liniowe modele sieci elektrycznej 

 )()()()( 1122 ττ −−−−= tituGtuGti ff  (1.53) 

gdzie 
f

f Z
G 1

= . 

u1 u2

i1 i2 21

x  

Rys. 1.9. Oznaczenie zmiennych w modelu linii 

Przyjęcie warunków brzegowych dla dwóch punktów związanych z końcami linii 
daje w konsekwencji rozwiązanie tylko dla tych miejsc, bez możliwości śledzenia 
przebiegu procesu wewnątrz linii. Jeśli jednak linia jest fragmentem złożonej sieci, to 
można ograniczyć się tylko do wielkości występujących na jej granicach, bez potrzeby 
odtwarzania zjawisk dla dowolnej wartości zmiennej x. W takim przypadku, w rów-
naniach charakterystyk występują tylko dwie wartości zmiennej x: x1 = 0 (początek 
linii) oraz x2 = l (koniec linii). Jak widać, to założenie prowadzi do bardzo prostych 
równań dyskretnego modelu linii długiej bezstratnej. Podejście to jest znane jako me-
toda Bergerona [36, 49].  

Równanie (1.53) przedstawia model ciągły linii długiej bez strat, określający zależ-
ność pomiędzy prądami i napięciami na obu jej końcach. Model dyskretny otrzymamy 
po uwzględnieniu określonej długości kroku modelowania T. Czas przejścia fali elek-
tromagnetycznej wzdłuż linii wyrazi się wówczas liczbą m kroków modelowania:  

 
vT
l

T
m ==

τ
 (1.54) 

a równanie (1.53) przyjmie postać dyskretną: 

 )()()()( 122 mkimkuGkuGki iff −−−−=  (1.55) 

Analogiczną zależność można napisać dla prądu na początku linii. Ostatecznie, 
dyskretny model linii bez strat jest określony następującymi równaniami: 
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gdzie: 
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 (1.57) 

przy czym: 0>m . 
Przy mniej restrykcyjnym wyprowadzeniu powyższego modelu zakłada się, że 

równania (1.48) opisują proces rozchodzenia się dwóch fal wzdłuż linii, które mają 
przeciwne kierunki. Napięcie w dowolnym punkcie linii można wówczas przedstawić 
w postaci sumy tych fal: 
 )()(),( vtxuvtxutxu ba ++−=  (1.58) 

z których )( vtxua −  ma kierunek dodatni, a )( vtxub +  – kierunek ujemny, zgodnie 
z przyjętym zwrotem osi 0x. 

Podobne równanie otrzymuje się także dla prądów po podstawieniu (1.58) do 
(1.48) i wykonaniu niezbędnych przekształceń:  

 ( ))()(1),( vtxuvtxu
Z

txi ba
f

+−−=  (1.59) 

Jeśli fala au  pojawia się w momencie τ−t  na początku linii (indeks 1 na rys. 1.9), 
to osiąga ona koniec linii (indeks 2) w chwili t , co prowadzi do równości (linia bez-
stratna): 
 ( ) )()( vtlutvu aa −=−− τ  (1.60) 

Wielkość au  może być wyrażona w postaci ogólnej przez wyeliminowanie z rów-
nań (1.58) i (1.59) wielkości bu . Po dodaniu obu stron tych równań i wykonaniu nie-
zbędnych przekształceń otrzymuje się:  

 ( )),(),(
2
1)( txiZtxuvtxu fa +=−  (1.61) 

Równanie to dla obu końców linii może być zapisane następująco: 
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(znak minus w drugim równaniu wynika z przyjętego kierunku prądu na końcu linii). 
Po podstawieniu (1.62) do (1.60) otrzymamy: 

 )()(1)(1)( 1122 ττ −−−−= titu
Z
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ff

 (1.63) 

co jest równoważne zależności (1.53). 
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Schemat zastępczy linii zgodny z modelem (1.56) jest pokazany na rys. 1.10. 
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Rys. 1.10. Schemat zastępczy dyskretnego modelu linii długiej 

Należy zauważyć, że schematy zastępcze umieszczone na obu końcach linii mają 
taką samą strukturę jak modele innych elementów liniowych. Do określania źródeł 
prądowych )(1 mkj − , )(2 mkj −  można wykorzystać odpowiednie pamięci w reje-
strach przesuwnych o długości m  komórek.  

b) Uwzględnienie rezystancji linii 

Przy rozbudowie przedstawionego powyżej modelu linii długiej dąży się do zachowa-
nia jego korzystnych cech wynikających z prostoty obliczeń. W przypadku uwzględ-
nienia efektu tłumienia, związanego z obecnością rezystancji, można wykorzystać 
fakt, że udział rezystancji w impedancji podłużnej linii jest niewielki, zatem wprowa-
dzane uproszczenia nie powinny w dużym stopniu wpływać na wierność odtworzenia 
analizowanego procesu.  

W miejsce rozłożonej wzdłuż linii rezystancji można przyjąć model w postaci 
dwóch rezystancji o parametrach skupionych, umieszczonych na obu końcach linii 
(rys. 1.11a). W takim przypadku równania (1.56) i (1.57) odnoszą się do węzłów 1′, 
2′, przy czym: 
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gdzie lR'R = . 
Uwzględnienie powyższych zależności w (1.56) i (1.57) zmienia jedynie wartość 

przewodności fG  oraz sposób obliczania historii procesu: 
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gdzie: 
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Rys. 1.11. Uwzględnienie rezystancji w modelu linii długiej  

Dokładniejsze odwzorowanie rozłożonej rezystancji daje dwukrotne zastosowanie 
przedstawionego modelu. Dzięki temu, skupione rezystancje o wartości jednej czwar-
tej całej rezystancji linii zostają umieszczone na końcach i w środku linii (rys. 1.11b). 
Po napisaniu równań modelu (1.56) i (1.65) dla obu połówek rozpatrywanej linii 
wszystkie parametry odnoszące się do środkowego węzła można wyeliminować [30]. 
Uzyskuje się w ten sposób następujące równania: 

 
)()()()(

)()()()(

1222

2111

mkjhmkjhkuGki
mkjhmkjhkuGki

fbfaf

fbfaf

−+−+=

−+−+=
 (1.66) 

gdzie: fffa GZh = , ffb GRh
4

=  oraz 
4/

1
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G
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= . 

W ogólnym przypadku równania modelu linii mają zatem następującą postać: 
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przy czym macierze Gf={Gf}, hf={hf} są określane w zależności od przyjętego sposo-
bu reprezentacji skupionej rezystancji (lub jej pominięcia). 
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Linia jest bardzo ważnym elementem ze względu na odtworzenie zjawisk elektro-
magnetycznych w systemie elektroenergetycznym podczas stanów przejściowych. Do 
problemu modelowania linii wielofazowych powrócimy w rozdz. 4. 

1.3.7. Właściwości częstotliwościowe modeli cyfrowych 

Stosowanie metod numerycznych w modelowaniu cyfrowym łączy się z zamianą cza-
su ciągłego na czas dyskretny. Powstaje zatem pytanie, jak długość kroku modelowa-
nia wpływa na dokładność odtworzenia analizowanego procesu w modelu cyfrowym. 
Dobrym narzędziem analizy jest w tym przypadku badanie stanu ustalonego dla wy-
branej częstotliwości wymuszeń w sieci (analiza częstotliwościowa).  

W stanie ustalonym ciągły model indukcyjności jest określony następującym 
związkiem: 

 αj2
πj

ee UYUYI
−

==  (1.68) 

gdzie: Y = 1/ωL; podkreślenia oznaczają, że odpowiednie wielkości są zespolone (są 
to amplitudy zespolone). 

Jest oczywiste, że admitancja Y  jest funkcją częstotliwości. Jeśli w (1.68) 
uwzględni się czas (odpowiednie wielkości zespolone reprezentują wówczas obracają-
ce się wektory), to otrzymamy następującą ogólną zależność: 
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przy czym ( )ttUUtU t ωωω ω sinjcose),j( j +== . 
Rozpatrzmy teraz cyfrowy model indukcyjności stowarzyszony z metodą trapezów 

(1.31). W celu porównania go z przedstawionym modelem ciągłym załóżmy, że wy-
muszenie napięciowe w obu przypadkach jest jednakowe. Dla składowej rzeczywistej 
otrzymamy zatem: 

 )1()()( −+= kjkGuki rrr  (1.70) 

gdzie: 
L
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= , )1()1()1( −+−=− kGukikj rrr , ;)cos()( TkUkur ω=  przesunięcie  

o jedną próbkę oznacza zmianę kąta o wartość ωT.  
Podobne równanie można napisać również dla składowej urojonej. Tworząc z obu 

tych składowych odpowiednie wielkości zespolone otrzymamy: 
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gdzie indeks d wskazuje na postać dyskretną. 
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Po uporządkowaniu uzyskujemy wyrażenie o strukturze, jak (1.69): 

 )()(
e1
e1)( j

j

kUYkUGkI dddT

T

d =
−
+

= −

−

ω

ω

 (1.72) 

gdzie po uproszczeniu: 
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Można zauważyć, że admitancja modelu dyskretnego istotnie różni się od admitan-
cji modelu ciągłego. Współczynnik proporcjonalności jest funkcją częstotliwości. 
Przebieg tej funkcji dla zmian pulsacji ω od zera do wartości ω = π / T jest pokazany 
na rys. 1.12. Widać, że jest to wartość graniczna, przy której admitancja zastępcza 
modelu dyskretnego indukcyjności jest równa zero.  
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Rys. 1.12. Charakterystyka częstotliwościowa admitancji modelu cyfrowego indukcyjności 

W teorii układów dyskretnych, punkt ten znany jest jako częstotliwość Nyquista 
(Shannona) i związany jest z twierdzeniem o próbkowaniu [105]. Wynika z niego, że 
sygnał o częstotliwości f powinien być próbkowany przynajmniej dwa razy w okresie, 
aby można było poprawnie odtworzyć o nim informację. Z przebiegu charakterystyki 
na rys. 1.12 widać również, że w miarę wzrostu częstotliwości (w stosunku do założo-
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nego kroku modelowania T) relacje między admitancją modelu dyskretnego i ciągłego 
pogarszają się: admitancja modelu indukcyjności staje się relatywnie mniejsza. 

W podobny sposób można analizować właściwości częstotliwościowe modelu po-
jemności. Łatwo pokazać, że w tym przypadku admitancja (przewodność) modelu 
wzrasta ze wzrostem względnej częstotliwości. Krzywa z rys. 1.12 odnosi się tym ra-
zem do ilorazu impedancji modelu dyskretnego i ciągłego.  

Wypływa stąd wniosek, że w celu zapewnienia poprawnego odwzorowania w mo-
delu cyfrowym stanów dynamicznych (które charakteryzują się występowaniem skła-
dowych o wysokich częstotliwościach) należy przyjmować odpowiednio mały krok 
modelowania:  
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gdzie: mxf  – graniczna częstotliwość w spodziewanym widmie sygnałów prądowych 
lub napięciowych. 

1.4. Metoda potencjałów węzłowych 

Metoda potencjałów węzłowych jest bardzo często stosowana do formułowania rów-
nań sieciowych ze względu na łatwość ich tworzenia na podstawie danych parame-
trów gałęzi oraz znane szybkie algorytmy rozwiązywania tych równań. Poniżej przed-
stawiona jest podstawowa metoda węzłowa, której zastosowanie jest ograniczone do 
sieci o gałęziach prądowo-przewodnościowych, w których mogą także występować 
sterowane napięciem źródła prądu. Jej rozszerzenie na gałęzie napięciowe i sterowane 
prądem źródła prądowe jest znane pod nazwą zmodyfikowanej metody potencjałów 
węzłowych. Metoda zmodyfikowana ma zastosowanie do symulacji stanów przej-
ściowych w obwodach elektronicznych i nie będzie tu omawiana [94, 114].  

1.4.1. Tworzenie równań 

Schemat zastępczy gałęzi akceptowalnej w metodzie potencjałów węzłowych jest po-
kazana na rys. 1.13. Model tej gałęzi jest określony następującym równaniem: 

 anmbalkaabbaaaa juuGuuGjuGuGi +−+−=++= )()(  (1.75) 

gdzie bu  jest napięciem sterującym źródłem prądowym o współczynniku sterowania 

baG , które znajduje się w innej gałęzi sieci. Należy zauważyć, że źródło prądowe aj  
może odnosić się do prądu związanego z historią w schemacie zastępczym modelu ga-
łęzi lub być niezależnym źródłem prądowym.  
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Załóżmy, że w rozpatrywanej sieci znajduje się gn  gałęzi oraz 1+wn  węzłów, 
przy czym jeden z węzłów został wybrany jako węzeł odniesienia. Równania o postaci 
(1.75) zapisane dla wszystkich gn  gałęzi sieci można wyrazić w następującym zapisie 
macierzowym: 

 g
T

gg juAGi +=  (1.76) 

gdzie: 
– ( )gg nng ×

G  jest macierzą przewodności gałęziowych zawierającą przewodności 

poszczególnych gałęzi aG  (na przekątnej) oraz ewentualne przewodności źró-
deł sterowanych baG  (poza przekątną macierzy); 

– 
gw nn ×A = {aij} jest macierzą incydencji, której elementy przyjmują następujące 

wartości: 1=ija  – jeśli gałąź j  ma połączenie z węzłem i  oraz jest skierowana 
od tego węzła, 1−=ija  – jeśli kierunek gałęzi jest przeciwny, 0=ija  – jeśli 
gałąź j  nie ma połączenia z węzłem i ; 

– u  jest wektorem potencjałów w wn  niezależnych węzłach sieci (wektorem 
różnicy napięć pomiędzy poszczególnymi węzłami i węzłem odniesienia); 

– gj  jest wektorem gałęziowych źródeł prądowych. 
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Rys. 1.13. Schemat zastępczy gałęzi do tworzenia równań potencjałów węzłowych 

Pomnożenie równania (1.75) przez macierz incydencji A  przekształca prądy gałę-
ziowe w prądy węzłowe. Jest oczywiste, że suma prądów gałęziowych w węźle jest 
równa zero (pierwsze prawo Kirchhoffa):  

 0=gAi  (1.77) 

oraz (na podstawie prawej strony (1.75)):  

 iGu =  (1.78) 
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gdzie: T
gnn gg
AAGG =×  jest macierzą przewodności węzłowych, gnw

Aji −=×1  jest 

wektorem prądów węzłowych (elementy wektora i  są brane ze znakiem dodatnim, 
jeśli odpowiednie źródło jest skierowane do węzła). 

Ze względu na definicję macierzy A , poszczególne elementy wektora i  są utwo-
rzone z sumy prądów gałęzi skierowanych do danego węzła. 

Równanie (1.78) jest znane jako równanie potencjałów węzłowych. Przy zadanej 
macierzy G  oraz znanych wymuszeniach prądowych, reprezentowanych przez wek-
tor i , rozwiązanie tego równania dostarcza informacji o napięciach u  pomiędzy wę-
złami niezależnymi i węzłem odniesienia. W celu ułatwienia obliczeń, w przypadku 
symulacji stanów dynamicznych sieci, równanie (1.78) jest w różny sposób modyfi-
kowane. Dwie takie modyfikacje są szczególnie ważne w sieciach elektroenergetycz-
nych: 

– uwzględnienie źródeł napięciowych połączonych z węzłem odniesienia; 
– ułatwienie kontynuowania obliczeń w przypadku zmiany parametrów wybra-

nych gałęzi. 
Jeśli w gałęzi występuje niezależne źródło napięciowe połączone szeregowo z im-

pedancją, to należy je przekształcić na źródło prądowe (zgodnie z twierdzeniem Nor-
tona). W modelach sieci elektroenergetycznych, w charakterze węzła odniesienia jest 
najczęściej wybierana ziemia. W takim przypadku wszystkie źródła napięcia połączo-
ne z ziemią jednoznacznie określają napięcia w węzłach na końcach tych gałęzi, a za-
tem węzły te nie są już niezależne. Możliwe jest wówczas następujące postępowanie: 
[28, 114]: 

• Wybieramy zbiór A węzłów sieci (poza węzłem odniesienia), w których napię-
cia nie są określone. 

• Węzły, w których napięcia są znane, utworzą zbiór B. Jest oczywiste, że suma 
obu zbiorów tworzy zbiór wszystkich niezależnych węzłów sieci: 

BAw nnn += . 
• Wektor napięć węzłowych u  w (1.78) można przedstawić następująco: 
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przy czym poszukiwany jest tylko wektor Au . 
• Uwzględniając powyższe, równanie (1.78) można zapisać w następującej po-

staci: 
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gdzie: AAG  jest macierzą przewodności tej części sieci, w której nie ma wę-
złów graniczących z gałęziami z napięciami źródłowymi, BBG  zawiera prze-
wodności własne i wzajemne węzłów o znanych napięciach, natomiast ABG  
oraz BAG  przedstawiają macierze przewodności wzajemnych obu tych zbiorów 
węzłów; wektor prądów węzłowych jest podzielony podobnie, jak wektor na-
pięć. 

• Nieznany wektor potencjałów węzłowych Au  można wyznaczyć z równania: 

 BABAAAA uGiuG −=  (1.81) 

natomiast wektor prądów węzłowych zbioru B może być określony na pod-
stawie dolnego równania w (1.80): 

 BBBABAB uGuGi +=  (1.82) 

Elementy wektora Bi  są sumą prądów źródłowych dopływających do odpowied-
nich węzłów zbioru B, z uwzględnieniem gałęzi utworzonych przez źródła napięcio-
we. 

Drugą istotną sprawą w odniesieniu do symulacji sieci dynamicznych jest możli-
wość łatwej zmiany konfiguracji sieci bez potrzeby każdorazowego obliczania macie-
rzy parametrów G . Problem ten występuje na przykład przy zmianie położenia wy-
łączników. Wyłącznik może być reprezentowany za pomocą gałęzi 
przewodnościowej, której wartość wylG  zależy od położenia wyłącznika: maxwyl FG =  – 
wyłącznik zamknięty, 0wyl =G  – wyłącznik otwarty; maxF  – bardzo duża liczba rze-
czywista. Zatem, przy zmianie pozycji wyłączników struktura równania potencjałów 
węzłowych nie zmienia się, natomiast zmianie ulegają jedynie wartości niektórych 
elementów macierzy G . Wygodnie jest w tym celu umieszczać węzły przylegające do 
gałęzi z wyłącznikami w dolnej części macierzy G  [28, 123]. 

Podany dalej przykład ilustruje sposób tworzenia równań potencjałów węzłowych 
w przypadku występowania w sieci różnych, omówionych powyżej elementów, a tak-
że linii długiej. 

Przykład 1.1.  Utworzyć równanie macierzowe potencjałów węzłowych dla sieci poka-
zanej na rys. 1.14. Przedstawia on fragment sieci 400 kV dla składowej 
zgodnej. 

Parametry systemu: sE = 330 kV, sZ = 0,5 + j10 Ω, 1Z = 4700 + j2800 Ω, 2Z = 415 + j200 Ω. 

Linia: 'R = 0,0288 Ω/km, 'L =1,0287 mH/km, 'C =11,232 nF/km, długość l =180 km. 
Po uwzględnieniu modeli cyfrowych poszczególnych elementów na rys. 1.14 otrzymujemy 
schemat zastępczy sieci jak na rys. 1.15. 
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Rys. 1.14. Schemat analizowanej sieci 
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Rys. 1.15. Model dyskretny sieci z rys. 1.14 

Uzyskany schemat można jeszcze uprościć przez połączenie równoległych gałęzi przewodno-
ściowych i odpowiednich źródeł prądowych. Przewodność GW reprezentuje wyłącznik, przyj-
mując wartość GW = 106 S – w stanie załączenia oraz GW = 10–6 S w stanie otwarcia. 
W celu sformułowania równań napięć węzłowych dla tej sieci, w charakterze węzła odniesie-
nia wybieramy ziemię. Napięcie w węźle 1 jest określone przez źródło napięciowe )(kes . 
Zgodnie z (1.79) wektor napięć węzłowych jest zatem określony następująco (zauważmy, że 
numery wierszy odpowiednich macierzy nie pokrywają się z numerami węzłów w schemacie 
sieci):  
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Macierz przewodności: 
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oraz wektor prądów węzłowych: 
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Wyrażenie w ostatnim wierszu tej macierzy określa sumę prądów źródłowych dopływających 
do węzła 1. 
Zauważmy, że w modelu linii długiej nie ma bezpośredniego połączenia między obu końcami 
linii, czego konsekwencją jest, w tym przypadku, zerowa wartość przewodności między wę-
złami 3 i 4 w macierzy AAG  (w pierwszym wierszu i w pierwszej kolumnie tej macierzy wy-
stępuje tylko element diagonalny).  
W celu określenia wartości wymienionych parametrów należy przyjąć odpowiednie modele 
stowarzyszone oraz wielkość kroku modelowania. Zakładamy, że całkowanie numeryczne od-
bywa się zgodnie z formułą trapezów, natomiast krok modelowania T =5⋅10–5 s. Elementy ma-
cierzy przewodności przyjmują zatem następujące wartości:  
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W modelu linii zakłada się, że rezystancja rozproszona jest reprezentowana za pomocą dwóch 
rezystancji skupionych. Zatem, zgodnie z (1.50) i (1.65): 
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Prądy źródłowe można określić na podstawie (1.42). Dla gałęzi 1–2 otrzymamy: 
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stałych dwóch gałęzi RL. Prądy źródłowe w modelu linii są określane zgodnie z (1.65): 
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Należy zauważyć, że parametr m  jest reprezentowany przez liczbę całkowitą, wobec tego 
wartość uzyskaną z powyższego wyrażenia należy zaokrąglić do najbliższej liczby całkowitej. 
W danym przypadku otrzymujemy m = 12. W ten sposób model jest gotowy do symulacji.  

Znaki prądów w wektorze prądów źródłowych i  wynikają z kierunków przyjętych 
w macierzy incydencji A  (1.76). W tym wypadku prądy skierowane do węzła są bra-
ne ze znakiem dodatnim, a skierowane od węzła – ze znakiem ujemnym. 
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1.4.2. Rozwiązywanie równań potencjałów węzłowych 

Podstawowe równanie metody potencjałów węzłowych ma postać jak w (1.78), w któ-
rym należy określić wektor nieznanych napięć u między poszczególnymi węzłami,  
a węzłem odniesienia. Jest to klasyczny problem z zakresu metod numerycznych alge-
bry liniowej, do rozwiązania którego można zastosować metodę eliminacji Gaussa 
[66, 103, 113].  

Ogólna postać algorytmu eliminacji Gaussa wywodzi się ze znanej metody ‘ręcz-
nego’ rozwiązywania układu równań liniowych, w której dąży się do stopniowej eli-
minacji niewiadomych, tak że w końcowym etapie pozostaje jedno równanie z jedną 
niewiadomą. Po jej określeniu można wyznaczyć kolejną niewiadomą, posuwając się 
w kierunku odwrotnym do etapu redukcji liczby zmiennych. Przebieg obu tych etapów 
w algorytmie Gaussa jest pokazany w następnym przykładzie.  

Przykład 1.2.  Rozwiązać podany układ równań liniowych za pomocą metody eliminacji 
Gaussa. 

Macierz G  oraz wektor prawej strony i  w (1.78) są następujące: 
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Rozwiązanie jest wyznaczane w dwóch etapach. 
• Etap I. Eliminacja zmiennych. 
Ze względu na formę uzyskiwanej w tym etapie macierzy parametrów, jest on także nazywany 
procesem trójkątnego rozkładu macierzy. W poszczególnych krokach postępowania następuje 
redukcja liczby niezerowych kolumn w kolejnych wierszach macierzy G. 
Krok 1. Wiersz pierwszy macierzy należy pomnożyć kolejno przez współczynnik  
Wk1 = –Gk1/G11, k = 2, 3, 4 i dodać kolejno do k-tego wiersza tak, że w pierwszej kolumnie ma-
cierzy współczynników, poza wierszem pierwszym, występują zera. Operacje mnożenia i do-
dawania należy także wykonać na wierszach wektora prawej strony równania. Współczynniki 

1kW  należy przechowywać do dalszego wykorzystania. Po wykonaniu tego kroku otrzymamy: 
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Krok 2. Operacje z Kroku 1 należy powtórzyć, przy czym działania należy rozpocząć od dru-
giego wiersza macierzy uzyskanej w kroku 1. Można zauważyć, że w tym przypadku odpo-
wiednie współczynniki przyjmują wartości W32 = 0, W42 = 3/4. Po zakończeniu obliczeń 
otrzymamy: 
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Krok 3. Trzeci wiersz przekształconej macierzy należy pomnożyć przez 6/143 −=W  i dodać do 
wiersza czwartego, co redukuje element 43G . Otrzymujemy zatem: 
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• Etap II. Odwrotne podstawianie. 
W wyniku tych przekształceń uzyskaliśmy następujący układ równań: 
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Widać, że z ostatniego równania (określonego przez ostatni wiersz) można bezpośrednio uzy-
skać jedno rozwiązanie: 

7/1064 −=u . 
Po podstawieniu tego rozwiązania do trzeciego równania otrzymujemy kolejną niewiadomą: 
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Podobnie, z drugiego wiersza obliczamy: 
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Ostatnia poszukiwana zmienna jest określana z pierwszego wiersza: 
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Widać, że w rezultacie pierwszego etapu algorytmu Gaussa otrzymuje się macierz trójkątną 
górną. Macierz współczynników W  ma formę trójkątną dolną i może być przechowywana ja-
ko dopełnienie macierzy G.  

Operacje na macierzach, zwłaszcza gdy są one wysokiego stopnia, wymagają wy-
konania wielu działań numerycznych. Sprawność obliczeniowa różnych komputero-
wych programów przeznaczonych do obliczeń sieciowych w dużym stopniu zależy od 
sposobu formowania równań i ich rozwiązywania. Projektant takiego systemu powi-
nien brać po uwagę następujące czynniki:  
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1. Pomimo że w zapisie rozwiązania równania (1.78) często stosuje się formę 
iGu 1−= , to w praktyce poszukiwanie rozwiązania przez odwracanie macierzy 

współczynników jest bardzo nieefektywne. Stosowanie którejś z wersji algorytmu 
Gaussa jest przynajmniej 3-krotnie mniej złożone obliczeniowo (a przez to szyb-
sze).  

2. Macierz współczynników w równaniu potencjałów węzłowych jest macierzą rzad-
ką (większość współczynników ma wartość zerową). Należy więc stosować odpo-
wiednie algorytmy przeznaczone do tej klasy zadań [30, 66, 103, 117]. W ogólnym 
zarysie idea metod używanych w odniesieniu do macierzy rzadkich (ang. sparsity 
matrices) polega na stosowaniu dodatkowego adresowania w stosunku do niezero-
wych elementów macierzy, tak aby wyeliminować działania na zerowych współ-
czynnikach. 

3. Jeśli w modelu sieci występują modele linii długich, to jednolity układ równań zo-
staje podzielony na podsystemy, związane z końcowymi węzłami poszczególnych 
linii (rys. 1.16). Jest to wynik tego, że w modelu linii długiej, w danym kroku mo-
delowania, nie ma bezpośredniego powiązania pomiędzy końcami linii. To powią-
zanie jest odwzorowane w postaci źródeł prądowych, które zmieniają się z odpo-
wiednim opóźnieniem. 
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Rys. 1.16. Schemat sieci z liniami długimi 

Dla przykładu z rys. 1.16 struktura równania potencjałów węzłowych jest następu-
jąca: 
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Widać, że zagadnienie rozwiązania równania można rozdzielić na rozwiązanie 
czterech niezależnych równań (w danym kroku), zapewniając jednocześnie odtworze-
nie odpowiednich powiązań pomiędzy końcami linii. 

Przedstawiony tu problem traci na ważności, jeśli stosowane są metody macierzy 
rzadkich [30]. 
4. W trakcie symulacji stanu przejściowego znaczna część macierzy przewodności G 

nie zmienia się – zmieniają się jedynie te elementy, które reprezentują zmienne 
w czasie parametry, jak na przykład stan wyłączników3. Można zatem tak ukształ-
tować macierz przewodności, aby podstawowa jej część była sprowadzona do po-
staci trójkątnej przed rozpoczęciem symulacji [123]. W trakcie trwania symulacji 
oblicza się postać trójkątną jedynie tej części macierzy, która ulega zmianie. Zarys 
odpowiedniego algorytmu jest prezentowany poniżej.  
Zgodnie z powyższymi uwagami i wcześniej prezentowanym algorytmem, prze-

twarzanie równania potencjałów węzłowych odbywa się zgodnie ze schematem przed-
stawionym na rys. 1.17. Jest tam pokazana struktura równania potencjałów węzło-
wych utworzonego do symulacji stanów przejściowych.  

W dolnej części macierzy GAA umieszczone zostały przewodności tych gałęzi sieci, 
które określone są przez zmienne w czasie parametry (obszar 1). Przed rozpoczęciem 
symulacji można sprowadzić do postaci trójkątnej tę część macierzy GAA, która nie 
zmienia się w trakcie obliczeń w kolejnych krokach symulacji (rys. 1.17b). Należy 
również zapamiętać związany z tym przetwarzaniem zbiór współczynników W1. Będą 
one wykorzystane do obliczania nowych wartości prawej strony równania, uwzględ-
niających rozkład trójkątny macierzy GAA.  

Można zauważyć, że z prawej strony równania występują prądy źródłowe (ze źró-
deł niezależnych oraz tych, które wynikają z przyjętej procedury całkowania – zwią-
zane z historią procesu) oraz te prądy źródłowe, które pochodzą od źródeł napięcio-
wych uB (porównaj z (1.81)). W ten sposób równanie jest przygotowane do 
rozpoczęcia symulacji stanu przejściowego, która sprowadza się do rozwiązania roz-
patrywanego równania w kolejnych krokach czasowych. W każdym kroku symulacji 
należy wykonać następujące operacje:  

– określić aktualne wartości przewodności, które zmieniają się w czasie (w ko-
lejnych krokach symulacji) oraz wartości prądów i napięć prawej strony rów-
nania; 

– dopełnić procedurę rozkładu trójkątnego macierzy GAA (rys. 1.17c); 
– odpowiednio do rozkładu trójkątnego (z wykorzystaniem współczynników ma-

cierzy W) obliczyć nowe wartości ekwiwalentnego wektora prawej strony 
równania; 

 
3 W sieciach nieliniowych zmieniają się także te elementy macierzy G, które są zależne od 

wartości prądu lub napięcia. Problem ten jest rozważany w następnym rozdziale. 
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– zgodnie z drugim etapem procedury Gaussa (odwrotne podstawianie), zaczyna-
jąc od dolnego wiersza, obliczyć kolejne wartości poszukiwanego wektora Au . 
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Rys. 1.17. Schemat przetwarzania równania potencjałów węzłowych 

Sposób aktualizacji wektora prądów prawej strony równania można prześledzić na 
podstawie przykładu 1.2. Załóżmy, że w rezultacie rozkładu trójkątnego utworzona 
zostanie dolna trójkątna macierz współczynników W, a wyjściowy wektor prądów 
źródłowych i  zawiera wszystkie elementy prawej strony równania, łącznie z historią 
procesu i prądami w węzłach o znanych napięciach, określonych przez źródła napię-
ciowe:  
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przy czym: 
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Nowe wartości prądów są określane zgodnie z procedurą: 
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k iiwi , nk ...,,3,2= , nl ...,,3,2=  (1.84) 

przy warunkach początkowych: mm ii =1 , nm ...,,2,1= , gdzie n  – rozmiar macierzy 
przewodności AAG . 

W rezultacie stosowania procedury (1.84) ekwiwalentny wektor prądów źródło-
wych przyjmie następującą postać: 

[ ]Tn
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gdzie górny indeks wskazuje na liczbę kolejnych operacji w (1.84). 
Teraz już pozostaje tylko wykonać II etap procedury Gaussa, tzn. odwrotne pod-

stawianie, w celu określenia wartości poszukiwanych napięć w węzłach niezależnych. 
Ogólny schemat obliczeń jest następujący:  
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Należy podkreślić, że istnieje wiele odmian przedstawionego powyżej algorytmu 
Gaussa, które uwzględniają specyficzne cechy macierzy współczynników równania 
[66]. W różnych wersjach programu EMTP stosowane są różne odmiany tego algo-
rytmu, a także różne sposoby reprezentacji elementów o zmiennych w czasie parame-
trach. Istotny jest przy tym sposób przedstawiania wyłączników. Można zauważyć, że 
omówiona metoda, w której wyłącznik jest przedstawiany przewodnością o wartości 
zależnej od stanu wyłącznika, może prowadzić do problemów numerycznych przy 
rozwiązywaniu równania, gdy wartość elementu leżącego na przekątnej jest bliska ze-
ru (wówczas, macierz może być osobliwa). 

1.4.3. Algorytm symulacji 

Szczegółowy algorytm symulacji stanu przejściowego z wykorzystaniem specjalizo-
wanego programu komputerowego zależy od sposobu rozwiązania wielu szczegóło-
wych problemów numerycznych i organizacyjnych. Jego ogólna struktura jest poka-
zana na rys. 1.18. Ogólnie, proces symulacji przebiega w następujących etapach: 

– przygotowanie danych, 
– przeprowadzenie obliczeń, 
– rejestracja wyników. 
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Algorytm ten jest podstawą realizacji wielu różnych wersji programów do symula-
cji elektromagnetycznych stanów przejściowych. 

Tak

Czytanie danych
Ustalenie warunków początkowych

t=0

Formowanie macierzy G
Określenie górnej części macierzy trójkątnej

Określenie dolnej części macierzy
trójkątnej G

Zmiana położenia wyłączników?

Określenie wartości wektora prądów
źródłowych: źródła niezależne i historia

Nie

Obliczenie napięć węzłowych: odwrotne
podstawianie wg procedury Gaussa

Określenie wielkości wyjściowych

t=t+T

t>tmax?

Zbiór wyjściowy

StopNie

Tak

 

Rys. 1.18. Schemat algorytmu obliczania stanu przejściowego  
według metody potencjałów węzłowych 

Różnią się one jednak niekiedy istotnymi szczegółami, które decydują zarówno 
o ich efektywności obliczeniowej, jak i o stabilności w krytycznych warunkach. Sytu-
acje takie mogą się pojawić na przykład po zmianie położenia wyłączników lub w ra-
zie wystąpienia bardzo dużych różnic w stałych czasowych w analizowanej sieci. Na-
stępny przykład ilustruje przebieg obliczeń określonych przez ten algorytm. 

Przykład 1.3.  Przeprowadzić symulację stanu przejściowego w sieci omówionej 
w przykładzie 1.1. Założyć, że w stanie początkowym (t < 0) wszystkie 
napięcia i prądy w sieci są równe zero. 
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Podobnie jak w przykładzie 1.1, krok modelowania T = 5⋅10–5 s. Schemat sieci jest pokazany 
na rys. 1.14, natomiast rys. 1.15 przedstawia odpowiadający jej model. Wyłącznik W jest za-
mknięty (GW = 106 S). Symulacja rozpoczyna się (t = 0) od załączenia napięcia zasilania ES. 
Proces symulacji stanu przejściowego w rozpatrywanej sieci polega na rozwiązywaniu równań 
(1.81) i (1.82) w kolejnych krokach modelowania. Algorytm ten należy uzupełnić o określanie 
nowych wymuszeń prądowych i napięcia es(k) w kolejnych krokach. 
Wybrane przebiegi prądów i napięć w rozpatrywanej sieci podczas załączenia źródła napię-
ciowego są pokazane na rys. 1.19. 
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Rys. 1.19. Przebiegi a) napięcia i b) prądu na początku linii 

Można zauważyć intensywny stan przejściowy związany z ładowaniem linii przesyłowej 
w pierwszym okresie przebiegu. Okres występujących oscylacji pokrywa się z czasem przej-
ścia fali elektromagnetycznej wzdłuż linii w obu kierunkach. Wolne zanikanie oscylacji jest 
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także wynikiem dużej wrażliwości zastosowanej metody całkowania (metoda trapezów) na 
gwałtowne wymuszenia w postaci odbitych fal prądowych i napięciowych. Problem oscylacji 
numerycznych jest analizowany w dalszej części rozdziału.  

1.4.4. Określanie warunków początkowych 

Do rozpoczęcia symulacji zgodnie z przedstawionym algorytmem niezbędna jest zna-
jomość warunków początkowych w postaci odpowiednich wartości napięć i prądów 
w odniesieniu do gałęzi LC, a także linii długich. Ponieważ omawiane tu programy ma-
ją zastosowanie do symulacji stanów przejściowych, głównie w sieciach prądu prze-
miennego, więc żąda się zazwyczaj, aby warunki początkowe odnosiły się do stanu 
ustalonego przy wymuszeniach sinusoidalnych w sieci przed rozpoczęciem obliczeń.  

W takiej sytuacji stan ustalony jest określany dla modelu zespolonego sieci 
z uwzględnieniem położenia wyłączników przed rozpoczęciem symulacji. Pewną 
trudność mogą przedstawiać elementy nieliniowe, przez co w wielu przypadkach ten 
etap obliczeń jest prowadzony przy założeniu liniowości sieci (elementy nieliniowe są 
odpowiednio linearyzowane) [30]. 

Równania linii długich, które w programie do analizy stanu przejściowego są 
przedstawiane w postaci modeli o parametrach rozłożonych, należy również przed-
stawić w postaci zależności odpowiadających warunkom pracy linii długiej w stanie 
ustalonym. Stosując metodę potencjałów węzłowych, wygodnie jest przedstawić odci-
nek takiej linii w postaci czwórnika Π (rys. 1.20).  
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Rys. 1.20. Schemat zastępczy linii długiej dla stanu ustalonego 

Parametry tego schematu są określane na podstawie danych jednostkowych linii 
[11, 22, 30]: 
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gdzie l – długość linii. Wielkość zespolona γ  jest nazywana stałą propagacji linii. 
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Równanie stanu ustalonego fragmentu sieci ograniczonej do czwórnika pokazane-
go na rys. 1.20 ma następującą postać: 
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Wielkości leżące na przekątnej macierzy parametrów można uprościć do następującej 
postaci: 

 lYYY LppL γcos
2
1

=+  (1.89) 

Przedstawione równania przyjmują znane zależności w warunkach granicznych. 
Na przykład dla linii bezstratnej ( 0== G'R' ) otrzymujemy: 
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Natomiast w przypadku krótkiej linii wielkości związane z funkcjami trygonome-
trycznymi ( xx /sinh , xx /tgh , xx /sin , tg x/x, 0→x ) przyjmują wartości bliskie 
jedności i wówczas linia może być traktowana jak element skupiony: 

 
LR

Y L ωj+
=

1 , CGY pp ωj+=  (1.91) 

przy czym lR'R =  i podobnie dla pozostałych parametrów. 
Przy obliczaniu warunków początkowych w sieci zazwyczaj przyjmuje się, że 

wymuszenia niezależne mają postać źródeł napięciowych lub prądowych. Dzięki temu 
algorytm rozwiązywania sieci reprezentowanej przez równania zespolone jest podob-
ny do przedstawionego powyżej dla modelu z wielkościami rzeczywistymi. 

Przejście pomiędzy przestrzenią zespoloną rozwiązania i przestrzenią liczb rze-
czywistych w programie do symulacji stanu przejściowego odbywa się na zasadzie 
konwencji: do dalszych obliczeń można wziąć zarówno część rzeczywistą, jak i część 
urojoną wyniku rozwiązania. W przypadku wybrania części rzeczywistej, źródła har-
monicznych przebiegów prądu lub napięcia podczas symulacji powinny być związane 
z funkcją kosinus (część rzeczywista zespolonej funkcji tωje ). Następny przykład pre-
zentuje sposób określania danych początkowych do obliczania stanu przejściowego.  
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Przykład 1.4.  Przeprowadzić symulację stanu przejściowego w sieci omówionej 
w przykładzie 1.1. Symulacja rozpoczyna się w warunkach stanu ustalo-
nego, po czym w czasie tz = 0,02 s następuje zwarcie na końcu linii przez 
rezystor o wartości Rz = 1 Ω. Określić warunki stanu ustalonego przed 
rozpoczęciem symulacji. 

Schemat układu jest pokazany na rys. 1.21. Parametry układu są takie jak w przykładzie 1.1, 
przy czym, w tym przypadku, wyłącznik W inicjuje zwarcie. 
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Rys. 1.21. Schemat sieci z modelem zwarcia na końcu linii 

W celu zapisania równań potencjałów węzłowych dla stanu ustalonego linia zostaje przedsta-
wiona w postaci czwórnika, jak powyżej. Odpowiedni schemat jest pokazany na rys. 1.22. 
Admitancja 2//1 1 ppa YZY += , natomiast admitancja w węźle 3 reprezentuje wszystkie ele-
menty przyłączone do tego węzła: zppb RYZY /12//1 2 ++= , przy czym zwarcie można mo-

delować przez zmianę rezystancji zR  (nie ma to znaczenia przy obliczaniu stanu ustalonego, 
jeśli 0≥zt ). Równanie potencjałów węzłowych dla tego przypadku jest następujące: 
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Jest to zatem równanie zespolone, przy czym ogólny algorytm obliczeń jest taki sam, jak 
w przypadku równań rzeczywistych. 
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Rys. 1.22. Schemat sieci do określenia równań potencjałów węzłowych 
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Ostatnie równanie odnosi się do węzła 1, w którym znane jest napięcie E , zatem tylko dwa 
pierwsze równania są niezależne. Po przekształceniu analogicznym do (1.81), otrzymamy: 
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W pierwszym kroku algorytmu Gaussa otrzymamy macierz trójkątną górną: 
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Stąd już bezpośrednio, w rezultacie odwrotnego podstawiania, otrzymujemy: 
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Prąd 121 II =  można określić z trzeciego równania w (1.92): ( )2121 UEYII s −== . 
Podobnie prądy w gałęziach określonych przez impedancje 1Z  i 2Z : 

121 / ZUI z = , 232 / ZUI z = . 

Można również zauważyć, że: 232 zII −=  (wyłącznik jest otwarty), natomiast prąd płynący 
w linii od strony węzła 2: 11223 III −=  (jest to suma prądu wzdłużnego i poprzecznego linii). 
Zakładając, że do dalszej symulacji brane są części rzeczywiste rozwiązania, należy teraz okre-
ślić wartości początkowe prądów i napięć w modelach indukcyjności, pojemności oraz obu 
końców linii długiej (w tym ostatnim przypadku, wielkości początkowe odnoszą się do całej 
historii, zapisanej w rejestrach 1j , 2j  o długości m (1.65)).  
Przyjmuje się, że pierwszy krok obliczeń stanu przejściowego odnosi się do czasu 0=kt  
(k = 0), zatem wszystkie zmienne początkowe odnoszące się do poprzedniego kroku ( Tt −=−1 ) 
odpowiadają w przestrzeni zespolonej wektorom obróconym o kąt ∆α = –ωT, co jest równo-
ważne pomnożeniu przez liczbę Tωje− , T – okres modelowania. Otrzymujemy zatem: 

{ }TIi ωj
1212 eRe)1( −=− , ( ){ }TUEu ωj

212 eRe)1( −−=− , 

{ }T
zz Ii ωj
11 eRe)1( −=− , { }TUu ωj

22 eRe)1( −=− , 

{ }T
zz Ii ωj

22 eRe)1( −=− , { }TUu ωj
33 eRe)1( −=− . 

W celu obliczenia historii procesu w modelu linii )1(1 −j , )2(1 −j , ..., )(1 mj −  należy określić 
wartości prądów i napięć w odpowiednich chwilach poprzedzających pierwszy krok symulacji: 

{ }TlIli ωj
3232 eRe)( −=− , { }TlUlu ωj

33 eRe)( −=− , ml ...,,2,1=  

i podobnie dla drugiego końca linii. 
Korzystając z obliczonych danych można rozpocząć symulację stanu przejściowego od ustalo-
nego stanu początkowego. Obliczenia są prowadzone zgodnie z równaniami przedstawionymi 
w przykładzie 1.1 z odpowiednią modyfikacją wynikającą z obecności modelu zwarcia z rezy-
stancją Rz. Uzyskane przebiegi napięcia i prądu są pokazane na rys. 1.23. 
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Rys. 1.23. Przebiegi: a) napięcia oraz b) prądu na początku linii przy zwarciu na jej końcu 

Przed wystąpieniem zwarcia sieć pracuje w stanie ustalonym, co można obserwować w postaci 
regularnej sinusoidalnej fali napięcia i prądu. Po zainicjowaniu zwarcia widoczne są intensyw-
ne zakłócenia, szczególnie w przebiegu napięcia. Zwarcie nastąpiło poza szczytem ustalonego 
przebiegu napięciowego, co daje w efekcie zanikającą składową stałą w przebiegu prądu zwar-
ciowego.  

Należy zauważyć, że w przypadku modelu linii o parametrach rozłożonych, ustalo-
ny stan początkowy dostarcza informacji o historii przebiegu, zapisanej w m kolejnych 
komórkach rejestrów 1j  i 2j  modelu linii. 

Jeśli wymuszenia w sieci nie są przebiegami harmonicznymi, to określenie stanu 
początkowego staje się kłopotliwe i zazwyczaj nie są w tym celu stosowane jakieś 
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ogólne procedury. W przypadku obwodów prądu stałego generalną zasadą jest ‘oszu-
kiwanie’ programu przez podstawienie w miejsce źródeł o stałej wartości, ich odpo-
wiedników o przebiegu harmonicznym o bardzo małej częstotliwości. Na przykład 
źródło napięcia stałego 1U  może być reprezentowane do obliczenia stanu początko-
wego w sieci przez źródło napięcia sinusoidalnego ( )ϕω +tU cos1 , przy czym: ϕ  = 0, 
ω =10–5 s–1. 

Dzięki temu, do obliczenia stanu ustalonego można korzystać z ogólnej procedury 
rozwiązywania obwodu za pomocą rachunku zespolonego. Przyjęta niska częstotli-
wość przebiegu i związane z tym przesunięcia kątowe nie wprowadzają istotnych od-
chyleń od rzeczywistego obrazu rozpływu prądów w sieci prądu stałego. 

1.5. Stabilność modeli cyfrowych 

Omawiany tu algorytm symulacji elektromagnetycznych stanów przejściowych może 
być uznany za użyteczny, jeśli uzyskane wyniki w zadowalający sposób przybliżają 
obraz rzeczywistych zjawisk. Są dwa główne źródła błędów, które powodują, że to 
przybliżenie może się okazać niezadowalające: 

– pominięcie w modelu istotnych elementów rzeczywistej sieci, 
– zastosowanie metod numerycznych nieadekwatnych do obliczania analizowa-

nego zjawiska. 
Problemy mogą się ujawnić jedynie w wybranych zastosowaniach. Na przykład 

idealizowany model wyłącznika, reprezentowanego przez dwie skrajne wartości 
przewodności (w zależności od jego położenia), może być z powodzeniem stosowany 
do przypadków, gdy przerywany przezeń prąd jest niewielki. Z pewnością jednak taki 
model nie jest odpowiedni do sytuacji, gdy przerywany prąd ma istotne znaczenie dla 
odwzorowania zależności energetycznych w analizowanym obwodzie. Podobnie rzecz 
się ma ze stosowaniem metod numerycznych, które mogą być niestabilne w niektó-
rych obszarach zastosowań.  

Pojęcie stabilności numerycznej łączy się z odpornością algorytmu na nieuchronne 
błędy w reprezentacji liczb i zaokrągleń wyników operacji arytmetycznych. Jeśli błę-
dy te powodują powstawanie kolejnych, narastających błędów, to algorytm jest nie-
stabilny numerycznie. W istocie, oba wymienione źródła błędów są w praktyce nie-
rozdzielne. Pokazuje to przytoczona dalej analiza źródeł błędów modelowania 
cyfrowego i sposoby ich unikania.  

1.5.1. Numeryczne oscylacje podczas symulacji stanu przejściowego 

Następny przykład jest klasyczną ilustracją niestabilności modelu cyfrowego sieci 
elektrycznej. 
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Przykład 1.5.  Przeprowadzić symulację stanu przejściowego w podanej sieci (rys. 1.24). 
Wyłącznik W otwiera się w czasie wt = 0,012 s. Modele stowarzyszone 
przyjąć według metody trapezów. 
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Rys. 1.24. Schemat sieci elektrycznej do badania stabilności numerycznej modelu 

Parametry sieci: R1 =1 Ω, L1 = 100 mH, R2 = 1000 Ω, C = 4,7 µF, E = 100 cos(100πt) V. 
Przebieg prądu płynącego przez wyłącznik W – prąd )(ki  oraz spadek napięcia na indukcyjno-
ści 1L  – )(ku  są pokazane na rys. 1.25. 
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Rys. 1.25. Przebiegi: a) prądu i b) napięcia podczas symulacji stanu przejściowego  
w analizowanej sieci 

Widać, że po przerwaniu obwodu, zgodnie z przewidywaniem, prąd przyjmuje wartość zero-
wą, natomiast napięcie nieoczekiwanie zaczyna zmieniać się oscylacyjnie. Oscylacje te nie za-
nikają z upływem czasu. Amplituda oscylacji zależy od wartości prądu w momencie przerwa-
nia obwodu – w przedstawionym przypadku jest ona stosunkowo niewielka, gdyż prąd 
w chwili wyłączenia był równy zero. 
Bliższa analiza obserwowanych oscylacji napięcia wskazuje, że mają one stałą amplitudę, 
a znak napięcia zmienia się w każdym kroku modelowania (rys. 1.26). 
Źródło prezentowanych oscylacji jest, na pierwszy rzut oka, oczywiste: energia zgromadzona 
w indukcyjności nie ma ujścia po otwarciu wyłącznika. Jest to zatem rezultat błędu związanego 
z budową modelu – jest on nieadekwatny do analizowanej sytuacji, gdyż nie odzwierciedla 
w pełni zachodzących zjawisk fizycznych. Tak jest w istocie, jednak podobne zjawiska mogą 
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również wystąpić w mniej oczywistych sytuacjach, gdy skokowo zmieniają się parametry ana-
lizowanego układu lub niektóre wymuszenia w sieci. Model zbyt czuły na takie zmiany z pew-
nością nie będzie wiernie odwzorowywał rzeczywistych zjawisk.  
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Rys. 1.26. Przebieg oscylacji napięcia  

W celu numerycznej analizy oscylacji opisanych w przykładzie 1.5 ograniczmy 
rozważania do elementu RL z lewej strony wyłącznika na rys. 1.24. W przypadku sto-
sowania metody trapezów napięcie na tym elemencie można określić na podstawie 
(1.41): 

 )1()1(1)(1)( −−−
−

−
+

= kuki
G
RGki

G
RGku

L

L

L

L  (1.93) 

W sytuacji, gdy po otwarciu wyłącznika w kolejnych dwóch krokach prąd przyj-
muje wartość zerową ( 0)1()( =−= kiki ), otrzymujemy )1()( −−= kuku , co jest wła-
śnie obserwowane jako niegasnące oscylacje. 

Jest wiele sposobów uniknięcia omawianych oscylacji. Dąży się do tego, aby nie 
tylko zlikwidować nietłumione oscylacje, ale także zapewnić ‘rozsądne’ ich zanikanie. 
Sposoby te, w istocie, sprowadzają się do doboru odpowiedniej metody całkowania. 
Niektóre z nich omówione są dalej. 

1.5.2. Tłumienie oscylacji za pomocą dodatkowej rezystancji 

Najbardziej oczywistym sposobem rozwiązania przedstawionego powyżej problemu 
oscylacji numerycznych jest odtworzenie w modelu rzeczywistych warunków, które 
powodują ich powstanie, a więc odwzorowanie nieliniowych zależności zachodzących 
podczas przełączeń w sieci (najczęściej mamy wówczas do czynienia z łukiem elek-
trycznym). Jest to postulat idealistyczny, gdyż tylko przybliżone jego spełnienie wy-
magałoby znacznej, często nieuzasadnionej przeznaczeniem symulacji, rozbudowy 
modelu. Ponadto, zdobycie choćby przybliżonych parametrów takiego modelu nie 
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zawsze jest łatwe. Należy więc poszukiwać prostszych rozwiązań. W literaturze an-
glojęzycznej stosowany jest w tym kontekście termin ‘zastosowanie krytycznego tłu-
mienia’ (ang. critical damping adjustment – CDA) [75, 82].  

W miejsce realistycznego modelu łuku (lub ogólnie, nieliniowej rezystancji) można 
rozważyć wprowadzenie do obwodu stałej rezystancji. Analizując schemat na rys. 
1.24 można oczekiwać powstania przepięć (które objawiają się w postaci niekontro-
lowanych oscylacji) w dwóch miejscach: bezpośrednio na zaciskach wyłącznika 
W oraz na indukcyjności L1. Z pewnością bocznikowanie jednego z tych elementów 
przez odpowiednio dobraną rezystancję doprowadzi do tłumienia oscylacji. Wybór in-
dukcyjności jest bardziej uniwersalny, gdyż źródła omawianych oscylacji mogą wy-
stąpić także poza wyłącznikami [30, 79].  

Rozpatrzmy zatem przypadek, gdy w miejsce idealnej indukcyjności stosowany 
jest element z równolegle dołączoną rezystancją R (rys. 1.27). 
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Rys. 1.27. Model cyfrowy gałęzi równoległej RL: a) schemat zastępczy oraz b) model  

Na podstawie (1.29) otrzymujemy: 

 
( ) ( ))1()(1)1()1()(

2
)( −−+−+−+= kuku

R
kikuku

L
Tki  (1.94) 

Po uporządkowaniu uzyskuje się parametry modelu cyfrowego: 

 )1()()( −+= kjkGuki  (1.95) 

gdzie: 
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LTRG
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= , )1(

2
2)1()1( −

−
+−=− ku
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LTRkikj . 

Do analizy oscylacji napięcia wygodnie jest rozpatrywać postać napięciową tego 
równania: 

 
( ) )1()1()(1)( −−−−= kukiki

G
ku α  (1.96) 

gdzie: 
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−
=α . 
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Współczynnik α , stojący przy wielkości )1( −ku , jest odpowiedzialny za tłumie-
nie drgań oscylacyjnych. W przypadku gdy brak jest opornika ( ∞=R ), przyjmuje on 
wartość 1=α . Współczynnik ten maleje wraz ze zmniejszaniem wartości równoległej 
rezystancji. Jak widać, ważna jest przy tym relacja pomiędzy R  i TL /2 . Na rysunku 
1.28 pokazane są przebiegi napięcia na indukcyjności 1L  z przykładu 1.5, po zmianie 
modelu indukcyjności, dla )/2(10 TLR =  oraz )/2(2 TLR = . Odpowiada to warto-
ściom współczynnika tłumienia, odpowiednio, α = 0,818 oraz α = 0,333. Widać, że 
wraz ze zmniejszaniem się współczynnika α, a więc i rezystancji równoległej R, oscy-
lacje są tłumione intensywniej.  
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Rys. 1.28. Oscylacje napięcia przy różnych współczynnikach tłumienia: a) α = 0,818  

oraz b) α = 0,333  

Podobne rozważania można przeprowadzić w odniesieniu do oscylacji prądu pły-
nącego przez kondensator w przypadku gwałtownego zaniku napięcia. Szybka zmiana 
napięcia nie może być kompensowana w formule modelu cyfrowego, która staje się 
nieadekwatna do tej sytuacji. W celu złagodzenia warunków prowadzących do szyb-
kiej zmiany napięcia na kondensatorze można w szereg z nim umieścić rezystor. 

Wynikający stąd model jest pokazany na rys. 1.29. Odpowiednie zależności można 
uzyskać na podstawie (1.37), po uwzględnieniu rezystancji: 

 ( ) ( ))1()1(2)1()()(2)( −−−−−−−= kRiku
T
CkikRiku

T
Cki  (1.97) 

Po uporządkowaniu otrzymamy: 

 ( ) )1()1()()( −−−−= kikukuGki α  (1.98) 
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Rys. 1.29. Model cyfrowy gałęzi szeregowej RC: a) schemat zastępczy oraz b) model  

Widać, że tym razem dla 1=α  ( 0=R ) wystąpią oscylacje prądu (jeśli w obwo-
dzie nastąpi załamanie napięcia na kondensatorze: u(k) = u(k–1) = 0).  

Należy sobie zdawać sprawę z tego, że wprowadzenie takich zmian w obwodzie, 
mających na celu poprawienie przebiegu stanu przejściowego, zmienia jednocześnie 
jego właściwości, w tym parametry stanu ustalonego. Można to analizować na pod-
stawie charakterystyk częstotliwościowych. Na przykład powtarzając rozważania  
z p. 1.3.7 w odniesieniu do (1.96), otrzymamy:  

 )()(
e1
e1)( j

j

kUYkUGkI dddT

T

d =
−

+
= −

−

ω

ωα  (1.99) 

przy czym: G oraz α – jak w (1.96). 
Podobnie jak w (1.73), badamy relację YY d / , przy czym LY ω/j−=  jest admi-

tancją modelu ciągłego. Na rysunku 1.30 są pokazane przebiegi amplitudy i fazy ba-
danej relacji dla kilku wartości współczynnika α. Widać, że w miarę zmniejszania 
współczynnika α, a zatem również rezystancji dołączonej równolegle do indukcyjno-
ści, zmienia się charakterystyka fazowa i amplitudowa modelu. Analogiczne zależno-
ści występują również w skorygowanym modelu pojemności.  
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Rys. 1.30. Charakterystyki częstotliwościowe: a) amplitudy oraz b) fazy relacji YY d / ; 
1 – α = 1, 2 – α = 0,818, 3 – α = 0,333, 4 – α = 0 
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1.5.3. Tłumienie oscylacji przez zmianę metody całkowania 

Przeprowadzona w poprzednim podrozdziale analiza pokazuje, że przyczyna niepożą-
danych oscylacji w przebiegach stanu przejściowego ma swoje źródło w sposobie nu-
merycznej aproksymacji zależności z modelu ciągłego, szczególnie pochodnej prądu 
lub napięcia. Naturę tych oscylacji można dostrzec, rozpatrując na przykład różne cy-
frowe modele stowarzyszone indukcyjności (tabela 1.1):  

( ))1()()( −−= kiki
T
Lku  – niejawna metoda Eulera, 

( ) )1()1()(2)( −−−−= kukiki
T
Lku  – metoda trapezów, 

( ))2()1(4)(3
2

)( −+−−= kikiki
T
Lku  – metoda Geara II rzędu. 

Na rysunku 1.31 pokazane są przebiegi napięcia na indukcyjności w sieci rozpa-
trywanej w przykładzie 1.5 w przypadku stosowania metody niejawnej Eulera oraz 
metody Geara II rzędu (odpowiedni przebieg dla metody trapezów jest pokazany na 
rys. 1.26).  
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Rys. 1.31. Przebieg napięcia na indukcyjności z przykładu 1.5; 1 – metoda niejawna Eulera, 
 2 – metoda Geara II rzędu 

Widać, że zastosowanie obu metod: Eulera i Geara daje szybkie tłumienie stanu 
przejściowego. W przypadku metody Eulera stan przejściowy trwa tylko jeden okres 
modelowania (jest to właśnie tłumienie krytyczne). Wydaje się zatem, że w celu unik-
nięcia oscylacji podczas rozważanych stanów przejściowych, należy stosować modele 
stowarzyszone elementów oparte na metodzie Eulera lub metodzie Geara. Porównując 
powyższe formuły dla modelu indukcyjności, łatwo to uzasadnić: w formułach nie-
jawnych Eulera i Geara, po prawej stronie równań, nie występują składniki związane 
z obliczanym napięciem (w modelu pojemności będzie to dotyczyć prądu). 
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W opisanej powyżej metodzie tłumienie oscylacji uzyskuje się przez dodanie 
współczynnika α stojącego przy u(k–1) (1.96). Można zauważyć, że dla α = 0, metoda 
trapezów (z uwzględnieniem dodanego opornika) przechodzi w niejawną metodę Eu-
lera. Zmiana metody całkowania ma zatem w tym wypadku fizykalne uzasadnienie.  

Jednak w przypadku stosowania stałego kroku całkowania, metoda trapezów ma 
istotne zalety: jest dokładna przy stosunkowo niewielkich kosztach związanych z licz-
bą operacji matematycznych i wymaganą pamięcią [30, 79]. Aby jednak uniknąć 
oscylacji podczas przełączeń w sieci lub przy gwałtownych zmianach parametrów, 
stosuje się kombinację metody trapezów z niejawną metodą Eulera. Praktyczny algo-
rytm sprowadza się do dwóch następujących kroków [75]:  

– jeśli w danym kroku w sieci nie występuje zmiana parametrów (przełączenia, 
zmiana charakterystyki elementów o zmiennych w czasie parametrach) – sto-
sowana jest standardowa metoda trapezów ze stałym krokiem o długości T; 

– w przeciwnym razie – wykonywane są dwa kolejne kroki modelowania według 
metody niejawnej Eulera z krokiem T/2.  

Można zauważyć, że przyjęcie w metodzie Eulera połówkowego kroku nie prowa-
dzi do zmiany przewodności zastępczej w modelach elementów sieci, a zatem macierz 
przewodności w metodzie potencjałów węzłowych nie zmienia się. To jest istotna ko-
rzyść powyższego algorytmu. Po wykonaniu dwóch kroków według metody Eulera 
następuje powrót do metody trapezów, aż do kolejnej zmiany parametrów sieci. Dzię-
ki zmniejszeniu kroku w metodzie Eulera, zachowana jest również wysoka dokład-
ność modelowania. Ten sposób eliminacji pasożytniczych oscylacji jest stosowany 
w wielu programach EMTP [28, 30].  

Podobne właściwości mają także inne metody całkowania, projektowane szczegól-
nie z myślą o zastosowaniu w odniesieniu do tzw. sztywnych systemów. Są to przede 
wszystkim metody Geara i niejawne metody Rungego–Kutty (R–K)4, które odznacza-
ją się dużą stabilnością [23, 113]. Spośród tych ostatnich zachęcający jest 2-stopniowy 
algorytm R–K II rzędu. W literaturze anglojęzycznej jest on oznaczany akronimem: 
2S-DIRK (ang. 2-stage diagonally implicite Runge–Kutta) [1]. Numeryczne przybli-
żenie rozwiązania równania (1.1) w k-tym kroku jest określane za pomocą następują-
cego 2-stopniowego algorytmu [92]: 

1. ( ))(~,~~)1()(~ kytfTkyky k+−=  (1.100) 

 aproksymacja: )(~)1()1(~ kykyky βα +−=−  (1.101) 

2. ( ))(,~)1(~)( kytfTkyky k+−=  (1.102) 

 
4 Należy zauważyć, że powszechnie są stosowane jawne metody R–K, które nie mają wy-

maganych tu właściwości w odniesieniu do układów sztywnych, np. metoda R–K IV rzędu  
[7, 40, 113]. 
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gdzie zmienne oznaczone tyldą są wielkościami pomocniczymi, odnoszącymi się do 
punktu pośredniego w czasie, pomiędzy tk–1 i tk: 

 Ttt kk
~~

1 += − ,  TT 





 +=

α
11~  (1.103) 

2−=α , 1=+ βα . 
Można zauważyć, że w obu stopniach algorytmu jest realizowana niejawna metoda 

Eulera z początkowymi punktami w )1( −ky  i )1(~ −ky , odpowiednio, z krokiem 

=T~ (1– 2/2 )T. Łatwo więc wyznaczyć odpowiednie zależności modelu skojarzone-
go dla indukcyjności i pojemności. 

W przypadku modelu indukcyjności równanie (1.25) można zapisać w postaci 
Ltutti /)(d/)(d = , co prowadzi do następującego algorytmu numerycznego: 

1. )1()(~
~

)(~ −+= kiku
L
Tki  (1.104) 

 aproksymacja: ( ) )(~21)1(2)1(~ kikiki ++−−=−  (1.105) 

2. )1(~)(
~

)( −+= kiku
L
Tki  (1.106) 

Porównując powyższe zależności ze skojarzonym modelem indukcyjności wg nie-
jawnej metody Eulera (tabela 1.1) widać, że w tym przypadku, w każdym kroku mo-
delowania, należy wykonać dwa razy procedurę całkowania i dodatkowo obliczyć 
aproksymowaną wartość prądu. Schemat zastępczy modelu indukcyjności nie ulega 
zmianie (rys. 1.3), natomiast parametry modelu mają następujące wartości:  
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21 ,   )1()1( −=− kikj –  w modelu pierwszego stopnia, (1.107) 
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
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2
21 ,   )1(~)1( −=− kikj –  w modelu drugiego stopnia. (1.108) 

Widać, że w obu przypadkach przewodność zastępcza modelu indukcyjności jest 
taka sama, zatem w obu stopniach rozważanego algorytmu jest stosowana ta sama 
macierz przewodności sieci (w przypadku sieci liniowej i niezależnej od czasu).  

Powyższe rozważania można powtórzyć w odniesieniu do modelu pojemności. 
Otrzymamy następujący algorytm:  
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1. )1(~)(~~)(~ −−= ku
T
Cku

T
Cki  (1.109) 

 aproksymacja: ( ) )(~21)1(2)1(~ kukuku ++−−=−  (1.110) 

2. )1(~~)(~)( −−= ku
T
Cku

T
Cki  (1.111) 

Parametry schematu zastępczego modelu pojemności przyjmują następujące warto-
ści: 
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Właściwości przedstawionego algorytmu ilustruje następny przykład. 

Przykład 1.6.  Przeprowadzić symulację stanu przejściowego w podanej sieci (rys. 1.32) 
po zmianie stanu napięcia zasilającego. Przyjmuje się zerowe warunki 
początkowe. Parametry sieci: C = 10 µF, R = 200 Ω, amplituda skoku na-
pięcia E = 200 V, skok napięcia następuje w chwili t = 0,001 s. Krok mo-
delowania T = 2E–4 s. Modele stowarzyszone przyjąć według metody 
trapezów, niejawnej metody prostokątów oraz według algorytmu 2S-
DIRK. 
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Rys. 1.32. Schemat rozpatrywanej sieci elektrycznej 

Ponieważ napięcie na kondensatorze jest narzucone przez źródło, więc algorytm (1.109) – 
(1.111) można uprościć do jednego kroku: 

( ))()21()1(2~)(~)( kEkEGkEGki mCCC ++−−−= , 
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gdzie napięcie Em(k) odpowiada wielkości )(~ ku  w (1.110) i jest określone dla czasu Ttk
~

1 +− ; 

T

CGC


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
−

=

2
21

~ . 

Zakładając, że pomiędzy próbkami, wyznaczonymi przez krok k, napięcie wymuszające zmie-
nia się liniowo, otrzymamy: 

( ))1()(
2
21)1()( −−










−+−= kEkEkEkEm , 

co jest istotne tylko w przedziale związanym ze zmianą wartości napięcia wymuszającego. 
Prąd w gałęzi zasilającej jest sumą prądu kondensatora i opornika: 

R
kEkikikiki CRC

)()()()()( +=+= . 

Przebiegi tego prądu dla kilku algorytmów całkowania są pokazane na rys. 1.33. Widać, że al-
gorytm 2S-DIRK, podobnie jak niejawna metoda Eulera, ma tłumienie krytyczne. 
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Rys. 1.33. Przebiegi prądu dla różnych algorytmów: 1 – metoda 2S-DIRK  

oraz niejawna Eulera; 2 – metoda trapezów; 3 – metoda trapezów z dodaną rezystancją, α = 0,5 

Aby ocenić dokładność rozpatrywanych metod, można przeprowadzić symulację stanu przej-
ściowego w sieci przedstawionej na rys. 1.34.  
W tym prostym obwodzie, przy wymuszeniu w postaci skokowo zmieniającego się napięcia E, 
stan przejściowy prądu jest określony za pomocą następującego równania: 
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R
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L
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+−= . 

Jeśli wymuszenie ma postać skoku jednostkowego o amplitudzie E, to rozwiązanie powyższe-
go równania daje następujący przebieg prądu: 
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L
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Rys. 1.34. Schemat sieci do analizy dokładności wybranych metod całkowania 

Symulację stanu przejściowego metodami: 2S-DIRK, trapezów oraz niejawnej metody Eulera 
przeprowadzono dla następujących parametrów: R = 10 Ω, L = 0,1 H, amplituda źródła napię-
cia E = 1000 V. Krok symulacji T = 1,0 ms. Wyniki są pokazane na rys. 1.35.  
Przejrzysta ocena dokładności poszczególnych metod jest widoczna na rysunku 1.35b. Widać, 
że dokładność metod: 2S_DIRK oraz trapezów jest niemal taka sama. Bezpośrednio po wymu-
szeniu, w stanie przejściowym błędy metody prostokątów są dwa razy większe.  
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Rys. 1.35. Wyniki symulacji stanu przejściowego w rozpatrywanym obwodzie:  
a) przebieg prądu oraz b) odchyłki od wartości dokładnej: 1 – metoda 2S-DIRK,  

2 – metoda trapezów, 3 – niejawna metoda prostokątów  

Podsumowując wnioski płynące z tego przykładu widać, że metoda 2S-DIRK łączy 
w sobie zalety obu wcześniej prezentowanych algorytmów: dobrze tłumi pasożytnicze 
oscylacje (jak metoda prostokątów) oraz zapewnia dobrą dokładność (jak metoda tra-
pezów). Ponadto, algorytm ten nie wymaga śledzenia występowania dużych zakłóceń, 
które mogą wywołać pasożytnicze oscylacje – jak w przypadku kombinowanej meto-
dy trapezów z metodą prostokątów. Niestety, algorytm 2S-DIRK jest niemal dwa razy 
bardziej złożony obliczeniowo od prostego algorytmu niejawnej metody prostokątów.  
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1.5.4. Metoda dopasowania transmitancji 

Przedstawione w poprzednim podrozdziale metody tłumienia oscylacji są związane ze 
stosowaniem różnych technik numerycznego rozwiązywania równań różniczkowych. 
Inne podejście polega na numerycznym odwzorowaniu transmitancji rozpatrywanego 
elementu obwodu elektrycznego (ang. root-matching technique) [123, 124, 125]. Moż-
na to pokazać na przykładzie układu szeregowo połączonych elementów R, L (rys. 
1.36a), który ma swój odpowiednik w postaci schematu blokowego jak na rys. 1.36b. 

u(t)

i(t) R L
a)

τs
1 K

U(s) I(s)
b)

+ –
 

Rys. 1.36. Gałąź RL: a) schemat zastępczy oraz b) jego ekwiwalent w przestrzeni s  

Stosując do opisu wskazanego obwodu transformację Laplace’a, otrzymamy: 

 ( ) )()( sIsLRsU +=  (1.114) 

Zakładając, że wymuszeniem jest napięcie, otrzymamy następującą postać transmi-
tancji: 
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11

1

)(
)()(  (1.115) 

Jest ona bezpośrednio związana z równaniem różniczkowym:  

 t
tiLtRitu

d
d )()()( +=  (1.116) 

z którego można wyznaczyć zmienną )(ti  przy znanym wymuszeniu )(tu . Idea rozpa-
trywanej metody polega na takim przejściu do czasu dyskretnego, aby stosowne za-
leżności wyprowadzić na podstawie transmitancji (1.115), a nie równania (1.116), jak 
to się dzieje w klasycznym przypadku stosowania metod numerycznych. Algorytm 
projektowania odpowiedniej metody numerycznej składa się z następujących kroków 
[123, 124]:  
1. Określić transmitancję )(sH  analizowanego elementu (jak powyżej). 
2. Dokonać przekształcenia transmitancji układu ciągłego )(sH  do transmitancji 

układu dyskretnego )(zH  za pomocą podstawienia: sTz e= , w odniesieniu do 
wszystkich zer i biegunów transmitancji.  
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3. Przeskalować uzyskaną transmitancję )(zH , aby odpowiedzi w stanie ustalonym 
układu ciągłego i dyskretnego były takie same: L{ })(th t→∞ = Z{ })(kh k→∞.  

4. Na podstawie transmitancji )(zH  napisać odpowiednie równanie dyskretne, wią-
żące wymuszenie i odpowiedź w analizowanym elemencie.   
Stosowane w kroku 2 odwzorowanie płaszczyzny s w płaszczyznę z przypomina 

podobne przekształcenie stosowane w projektowaniu filtrów cyfrowych (tzw. metoda 
niezmienności charakterystyki impulsowej) [105]. W wyniku jej stosowania, bieguny 
i zera transmitancji H(s) zostają odwzorowane w transmitancji H(z) zgodnie z relacją:  

 Ts
i

iz e=  (1.117) 

gdzie i  – numery odpowiednich zer i biegunów. 

Wynik tego przekształcenia można nazwać transformatą Z dopasowaną (ang. ma-
tched Z transform [58]). W ogólnym przypadku, dla danej transmitancji układu cią-
głego:  
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otrzymamy transmitancję układu dyskretnego w następującej formie [124]:  
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=  (1.119) 

Stała D  powinna być określona z warunków stanu ustalonego, aby odpowiedzi 
obu układów (ciągłego i dyskretnego) były takie same (w odniesieniu do amplitudy). 

W całkowitej transmitancji należy jeszcze uwzględnić sposób próbkowania ciągłe-
go sygnału wejściowego. Niektóre sposoby są pokazane na rys. 1.37. Związane są 
z nimi następujące transmitancje:  

zzHs =)(   – dla przypadku a, 

1)( =zHs   – dla przypadku b, 

( )1
2
1)( += zzH s – dla przypadku c. 

Ogólna transmitancja uwzględniająca reprezentację elementu oraz sposób próbko-
wania jest następująca:  

 )()()( zHzHzH sd=   (1.120) 
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Rys. 1.37. Sposoby próbkowania wejściowego sygnału ciągłego 

Z kontynuacji rozważań dotyczących elementu RL wynika, że transmitancja 
(1.115) nie ma zer ( 0=M ), natomiast pojedynczy biegun ma wartość 

LRsp //11 −=−= τ . Zatem, na podstawie (1.120): 
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Zakłada się przy tym, że próbkowanie odbywa się zgodnie z rys. 1.37a. 
W celu określenia stanu ustalonego modelu ciągłego załóżmy, że układ jest wymu-

szany skokiem jednostkowym )(1)( ttu = , dla którego transformata Laplace’a jest 
równa L{1(t)}= s/1 . A zatem:  

 ( )τss
KsH
+

=
1

)(  (1.122) 

Odpowiedź w stanie ustalonym można określić na podstawie twierdzenia o warto-
ściach granicznych [98]: 
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Podobnie można uzyskać wartość odpowiedzi dla skoku jednostkowego 
( )(1)( kku = oraz Z{1(k)}= )1/( −zz ) w układzie dyskretnym, co prowadzi do następu-
jącej transformaty Z odpowiedzi na skok jednostkowy: 

 ( ) )1(e
)( /

2

−−
= − zz

DzzI LTR  (1.124) 

Odpowiednie twierdzenie o wartościach granicznych ma tu następującą postać [131]: 
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Z porównania (1.125) z (1.123) otrzymujemy: 
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 ( )KD LTR /e1 −−=  (1.126) 

W ten sposób uzyskuje się transmitancję dyskretną elementu RL:  
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Aby otrzymać dyskretną postać algorytmu, wygodnie jest zapisać transformatę Z 
odpowiedzi jako funkcję zmiennej 1−z : 
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Stąd, w kolejnych krokach łatwo uzyskuje się postać czasową: 

 ( ) ( )LTRLTR zUzzRI /1/ e1)(e1)( −−− −=−  (1.129) 

 ( ) )(1)1()( // kukiRkRi LTRLTR −− −=−− ee  (1.130) 

Ostateczna postać algorytmu jest następująca: 

 
)1()()( −+= kjkGuki  (1.131) 

gdzie: ( )
R

G
LTR /e1 −−

= , )1(e)1( / −=− − kikj LTR . 

Z porównania (1.131) z (1.98) wynika, że tym razem historia procesu (w postaci 
źródła prądowego) jest odtwarzana na podstawie prądu )1( −ki  zredukowanego przez 
czynnik LTR /e− , który pełni podobną funkcję, jak współczynnik α w (1.98), a więc 
niepożądane oscylacje będą stosownie tłumione. Stosując podobne podejście, można 
określić modele cyfrowe różnych złożonych elementów elektrycznych (tabela 1.2).  

Warto zauważyć, że metodę tę można stosować jedynie do elementów, których 
transmitancja ma przynajmniej jeden biegun lub zero poza początkiem układu – w od-
niesieniu do pojedynczych elementów R, L można stosować metodę trapezów. 

Ważną właściwością metody jest także ‘naturalne’ jej stosowanie w odniesieniu do 
elementów opisanych funkcjami przejścia, jak na przykład w układach sterowania.  

Elektryczne ekwiwalenty transmitancji podanych w tabeli 1.2 mogą być na ogół 
różne. Niektóre przykłady są podane w tabeli 1.3. 

Porównanie rozpatrywanego algorytmu z metodą trapezów jest pokazane na rys. 
1.38, gdzie przedstawiono wynik symulacji stanu przejściowego po zamknięciu wy-
łącznika W (rys. 1.38a). Widać, że otrzymany rezultat (krzywa 3) jest bardziej stabilny 
od wyniku pochodzącego od metody trapezów. Wynik tej symulacji według metody 
Eulera niemal pokrywa się z krzywą 3. Dla układów I rzędu omawiana metoda jest 
bardzo bliska metodzie Eulera. Różnice dają się zauważyć dla układów II rzędu.  
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Tabela 1.2. Parametry modeli cyfrowych uzyskanych wg metody  
dopasowania transmitancji [124] 
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Rys. 1.38. Przebieg prądu po zamknięciu wyłącznika W: 1 – dokładny wynik,  
2 – metoda trapezów, 3 – metoda dopasowania transmitancji 

Wybór spośród prezentowanych metod tłumienia oscylacji podczas symulacji sta-
nów przejściowych nie jest prosty, gdyż każda z nich ma ograniczone pole zastosowa-
nia. W różnych praktycznych rozwiązaniach stosuje się różne podejścia, co w dużej 
mierze jest związane z historią rozwoju danego programu. 

Nr 
Transmitancja elementu: 

)(/)()( sUsIsH =  Parametry modelu: )1()()( −+= kjkGuki  

1 )1/()( τsKsH +=  )e1( /τTKG −−= , )1(e)1( / −=− − kikj T τ  

2 )1()( τsKsH +=  )e1/( /τTKG −−= , )1(e)1( / −−=− − kGukj T τ  

3 )1/()( τsKssH +=  TKG T /)e1( /τ−−= , )1()1(e)1( / −−−=− − kGukikj T τ  

4 )1/()1()( 21 ττ ssKsH ++=  
)e1/()e1( 21 // ττ TTKG −− −−= , 

)1(e)1(e)1( 12 // −−−=− −− kGukikj TT ττ  

5 )2/()( 222
nnn ssKsH ωξωω ++=  )1( BAKG +−= , )2()1()1( −−−=− kBikAikj  

6 )2/()( 222
nnn sssKsH ωξωω ++=  

TBAKG /)1( +−= , 
)2()1()1()1( −−−−−=− kBikGukAikj  

7 )2()( 22
nnn sssKsH ωξωω ++=  

( ))1(/ BAKTG +−= , 
)2()1()1()1( −+−−−=− kBGikAGukikj  

Wartości współczynników A i B zależą od pierwiastków równania kwadratowego transmitancji: 
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Tabela 1.3. Przykłady układów elektrycznych realizujących niektóre funkcje przejścia  
z tabeli 1.2 

Nr Schemat Parametry modelu cyfrowego Model 
w tabeli 1.2 

1a u(t)

i(t) R L

 

RK /1= , RL /=τ  1 

1b 

u(t)

i(t)
R

C

 

RK = , RC=τ  1, 
odwrotny 

2a 
u(t)

i(t)
R

L

 

LK = , RL /=τ  3 

2b 
u(t)

i(t) RC

 

CK = , RC=τ  3, 
odwrotny 

3a 
u(t)

i(t) RCL

 

CK = , 
LCn
12 =ω , 

L
CR

2
=ξ  6 

3b 

u(t)

i(t)

R

C

L

 

RLK = , 
LCn
12 =ω , 

L
CR

2
=ξ  6, 

odwrotny 

3c 
u(t)

i(t)
R

LC

 

LK = , 
LCn
12 =ω , 

C
L

R2
1

=ξ  6, 
odwrotny 

Określenie ‘odwrotny’ w ostatniej kolumnie oznacza, że dla transmitancji )(/)()( sIsUsH =  w odpo-
wiednim algorytmie numerycznym w tabeli 1.2, należy zamienić prąd z napięciem. Wówczas wielkość 
G oznacza rezystancję w schemacie zastępczym modelu, a )1( −kj  ma wymiar napięcia. 
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Zadania 

1.1. Metoda Adamsa–Bashfortha II rzędu numerycznego rozwiązywania równania różniczko-
wego: 

),()( tyf
t
ty

=
d

d  

jest następująca: ( ) ( )( )1),1(),(3
2

)1()( −−−+−= kk tkyftkyfTkyky . 

Stosując tę metodę, określić odpowiedni stowarzyszony model: 
– indukcyjności L, 
– pojemności C,  
– gałęzi szeregowo połączonych elementów R, L. 

1.2. Określić cyfrowe modele skojarzone według metody trapezów podanych gałęzi. 
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Rys. Z1.1 

1.3. Ogólny model jednofazowej linii długiej jest przedstawiony równaniem (1.67). Symulacja 
procesu przejściowego z udziałem tego modelu wymaga znajomości schematów zastęp-
czych układów po obu końcach linii. Określić model cyfrowy układu przesyłowego, 
w którym linia zasilana jest idealnym źródłem napięcia, a drugi koniec linii jest: 
a) zwarty, b) otwarty. 

1.4. Jedną z metod transformacji pomiędzy układem ciągłym, opisanym za pomocą transmi-
tancji ),(sH  a układem dyskretnym, wyrażonym przez transformatę ),(zH  jest prze-
kształcenie biliniowe: 

1
12

+
−

=
z
z

T
s . 

Na przykładzie układu I rzędu dowieść, że przekształcenie biliniowe jest równoważne za-
stosowaniu metody trapezów do rozwiązywania równania różniczkowego. 
Wskazówka: ogólne równanie różniczkowe I rzędu przedstawić w postaci transformaty 
Laplace’a, zapisać jego rozwiązanie metodą trapezów i następnie wyrazić je w postaci 
transformaty Z.  
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1.5. Określić transmitancje oraz modele cyfrowe według metody dopasowania transmitancji 
dla układów elektrycznych podanych na rys. Z1.2. Założyć, że próbkowanie odbywa się 
jak na rys. 1.37a. 
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Rys. Z1.2 

1.6. Obwody przedstawione na rys. Z1.3a, b znajdują się w stanie ustalonym przy wyłączonych 
wyłącznikach W oraz wymuszeniu: )cos(100)( ϕω += ttu , ω = 100π, 3/π=ϕ . Wyłącz-
niki W zamykają się w czasie tz = 0,02 s. Przeprowadzić cyfrową symulację stanu przej-
ściowego w tych obwodach przy następujących warunkach: 
– przedstawić model cyfrowy obwodu w postaci jak na rys. Z1.3c, stosując model skoja-
rzony wg metody prostokątów (wskazówka: wyłącznik wraz z przyległymi rezystancjami 
można reprezentować w postaci przewodności o zmieniającej się wartości w rezultacie za-
łączenia wyłącznika); 
– określić warunki początkowe dla modelu (wartość prądu j(0)); 
– przyjąć okres symulacji: 0,1 s; 
Powtórzyć symulację z modelem skojarzonym wg metody trapezów. 
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R1 = 10 Ω, R2 = 200 Ω, L = 0,1 H    R1 = 10 Ω, R2 =  R3 = 200 Ω, C = 4,7 µF 

Rys. Z1.3 
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1.7. Schemat na rys. Z1.4 przedstawia obwód prądu stałego. Celem badania jest analiza prze-
pięć w prawej części obwodu po otwarciu wyłącznika W. Warunki początkowe w progra-
mach EMTP są zazwyczaj obliczane jedynie dla obwodów prądu przemiennego. Odpo-
wiednie procedury można wykorzystać także do obliczania warunków początkowych 
w sieci prądu stałego, zakładając bardzo niską częstotliwość wymuszających źródeł. W ten 
sposób napięcie Uu =  można zastąpić przez )π2cos( ftUu = , f = 5–10 Hz. 
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u
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Ro

RpW

CoCp

 

Rys. Z1.4 

Zastosować tę metodę do określenia warunków początkowych do symulacji stanu przej-
ściowego w podanym obwodzie, zapisując odpowiednie równania potencjałów węzłowych 
dla stanu ustalonego. Rozwiązać równania korzystając z programu MATLAB lub podob-
nego. 
Parametry obwodu: 
U = 24 V, Rs = 1 Ω, Ls = 64 mH, Rp = 0,5 Ω, R0 = 10 Ω, L0 = 95 mH, C0 = 0,5 µF, 
Cp = 0,2 µF. Otwarcie wyłącznika następuje w czasie tw = 0. 

1.8. Podać model dyskretny sieci z rys. Z1.4, przyjmując modele skojarzone elementów we-
dług metody trapezów. Zapisać równania potencjałów węzłowych dyskretnego modelu 
dynamicznego. Podać równania określające wartości wektora prądów węzłowych w kolej-
nych krokach symulacji. Przeprowadzić symulację stanu przejściowego w podanym ob-
wodzie po otwarciu wyłącznika W. Odpowiednie równania można rozwiązywać za pomo-
cą programu MATLAB (lub podobnego). Przyjąć krok modelowania T = 1 µs. Warunki 
początkowe określić zgodnie z zad. 1.7.  

 





 

2. MODELE ELEMENTÓW NIELINIOWYCH 
I ZALEŻNYCH OD CZASU 

2.1. Metody rozwiązywania równań nieliniowych 

W przypadku sieci elektrycznej określenie ‘elementy o parametrach nieliniowych’ 
oznacza, że wielkości, odpowiednio, R, L lub C nie są stałe, lecz zależą od wartości 
prądu płynącego przez nie lub spadku napięcia na nich. Jeśli natomiast wielkości te 
zmieniają się w czasie, to mamy do czynienia z elementami o parametrach zależnych 
od czasu. W przypadku modelowania cyfrowego znacznie większe kłopoty sprawia 
modelowanie elementów nieliniowych niż zależnych od czasu. 

W celu ilustracji problemu rozwiązywania obwodów nieliniowych rozpatrzmy na-
stępujący przykład:  

Przykład 2.1.  Określić wartość prądu płynącego w obwodzie przedstawionym na  
rys. 2.1a. 
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Rys. 2.1. Przykładowy obwód nieliniowy: a) schemat  
oraz b) graficzna metoda wyznaczania punktu pracy  
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Rezystor nieliniowy jest warystorem, który jest ogólnie określony następującym równaniem: 
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W rozważanym przypadku: 001,0=ik A, 48=refu V, 29=q , 50=R Ω. Napięcie zasilające 
60=u V. 

Dobrze znany jest graficzny sposób określania napięcia na warystorze: na płaszczyźnie napię-
cie–prąd należy narysować funkcję określającą charakterystykę elementu nieliniowego oraz 
pozostałej części obwodu (rys. 2.1b). W tym przypadku równanie warystora należy uzupełnić 
równaniem napięciowym: 

wuRiu += . 
Punkt przecięcia obu charakterystyk (rys. 2.1b) wyznacza rozwiązanie równania: 
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Znanych jest wiele metod rozwiązywania równań nieliniowych. Z wyjątkiem nie-
licznych przypadków, nie jest znany algorytm bezpośredniego określenia dokładnej 
wartości rozwiązania. Stosowane są zatem metody iteracyjne, pozwalające określić 
wartości przybliżone rozwiązania. Poniżej podane są niektóre z nich, dla przypadku 
poszukiwania jednej niewiadomej. 

2.1.1. Metoda iteracji prostej 

W celu określenia miejsc zerowych funkcji )(xf  rozpatrzmy równanie nieliniowe 
względem niewiadomej x: 

 0)( =xf  (2.3) 

Równanie to można zapisać w następującej postaci:  

 )(xgx =  (2.4) 

gdzie xxfxg += )()( . 
W odniesieniu do (2.4) można napisać następujący algorytm iteracyjnego poszuki-

wania rozwiązania [41]: 

 )( 1−= nn xgx , n = 1, 2, ... (2.5) 

przy czym: 0
0 xx =  jest przybliżeniem początkowym. 
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Proces zbieżności można kontrolować, śledząc następującą relację: 

 ε<∆ nx  (2.6) 

gdzie: 1−−=∆ nnn xxx ; ε  jest założonym przedziałem zbieżności. 
Formuła (2.5) jest znana jako metoda prostej iteracji. Realizacja tego algorytmu nie 

jest złożona, natomiast jego skuteczność wynika z następujących ograniczeń [23, 41]: 
– zbieżność procedury jest zapewniona tylko dla niektórych funkcji; w przypad-

ku braku zbieżności wielkość nx∆  nie zmniejsza się w kolejnych krokach 

(proces jest rozbieżny lub wykazuje ustalone oscylacje); 
– szybkość zbieżności (jeśli taka istnieje) jest stosunkowo wolna (błąd nx∆  ma-

leje proporcjonalnie do liczby wykonanych iteracji). 
Ilustruje to następny przykład. 

Przykład 2.2.  Określić wartość prądu płynącego w obwodzie z przykładu 2.1 metodą 
prostej iteracji. 

Równanie (2.2), zapisane w formie (2.4), ma następującą postać: 
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która bezpośrednio prowadzi do schematu iteracji prostej: 
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Łatwo sprawdzić, że proces iteracyjny określony tą zależnością dla danych z przykładu 2.1 nie 
jest zbieżny. Niezależnie od początkowego przybliżenia, rozwiązanie w kolejnych krokach 
przyjmuje powtarzające się wartości (rys. 2.2a). 
Obraz ten można zmienić, jeśli równanie rozpatrywanego obwodu zapisze się względem prądu, 
a nie napięcia. Spadek napięcia na warystorze jest określony przez funkcję odwrotną do (2.1): 
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= , gdzie wartość bezwzględna prądu jest wprowadzona w celu zachowania dzie-

dziny funkcji również dla ujemnych wartości prądu. 
Ponieważ Riuuw −=  (rys. 2.1a), więc prądowe równanie obwodu ma następującą postać: 
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skąd otrzymuje się formułę prostej iteracji: 
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Tym razem proces iteracyjny jest zbieżny i prowadzi do rozwiązania i = 0,0821 A (rys. 2.2b). 
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Rys. 2.2. Przebieg procesu iteracji prostej: a) dla równania napięciowego  
oraz b) dla równania prądowego (b)  

Tak różne zachowanie się algorytmów iteracyjnych w rozpatrywanych przypad-
kach można wytłumaczyć za pomocą prostej analizy czułości obwodu: niewielkie 
zmiany napięcia warystora w zakresie nieliniowej części charakterystyki prowadzą do 
dużych zmian prądu, dlatego równanie napięciowe jest niestabilne. Odwrotnie jest  
w przypadku wyników oszacowania prądu: nawet duże zmiany wartości prądu prowa-
dzą do niewielkich zmian napięcia – algorytm prądowy jest zatem stabilny.  

2.1.2. Metoda Newtona 

Jeśli funkcja jest dostatecznie gładka, to do określenia miejsc zerowych można z du-
żym przybliżeniem w miejsce funkcji rozpatrywać prostą, która jest styczną do tej 
funkcji. Jest to zabieg znany jako linearyzcja funkcji wyższego rzędu.  

Jeśli zmienna 1x  leży w pobliżu miejsca zerowego α  funkcji )(xf , to wartość 
funkcji można określić za pomocą szeregu Taylora [41]: 

 ...))((
2
1))(()()( 2

11111 +−+−+= xxf''xxf'xff ααα  (2.9) 

Ograniczając reprezentację funkcji do dwóch pierwszych wyrazów tego szeregu, za-
danie poszukiwania miejsca zerowego sprowadza się do rozwiązania równania: 
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 0))(()( 11 =−+ xz'fxf α  (2.10) 

Na podstawie tego równania tworzy się formułę iteracyjną, z założeniem, że α jest 
lepszym (kolejnym n-tym) przybliżeniem rozwiązania od z  (poprzednim: n–1-tym). 
Uogólniając tę zasadę, otrzymuje się następującą formułę: 

 ( )
( )1

1
1

−

−
− −= n

n
nn

x'f
xfxx  (2.11) 

Formuła (2.11) jest znana jako metoda Newtona rozwiązywania równania nieliniowe-
go [40, 113]. Ma ona wiele zalet w porównaniu z innymi metodami iteracyjnego znaj-
dowania miejsc zerowych funkcji: 

– zbieżność metody jest kwadratowa, co oznacza, że w kolejnych krokach błąd 
przybliżenia maleje w kwadracie; 

– znacznie szersza jest klasa funkcji, dla których proces iteracyjny jest zbieżny 
(w porównaniu np. z metodą prostej iteracji). 

Stosowanie tego algorytmu ilustruje dalszy przykład. 

Przykład 2.3.  Określić wartość prądu płynącego w obwodzie z przykładu 2.2 za pomocą 
metody Newtona. 

Sprawdzimy zachowanie się metody Newtona dla dwóch równań obwodu z przykładu 2.2: 
równania napięciowego i prądowego. 
Zauważmy, że w metodzie Newtona należy rozpatrywać równanie funkcji w formie (2.3), za-
tem równanie (2.7) należy zapisać w następującej postaci: 
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Wynika stąd następujący algorytm iteracyjny: 
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Wynik obliczeń jest przedstawiony na rys. 2.3a. Widać, że proces iteracyjny jest zbieżny. 
W przypadku równania prądowego (2.8), otrzymujemy: 
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gdzie: 
q

i

n

ref
nn

k

i
uRiuif

1
1

11)( 












−−=

−
−− ,   R

k

i

iq
u

if
q

i

n

n
refn −












−
=

−

−
−

1
1

1
1)(' . 

0

0,2

0,4

0,6

0,8

1 2 3 41 2 3 4
–10

0

10

20

30

40

50

n n

u, V i, A
a) b)

n
wu

n
wu∆

ni

ni∆

 

Rys. 2.3. Przebieg procesu iteracji wg metody Newtona: a) dla równania napięciowego 
 oraz b) dla równania prądowego  

Przebieg obliczeń jest przedstawiony na rys. 2.3b. Widać, że również tym razem proces itera-
cyjny jest zbieżny.  

Metoda Newtona jest bardzo efektywnym narzędziem do rozwiązywania równań 
nieliniowych. Na jej bazie powstało wiele algorytmów iteracyjnego przybliżania roz-
wiązań. Poniżej przedstawiono niektóre z nich.  

2.1.3. Metoda siecznych 

Stosowanie metody Newtona może być utrudnione, gdy pochodna funkcji )(x'f  nie 
może być bezpośrednio określona (brak jawnej postaci funkcji) lub jej obliczenie jest 
złożone. Wówczas w miejsce pochodnej może być stosowana jej numeryczna aprok-
symacja:  
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Algorytm (2.11) przybiera wówczas następującą postać: 
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która jest znana jako metoda siecznych. 
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Metoda siecznych jest nieco wolniej zbieżna w porównaniu z metodą Newtona, 
jednak koszt wykonania kolejnego kroku (jeśli mierzyć go liczbą operacji) jest zazwy-
czaj mniejszy [23, 113]. Do rozpoczęcia obliczeń wymagana jest znajomość argumen-
tu x  i funkcji )(xf  w dwóch poprzedzających krokach.  

2.1.4. Metoda Aitkena 

W omawianych powyżej metodach kolejne przybliżenie uzyskuje się po wykonaniu 
odpowiednich operacji w każdym kroku iteracji. Pod względem prostoty obliczeń wy-
różnia się tu metoda prostej iteracji. Niestety, jak pokazano wyżej, tak sformułowany 
proces może być rozbieżny. Można jednak połączyć metodę prostej iteracji (prostota 
obliczeń) z metodą siecznych (dobra zbieżność). To połączenie prowadzi do algoryt-
mu wielokrokowego.  

Idea metody polega na zastąpieniu funkcji )(xf , dla której poszukiwane jest miej-
sce zerowe, przez jej przyrost xxgxf −= )()(  zgodnie z (2.4). W celu określenia zera 
funkcji )(xf  można zastosować metodę siecznych, przy czym przybliżenie nume-
ryczne pochodnej w kroku k–1 można określić następująco:  
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zfxfx'f
−
−

≈
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przy czym x oraz z należą do dziedziny funkcji, powinny leżeć blisko siebie i w oto-
czeniu rozwiązania (miejsca zerowego funkcji )(xf ). Aby to zapewnić, do aproksy-
macji pochodnej (2.16) można wziąć trzy punkty: z , )(zg  oraz ( ))(zgg , dla których 
definiowane są funkcje występujące w (2.16): zzgzf −= )()(  oraz 

( ) )()()( zgzggxf −= . Jak widać, punkty te są połączone następującym ciągiem ite-
racyjnym: 1−nz , ( )11 −− = nn zgx , ( )1−= nn xgx , a pochodna (2.16) względem środka 
rozpatrywanego przedziału jest określona jak we wzorze:  

 ( ) ( )
11

11

11

111
1 2)( −−

−−

−−

−−−
−

−
+−

=
−

−−−
≈ nn

nnn

nn

nnnn
n

zx
zxx

zx
zxxxx'f  (2.17) 

Ostatecznie, zastosowanie metody siecznych prowadzi do następującego algorytmu: 
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W tym zapisie główny proces iteracyjny odnosi się do zmiennej z , natomiast zmienna 
x  pełni rolę pomocniczą. 

Przedstawiona procedura nosi nazwę metody Aitkena [113]. Jej wykonanie można 
zapisać w postaci następującego algorytmu: 
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1. Przyjąć warunki początkowe. 
2. 0

0 zz = ,  0=k  – numer kroku iteracji. 
3. Wykonać dwa kroki prostej iteracji: 
4. )( 11 −− = nn zgx ,  )( 1−= nn xgx . 
5. Skorygować wynik: 
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zxx
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7. nnk
n zz ∆−= −1 . 

8. Jeśli  epsn >∆ )(abs ,  1+= nn , przejdź do 2. 

Zastosowanie przedstawionej metody jest pokazane w następnym przykładzie. 

Przykład 2.4.  Określić wartość napięcia na warystorze w obwodzie z przykładu 2.2 za 
pomocą metody Aitkena. 

Sprawdzimy zachowanie się metody Aitkena dla funkcji określonej równaniem (2.7) z przy-
kładu 2.2. Równanie iteracji prostej jest następujące: 
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Jak widzieliśmy, ten proces nie jest zbieżny. Wprowadzenie poprawki Aitkena po wykonaniu 
dwóch kroków iteracji prostej zgodnie z przedstawionym algorytmem daje stabilne rozwiąza-
nie. 
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Rys. 2.4. Przebieg procesu iteracji wg metody Aitkena: a) dla równania napięciowego  
oraz b) przebieg wykonania procesu wielokrokowego  
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Rezultat obliczeń w kolejnych krokach iteracji jest pokazany na rys. 2.4a. Pomimo, że proces 
prostej iteracji nie jest zbieżny, wprowadzenie poprawki po wykonaniu dwóch kroków iteracji 
prostej czyni cały proces zbieżnym. Jest to pokazane na rys. 2.4b dla trzech pierwszych koków 
obliczeń.  

2.1.5. Metoda Newtona–Raphsona 

Układ równań nieliniowych może być w ogólnym przypadku zapisany następująco: 
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przy czym przynajmniej jedno z równań tworzących wymieniony układ jest równa-
niem nieliniowym. 

Rozwiązanie tego układu równań oznacza określenie wektora niewiadomych 
[ ]T

mxxx ...21=x , dla którego jest ono spełnione. Metody rozwiązywania tego za-
gadnienia powstają przez odpowiednie rozszerzenie metod rozwiązywania pojedyn-
czych równań. Równanie (2.9) dla przypadku wielowymiarowego ma następującą po-
stać: 

 0...)(')()()( 000 =+−+≈ xxξxξ fff  (2.20) 

gdzie wektor ξ  przedstawia współrzędne punktu, w którym spełnione są równania 
(2.19). 

Macierz określająca pochodną )( 0x'f  jest nazywana Jakobianem (macierzą Jako-
biego): 
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Analogicznie do (2.10), rozwinięcie (2.20) prowadzi do następującej iteracyjnej pro-
cedury rozwiązywania układu równań (2.19):  

 ( ) )()( 1111 −−−− −= nnnn ff xxJxx  (2.22) 
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jeśli ( )[ ] 0)(det 1 ≠−nf xJ , 
przy czym ( ) ( ) nff n

xx
xJxJ

=
= )()( . 

Algorytm (2.22) jest znany jako metoda Newtona–Raphsona iteracyjnego rozwią-
zywania układu równań nieliniowych. W programach komputerowych procedura 
(2.22) jest realizowana w następującej sekwencji: 

– obliczyć )( 1−nf x , 

– obliczyć ( ) )()( 11 −− = nn 'ff xxJ , 

– rozwiązać układ równań liniowych ( ) )()( 111 −−− = nnn ff xzxJ , 

– określić kolejne przybliżenie 11 −− −= nnn zxx . 
W charakterze oceny zbieżności procesu iteracyjnego można przyjąć normę wekto-

ra 1−nz  odniesioną do normy wektora 1−nx : 

 ε<
−

−

1

1

n

n

x

z
 (2.23) 

Ze względu na ograniczoną dokładność obliczania funkcji )( 1−nf x  oraz Jakobianu 
( ))( 1−nf xJ , dokładność całego algorytmu jest ograniczona. Objawia się to tym, że po-

cząwszy od pewnej wartości minimalnej, norma wektora 1−nz  zacznie narastać. Jest to 
sygnał, że należy skończyć obliczenia. Wynika z tego następujące kryterium zakoń-
czenia obliczeń 

 1−> nn zz ρ  (2.24) 

gdzie współczynnik ρ  jest rzędu jedności. 
W podobny sposób można również rozszerzyć inne metody rozwiązywania równań 

nieliniowych na przypadek wielowymiarowy. W ogólnym przypadku model sieci nie-
liniowej jest utworzony z modeli elementów liniowych i nieliniowych. Zbiór znanych 
modeli elementów liniowych należy zatem uzupełnić o modele nieliniowych rezystan-
cji, indukcyjności i pojemności. Poniżej podano zasady formułowania takich modeli. 
Podobnie jak w obwodach liniowych, modele te będą tworzone w postaci przewodno-
ściowo-prądowej, co pozwala bezpośrednio je stosować w metodzie potencjałów wę-
złowych.

2.2. Modele elementów nieliniowych obwodu elektrycznego 

Na rysunku 2.5 pokazane są przykłady charakterystyk nieliniowych elementów obwo-
du elektrycznego jako funkcje )(ufi = . Najbardziej typowa jest pierwsza z nich: re-
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zystancja (przewodność) jest dodatnia i jednoznaczna w całym rozpatrywanym zakre-
sie. Charakterystyki z rys. 2.5b, c mają przedziałami ujemną rezystancję (przewod-
ność), przy czym charakterystyka z rys. 2.5c jest niejednoznaczna: mogą wystąpić trzy 
różne rozwiązania. Charakterystyka z histerezą jest typowa dla nieliniowej indukcyj-
ności. 
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0 u0

i
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a) b) c) d)

 

Rys. 2.5. Charakterystyki )(ufi =  nieliniowych elementów obwodu elektrycznego: 
a) monotoniczna, b) typu N, c) typu S, d) z histerezą  

2.2.1. Rezystancja 

Jak wspomniano, model rezystancji będzie rozpatrywany w postaci przewodnościo-
wej. Jednoznaczne odwzorowanie zachodzi jedynie dla charakterystyk w formie 
przedstawionej na rys. 2.5a, b. Zasadniczy schemat formułowania takiego modelu jest 
pokazany na rys. 2.6. 
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Rys. 2.6. Idea iteracyjnego modelu nieliniowej przewodności 

Rozpatrywana charakterystyka )(ufi =  jest określona przez funkcję ciągłą i gład-
ką. W punkcie o współrzędnych 11, −− nn iu  może być zatem określona przewodność 
elementu zgodnie z następującą zależnością: 
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Styczna do rozpatrywanej funkcji, przechodząca przez punkt 11, −− nn iu , jest okre-
ślona równaniem (rys. 2.6): 

 11 −− += nn IuGi  (2.26) 

Jeśli napięcie na analizowanym elemencie zmieni się nieznacznie do wartości nu , 
to korzystając z wymienionych właściwości funkcji )(ufi = , można przyjąć, że war-
tość )( nn ufi =  można oszacować zgodnie z (2.26): 

 11 −− += nnnn IuGi  (2.27) 

co pozwala wyznaczyć wartość prądu 1−nI  na podstawie znanych wielkości w n–1-
tym kroku: 

 1111 −−−− −= nnnn uGiI  (2.28) 

przy czym: )( 11 −− = nn ufi . 
Równanie (2.27) wraz z (2.28) określa iteracyjny model nieliniowej przewodności. 

Odpowiada mu schemat zastępczy, jak na rys. 2.7. 
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Rys. 2.7. Iteracyjny model przewodności: a) gałąź z przewodnością; b) schemat zastępczy  

Schemat ten może posłużyć do rozwiązywania obwodów nieliniowych, jeśli rów-
nania obwodu zapewnią poprawne odwzorowanie napięcia nu  na przewodności w ko-
lejnym kroku rozwiązania, jako rezultat poprzedniej oceny prądu 1−ni . Ilustruje to na-
stępujący przykład:  

Przykład 2.5.  Zastosować model (2.27) do rozwiązania obwodu z przykładu 2.1.  

Zasada tworzenia schematów elektrycznych modeli sieci nieliniowej jest taki sam, jak w przy-
padku sieci liniowej. A zatem, w obwodzie rys. 2.1a zamieniamy źródło napięciowe na ekwi-
walentne źródło prądowe, a w miejsce elementu nieliniowego wstawiamy schemat z rys. 2.7b. 
W ten sposób powstaje obwód jak na rys. 2.8. Jak widać, jest to sieć z dwoma węzłami, z któ-
rych jeden wybrano w charakterze węzła odniesienia. 
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Rys. 2.8. Schemat zastępczy obwodu z rys. 2.1a 

Równanie tego obwodu, w formie wynikającej z metody potencjałów węzłowych, jest następu-
jące: 
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n IRuuRG  (2.29) 
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Obliczenia są wykonywane w następującym porządku: 

1. Warunek początkowy: 0
0

ww uu = , n = 0. 
2. n = n + 1. 
3. Obliczyć: 1−ni , 1−nG , 1−nI . 

4. Obliczyć n
wu  na podstawie (2.29): 

RG
IRuu n

n
n
w /1

/
1

1

+
−

= −

−

. 

5. Jeśli ε>− −1n
w

n
w uu , to przejdź do 2. 

Można sprawdzić, że algorytm ten jest równoważny metodzie Newtona, którą zastosowano do 
tego samego obwodu w przykładzie 2.3 [23]. W obu przypadkach uzyskuje się również ten 
sam rezultat.  

W przypadku przewodności o charakterystyce jak na rys. 2.5c występuje niejedno-
znaczność rozwiązania dla tych samych wartości napięcia. Aby tego uniknąć, można 
rozpatrywać rezystancję związaną z funkcją )(ifu = , w miejsce przewodności (rys. 
2.9). Podobnie jak w powyższym przykładzie, zakłada się, że funkcja )(ifu =  jest 
gładka i ciągła, zatem punkt w n-tym przybliżeniu można opisać za pomocą równania 
odpowiadającego stycznej do krzywej w punkcie n–1-tym: 

 ( ) 1111 −−−− +=+= nnnn UiRUiiRu  (2.30) 

przy czym: 1111 −−−− −= nnnn iRuU , 
1

)(1

−=

− =
nii

n

i
ifR

d
d . 
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Rys. 2.9. Idea iteracyjnego modelu nieliniowej przewodności 

Na podstawie (2.30) uzyskuje się następujące przybliżenie w kolejnej iteracji: 

 11 −− += nnnn UiRu  (2.31) 

Równanie to wygodnie jest przedstawić w takiej formie, jak (2.27):  

 11 −− += nnnn IuGi  (2.32) 

gdzie: 

1

)(
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1
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− ==

nii

n
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i
ifR

G

d
d

, 1111 −−−− −= nnnn uGiI . 

Jak widać, model nieliniowej przewodności, sprowadzony do postaci prądowo–
przewodnościowej, jest niezależny od kształtu nieliniowej funkcji. Różnica dotyczy 
tylko sposobu obliczania ekwiwalentnej przewodności. Tym razem jest ona funkcją 
prądu płynącego w rozpatrywanym elemencie.  

2.2.2. Indukcyjność 

Model matematyczny indukcyjności jest określony następującym równaniem: 

 
t
ttu

d
d )()( ψ

=  (2.33) 

gdzie: ψ  jest strumieniem magnetycznym. 
W równaniu (2.33) wydziela się zazwyczaj indukcyjność L jako parametr obwodu:  

 
t
tiiLtu

d
d )()()( =  (2.34) 

gdzie 
i
iiL

d
d )()( ψ

=  oraz )()()( tiiLt =ψ . 
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Jeśli )(iψ  jest funkcją nieliniową, to również indukcyjność zależy od prądu: 
)(iLL = . 

W celu utworzenia cyfrowego modelu indukcyjności, w odniesieniu do (2.34) 
można zastosować model skojarzony (1.31): 

 )1()()( −+= kjkGuki  (2.35) 

w którym dla metody trapezów: )1()1()1( −+−=− kGukikj , 
L

TG
2

= . 

Należy jednak pamiętać, że w rozpatrywanym przypadku przewodność G  nie jest 
stała: 

 ( ) ( ))(2
)(

kiL
TkiG =  (2.36) 

Równanie modelu (2.35) należy zatem zapisać następująco: 

 ( ) ( ) )1(
)1(2

)1()(
)(2

)( −
−

+−+= ku
kiL
Tkiku

kiL
Tki  (2.37) 

W k-tym kroku modelowania indukcyjność ( ))1( −kiL  jest już ustalona razem z hi-
storią procesu określoną przez prąd ).1( −kj  Pierwszą część równania (2.37) można 
natomiast rozpatrywać jako model nieliniowej rezystancji, przy czym 

( ) ( )
T

kiLkiR )(2)( = , co prowadzi do równania o następującej postaci: 

 ( ) )1()(
)(

1)( −+= kjku
kiR

ki  (2.38) 

gdzie: ( ) )1(
)1(

1)1()1( −
−

+−=− ku
kiR

kikj , ( ) ( )
T
kiLkiR )1(2)1( −

=− . 

Do rozwiązania tego uwikłanego równania można zatem zastosować schemat ite-
racyjny według równania (2.32), przy czym wielkość )1( −kj ma w k-tym kroku war-
tość stałą: 

 ( ) )1()()()()( 11 −++= −− kjkIkukiGki nnnn  (2.39) 

gdzie: ( ) )()()()( 1111 kukiGkikI nnnn −−−− −= , ( ) ( ))(2
)( 1

1

kiL
TkiG n

n
−

− =  (dla metody trape-

zów). 
W kolejnych iteracjach wartość indukcyjności ( ))(1 kiL n−  zbliża się do znaczenia 

odpowiadającemu prądowi i(k) w danym kroku. 
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Łatwo zauważyć, że w modelu cyfrowym nieliniowej indukcyjności zbiegają się 
dwa procesy obliczeniowe: całkowanie numeryczne, oznaczone krokiem k, oraz itera-
cyjne przybliżenie rozwiązania w każdym kroku czasowym, oznaczone w (2.39) in-
deksem n. W charakterze pierwszej wartości prądu w kolejnym kroku czasowym 
można przyjąć jego wartość z rozwiązania w kroku poprzednim: )1()(0 −= kiki . 
Równanie (2.39) przedstawia cyfrowy iteracyjny skojarzony model nieliniowej induk-
cyjności. Zastosowano w nim metodę trapezów do całkowania numerycznego, jednak 
w podobny sposób można również uzyskać model dla innego sposobu całkowania.  

Schemat zastępczy modelu jest pokazany na rys. 2.10. Występują tutaj dwa źródła 
prądowe, które odwzorowują, odpowiednio, stan przejściowy i proces iteracyjny. 
W procesie symulacji w każdym kroku czasowym wykonywane są obliczenia itera-
cyjne w celu uzyskania zbieżności rozwiązania, wynikającego z nieliniowej indukcyj-
ności. Sposób wykorzystania tego modelu ilustruje poniższy przykład.  

i(t)

u(t)

L
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un(k) Gn–1(k) j(k–1)In–1(k)

in(k)b)

)(ki n
G

 

Rys. 2.10. Schemat zastępczy iteracyjnego modelu nieliniowej indukcyjności: a) symbol nieli-
niowej indukcyjności, b) schemat zastępczy modelu cyfrowego  

Przykład 2.6.  Zastosować cyfrowy model nieliniowej indukcyjności do symulacji stanu 
przejściowego w przekładniku prądowym według schematu jak na rys. 
2.11. Zastosować model skojarzony indukcyjności według metody trape-
zów.  

Obwód z rysunku 2.11a odpowiada uproszczonemu schematowi zastępczemu przekładnika 
prądowego sprowadzonemu do strony wtórnej. Ze względu na znikomą impedancję źródła 
wymuszającego (w porównaniu z impedancją przekładnika) przyjęto, że wymuszeniem jest 
źródło prądowe. Podobnie, pominięto impedancję strony pierwotnej, a impedancję strony 
wtórnej połączono z impedancją obciążenia. Po podstawieniu w miejsce nieliniowej indukcyj-
ności Lµ oraz gałęzi RL stosownych modeli cyfrowych, otrzymuje się schemat jak na rys. 
2.11b.  
Schemat z rysunku 2.11b można łatwo uprościć do takiej postaci, jak na rys. 2.11c. Źródło Iz(k) 
jest stałe w danym kroku czasowym, natomiast w procesie iteracyjnego poszukiwania rozwią-
zania bierze udział źródło I n–1(k). Zastosowanie metody potencjałów węzłowych w odniesieniu 
do tego zredukowanego obwodu prowadzi do następującego równania: 
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Rys. 2.11. Schemat obwodu z przekładnikiem prądowym 
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gdzie: LR
nn

z GkGkG += −− )()( 11
µ , ( ))(2

)( 1
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kiL
TkG n

n
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− =
µµ

µ , 
RTL

TGLR +
=

2
 – na podstawie (1.42), 

)1()1()()( 1 −−−−= kjkjkikI LRz µ  – ten prąd jest stały w każdym kroku modelowania,  

)()()()( 1
1

111 kukGkikI nnn
g

n −−−− −= µ , )1()1(
2
2)1( 1 −+−

+
−

=− kuGki
RTL
RTLkj LRLRLR , przy czym 

prąd )1()()( 11 −−= −− kjkiki nn
g µµ  jest tą częścią prądu magnesującego, który zmienia się w pro-

cesie iteracyjnym. 
Dla dopełnienia należy jeszcze uwzględnić zależności związane z modelami elementów: 

)1()()()( 1
1 −+= − kjkukGki nnn

µµµ , )1()1()1()1( 1 −−+−=− kukGkikj µµµ , 

)1()()( 1 −+= kjkuGki LRLRLR . 

W celu określenia przewodności 1−nGµ  załóżmy, że charakterystyka magnesowania )( µψ if=  
jest określona za pomocą funkcji: 

 µµψ cibia += )(arctg  (2.41) 

gdzie: a = 0,9009, b = 14,2, c = 0,0012. 
Przebieg charakterystyki magnesowania dla przyjętych parametrów jest pokazany na rys. 2.12. 
Indukcja jest zatem określona następującą zależnością: 

 c
bi
ab

i
iL +

+
== 2)(1

)(
µµ

µµ
ψ

d
d  (2.42) 

Pozostałe parametry schematu z rys. 2.11a są następujące: 0,8=R Ω, 0,10=L mH. Do symu-
lacji przyjęto krok modelowania T = 0,0001 s. W charakterze prądu źródłowego przyjęto prze-
bieg sinusoidalny ze składową aperiodyczną o czasie zanikania 02,0=aT s: 

( ))/exp()cos(100)(1 aTttti −−−= ω . 
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Rys. 2.12. Charakterystyka magnesowania rdzenia rozpatrywanego 
 przekładnika prądowego 

Obliczenia są wykonywane w następującym porządku. 
1. Warunki początkowe do pętli symulacji w czasie zgodnie z krokiem k: k = 0. 

Określić: )0(1u , )0(µi , )0(µG , T, Ta (stała czasowa zanikania składowej aperiodycznej), 
Tfa π2=  (kąt pomiędzy kolejnymi próbkami, f = 50 Hz), ampl = 100, 

RTL
TGLR +

=
2

. 

2.  k = k + 1. 
3. )1()1()1()1( 1 −−+−=− kukGkikj µµµ , 

)1()1(
2
2)1( 1 −+−

+
−

=− kuGki
RTL
RTLkj LRLRLR . 

4. ( ) ( )( )aTTkkaamplki /)1(exp)1(cos)(1 −−−−−=   – nowa wartość źródła prądowego. 

5. )1()1()(1 −−−−= kjkjkiI LRz µ . 

6. Warunki początkowe do pętli iteracyjnego poprawiania rozwiązania: )1()( 1
0
1 −= kuku , 

n = 0, 
)1()(00 −−= kjkiig µµ  – prąd w nieliniowej przewodności. 

7. n = n + 1 – kolejny krok iteracyjny. 
8. Obliczyć: 

LR
nn

z GkGkG += −− )()( 11
µ , 

)()( 1
1

111 kukGiI nnn
g

n −−−− −= µ  – źródło prądowe w procesie iteracyjnym, 

)(
)( 1

1

1 kG
IIku n

z

n
zn

−

−−
=  – wg metody potencjałów węzłowych, 

)1()()()( 1
1 −+= − kjkukGki nnn

µµµ , 
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c
bi
abiL n

n +
+

= 2)(1
)(

µ
µµ , ( )n

n

iL
TkG

µµ
µ 2

)( = , 

)()( 1 kukGi nnn
g µ=  – skorygowana wartość prądu. 

9. Jeśli ε>− − )()( 1
11 kuku nn , to przejdź do 7. 

10. )1()()( 1 −+= kjkuGki LRLRLR . 
11. Jeśli k < kmax, to przejdź do 2. 
12. Stop. 
Należy zauważyć, że wielkości bez indeksu k występują tylko w procesie iteracyjnym i speł-
niają rolę pomocniczą. 
Wyniki symulacji są pokazane na rys. 2.13. Widać, że wartość prądu magnesującego iµ (rys. 
2.13b) jest duża także po zaniku składowej aperiodycznej, co wynika z dużej amplitudy prądu 
wymuszającego i dużych zmian indukcyjności Lµ (rys. 2.13c). Prąd wyjściowy przekładnika i2 
jest zatem silnie odkształcony (rys. 2.13a).  

Zbieżność procesu iteracyjnego w każdym kroku czasowym jest kontrolowana przez spraw-
dzenie wartości zmian napięcia w kroku 9. W rozpatrywanym przypadku przyjęto 41 −= Eε . 
Liczba wymaganych iteracji do uzyskania zbieżności zależy od aktualnego obszaru pracy na 
nieliniowej charakterystyce magnesowania i jest największa w obszarze kolanowym. Dla ma-

Rys. 2.13. Przebiegi uzyskane w wyniku sy-
mulacji stanu przejściowego w przekładniku 
prądowym: a) prąd pierwotny i wtórny; 
b) prąd magnesowania; c) indukcyjność  
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łych i bardzo dużych prądów magnesujących charakterystyka ta jest niemal liniowa i proces 
schodzi się po wykonaniu 3–4 iteracji.  

Dokładność symulacji i szybkość zbieżności procesu iteracyjnego zależą od wy-
branego kroku modelowania oraz od przyjętego sposobu całkowania. Następny przy-
kład pokazuje wykorzystanie do symulacji stanu przejściowego w tej samej sieci cał-
kowanie metodą Geara II rzędu.  

Przykład 2.7.  Do symulacji stanu przejściowego w przekładniku prądowym jak w przy-
kładzie 2.6 zastosować model skojarzony indukcyjności według metody 
Geara II.  

Schemat zastępczy obwodu z przekładnikiem prądowym jest taki sam jak na rys. 2.11. Przy 
założeniu, że parametry obwodu są takie same, również charakterystyka magnesowania jest 
określona zależnościami (2.41) i (2.42). Ze względu na stosowaną teraz metodę Geara II rzędu, 
odpowiednie wielkości w (2.40) są określone następująco: 

( ))(3
2)( 1

1

kiL
TkG n

n
−

− =
µµ

µ ,  
RTL

TGLR 23
2
+

= , ( ))2()1(4
23

)1( −−−
+

=− kiki
RTL

Lkj LRLRLR  

oraz: 
)1()()()( 1

1 −+= − kjkukGki nnn
µµµ , ( ) 3/)2()1(4)1( −−−=− kikikj µµµ , 

)1()()( 1 −+= kjkuGki LRLRLR . 
Obliczenia są zatem wykonywane w następującym porządku: 

1. Warunki początkowe do pętli symulacji w czasie zgodnie z krokiem k: k = 0. 
Określić: )0(1u , )0(µi , )0(µG , T = 0,00002 s, Ta (stała czasowa zanikania składowej ape-
riodycznej), Tfa π2=  (kąt pomiędzy kolejnymi próbkami, f = 50 Hz), ampl = 500 A 

RTL
TGLR 23

2
+

= . 

2. k = k+1. 
3. ( ) 3/)2()1(4)1( −−−=− kikikj µµµ , 

( ))2()1(4
23

)1( −−−
+

=− kiki
RTL

Lkj LRLRLR . 

4. ( ) ( )( )aTTkkaamplki /)1(exp)1(cos)(1 −−−−−=   – nowa wartość źródła prądowego. 

5. )1()1()(1 −−−−= kjkjkiI LRz µ . 

6. Warunki początkowe do pętli iteracyjnego poprawiania rozwiązania: )1()( 1
0
1 −= kuku , 

n = 0, 
)1()(00 −−= kjkiig µµ  – prąd w nieliniowej przewodności. 

7. n = n + 1. 
8. Obliczyć: 

LR
nn

z GkGkG += −− )()( 11
µ , 
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)1()()()( 1
1 −+= − kjkukGki nnn

µµµ , 

c
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= 2))((1

)(
µ

µµ , ( ))(3
2)(

kiL
TkG n

n

µµ
µ = , 

)()( 1 kukGi nnn
g µ=  – skorygowana wartość prądu. 

9. Jeśli ε>− − )()( 1
11 kuku nn , to przejdź do 6. 

10. )1()()( 1 −+= kjkuGki LRLRLR . 
11. Jeśli k < kmax, to przejdź do 2. 
12. Stop. 
Wyniki symulacji dla prądu pierwotnego o amplitudzie I1 = 500 A oraz kroku symulacji 
T = 0,00002 s są pokazane na rys. 2.14. Widać, że ze względu na dużą amplitudę prądu pier-
wotnego także wartość prądu magnesującego µi  (rys. 2.14 b) jest duża. W obszarze dużego 
nasycenia znacznie maleje indukcyjność Lµ, a przejście pomiędzy obszarem o dużej indukcyj-

Rys. 2.14. Przebiegi uzyskane w wyniku sy-
mulacji stanu przejściowego w przekładniku 
prądowym według metody Geara II: a) prąd 
pierwotny i wtórny; b) prąd magnesowania; 
c) indukcyjność  
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ności (model liniowy) i jej małej wartości (stan nasycenia) jest gwałtowny (rys. 2.14c). Ten 
efekt wykorzystuje się niekiedy do uproszczonej reprezentacji charakterystyki magnesowania 
za pomocą dwóch odcinków.  

2.2.3. Pojemność 

Podobną strukturę modelu można uzyskać dla przypadku nieliniowej pojemności. 
Model matematyczny pojemności jest określony następującym równaniem: 

 
t
tqti

d
d )()( =  (2.43) 

gdzie q  jest ładunkiem elektrycznym: )()()( tuuCtq = . 
Wówczas:  

 )(
)(

1)( ti
uCt

tu
=

d
d  (2.44) 

gdzie: 
u
uquC

d
d )()( = . 

Model skojarzony prądowy według metody trapezów jest określony równaniem 
(1.37): 

 ( ) ( )
( ) )1(

)1(
)()()()( −

−
+= kj

kuG
kuGkukuGki  (2.45) 

w którym: ( ) ( )
T

kuCkuG )(2)( = , ( ) )1()1()1()1( −−+−=− kukuGkikj . 

Ponieważ tym razem przewodność jest funkcją napięcia, więc do rozwiązania tego 
równania należy zastosować schemat iteracyjny zgodnie z (2.27): 

 ( ) )()()( 11 kIukuGki nnnn −− +=  (2.46) 

gdzie: ( ) 1111 )()()( −−−− −= nnnn ukuGkikI . 
Zauważmy, że rozwiązanie równania (2.45) wymaga zastosowania metody itera-

cyjnej, podobnej jak w (2.38) (w tym przypadku napięcie jest zamienione z prądem). 
Schemat zastępczy modelu pojemności nieliniowej jest pokazany na rys. 2.15.  

Prąd )(kin
G  jest częścią prądu )(kin  zgodnie z (2.46). Ekwiwalentne źródło prądo-

we )(1 kI n−  związane jest z iteracyjnym poprawianiem rozwiązania. Uwzględniony jest 
w nim również prąd )1( −kj , który odzwierciedla historię całkowania. Należy go 
uwzględnić zgodnie z (2.45) przy przejściu do kolejnego kroku modelowania. 
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Rys. 2.15. Schemat zastępczy: a) iteracyjnego modelu nieliniowej pojemności 
oraz b) schemat zastępczy modelu cyfrowego  

2.3. Model sieci nieliniowej i zależnej od czasu 

2.3.1. Obwód z elementami nieliniowymi i zależnymi od czasu 

Sieć elektryczna staje się nieliniowa, jeśli przynajmniej jeden jej element jest nieli-
niowy. W takim przypadku znane metody rozwiązywania sieci, na przykład metoda 
potencjałów węzłowych, nie mogą być bezpośrednio stosowane. Sieć taką można 
rozwiązywać według metody Newtona–Raphsona. Wymaga to jednak zapisu równań 
sieci w postaci (2.19), co zazwyczaj prowadzi do złożonych algorytmów obliczenio-
wych. 

Można także stosować metodę potencjałów węzłowych z wykorzystaniem przed-
stawionych powyżej modeli elementów nieliniowych oraz znanych już modeli ele-
mentów liniowych. Metoda ta, w przypadku sieci liniowej, prowadzi do ogólnego 
równania (1.78), które, dla przypadku nieliniowego, można zapisać w następującej po-
staci: 

 nnn iuG =−1  (2.47) 

Należy zauważyć, że macierz 1−nG  jest zbudowana z przewodności elementów li-
niowych sieci (wartości stałe) oraz przewodności elementów nieliniowych, które są 
odpowiednio zmieniane w każdym kroku procesu iteracyjnego. Wektor prądów źró-
dłowych ni  jest utworzony z niezależnych źródeł prądowych (I(k) – stałe względem 
kroku iteracyjnego n), z ekwiwalentnych źródeł prądowych, wynikających z linio-
wych modeli elementów L, C ( jL(k – 1), ( jC(k – 1) – są one także stałe w procesie ite-
racyjnym), oraz ekwiwalentnych źródeł prądowych związanych z nieliniowymi mode-
lami elementów rezystancyjnych i przewodnościowych, a także nieliniowej 
indukcyjności i pojemności: )(),(),( 111 kIkIkI n

L
n
G

n
R

−−− . Można to zapisać w postaci na-
stępującej funkcji: 

 ( ))(),(),(),(),1(),1(),( 1111 kIkIkIkIkjkjkIf n
C

n
L

n
G

n
RCL

n −−−−−−=i  (2.48) 
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W przypadku nieliniowych pojemności prąd związany z historią procesu całkowa-
nia jest korygowany w każdym kroku iteracji. 
Szczegóły organizacji procesu obliczeniowego wyjaśnia następny przykład. 

Przykład 2.8.  Przeprowadzić symulację stanu przejściowego w obwodzie z rys. 2.16. 
Przyjąć, że warunki początkowe są zerowe. Zastosować modele skojarzo-
ne indukcyjności i pojemności według metody trapezów. Wartości para-
metrów obwodu i wymuszenia podane są poniżej. 
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Rys. 2.16. Schemat rozpatrywanego obwodu 

)cos()( tUtus ω= , 8300=U  V, ω = 100π s–1,  
Ω= 4,0sR , 24=sL  mH, 22=sC  nF, 7,81 =C  nF, 1202 =C  nF, 
Ω= 2,0pR , 5=pL  mH, Ω= M4,2NR . 

Charakterystyka magnesowania indukcyjności µL  jest określona zgodnie z (2.41), gdzie: 
a = 17,829, b = 7,5, c = 0,0149. 
Przyjęto krok modelowania 510−=T s. 
W obwodzie występują cztery węzły niezależne (numery widoczne są na rys. 2.16), przy czym 
napięcie w węźle 4 jest znane. Równanie (2.47) przyjmie zatem taką postać, jak w (1.80): 
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przy czym: 
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TRL
Tg

ss
ls +

=
2

, 
TRL

Tg
pp

lp +
=

2
, 

T
Cgc

1
1

2
= , 

T
Cgc

2
2

2
= , 

T
Cg w

cw
2

= , 
N

rn R
g 1

= , 

µ
µ L

Tg
2

= , gdzie indukcyjność )( µµµ iLL =  jest określona zgodnie z (2.42).  

Pozostałe elementy równania (2.49) są następujące: 
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przy czym: 

( ))1()1()1()1( 1 −−−+−=−= kukugkikkjj slsslsss , 
TRL
TRLk

ss

ss
ls +

−
=

2
2 , 

( ))1()1()1()1( 32 −−−+−=−= kukugkikkjj lpplplplp , 
TRL
TRL

k
pp

pp
lp +

−
=

2
2

, 

)1()1()1( 11111 −−−−=−= kugkikjj cccc , )1()1()1( 22222 −−−−=−= kugkikjj cccc , 
( ) )1()1()1()1( 3 −−+−=−= kukigkikjj µµµµµ . 

Można zauważyć, że w rozpatrywanym przypadku wszystkie elementy wektora Ai  są określo-
ne w kroku k–1, zatem wektor ten nie zmienia się w trakcie procesu iteracyjnego. Macierz 

ABG  jest także stała podczas obliczeń. Wektor )(kusB =u  jest reprezentowany przez źródło 
napięciowe, które zmienia się wraz z krokiem k i też nie zależy od iteracyjnego przybliżania 
rozwiązania. 
Podstawowa procedura obliczeniowa, wynikająca z (2.49), ma zatem następującą postać: 

 BABA
n
A

n
AA uGiuG −=−1  (2.50) 

przy czym w procesie iteracyjnym zmienia się jedynie jeden element macierzy AAG : µg , na-

tomiast w miejsce prądu )1( −= kjj µµ  w wektorze n
AA ii =  należy zastosować wielkość 

( ) )()()()( 1
3

111 kukiGkikI nnnn −−−− −= µµ  jak w (2.40). 
Formalnie równanie (2.50) można rozwiązać zgodnie z zależnością: 

 ( ) ( )BAB
n
A

n
AA

n
A uGiGu −=

−− 11  (2.51) 

W przypadku większych sieci należy jednak stosować bardziej efektywną metodę rozwiązy-
wania równania (2.50). W odniesieniu do macierzy AAG  można także wykorzystać fakt, że 
tylko nieliczne jej elementy zmieniają się w trakcie obliczeń (patrz poprzedni rozdział). 
Przebiegi napięcia w węźle 2 oraz prądu w gałęzi 2–3 są pokazane na rys. 2.17. Widać nieregu-
larności charakterystyczne dla ferrorezonansu, który powstaje w wyniku przemieszczania się 
energii pomiędzy nieliniową indukcyjnością i pojemnościami sieci. 
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Rys. 2.17. Napięcie (a) i prąd (b) w analizowanej sieci  

Przedstawiony przykład pokazuje sposób stosowania metody potencjałów węzło-
wych w odniesieniu do obwodów z elementami nieliniowymi, zgodnie z (2.47). Jeśli 
niektóre elementy sieci są także zależne od czasu, to macierz przewodności będzie 
również zależna od czasu. Bardziej ogólna postać metody potencjałów węzłowych 
przybiera zatem następującą formę: 

 )1,()()(1 −=− kkkk nnn iuG  (2.52) 

gdzie: dwa indeksy przy wektorze prawej strony wskazują na to, że jest on określony 
przez niezależne źródła (w k-tym kroku) oraz te źródła, które pochodzą z historii pro-
cesu. 

Rozwiązywanie równań o postaci (2.52) jest bardzo utrudnione, gdyż nie można tu 
skutecznie stosować algorytmów faktoryzacji macierzy współczynników (patrz 
rozdz. 1), ponieważ macierz )(1 kn−G  zmienia się zarówno z krokiem k, jak i w proce-
sie iteracyjnym, z krokiem n. Metoda ta jest zatem mało efektywna obliczeniowo i nie 
jest stosowana w odniesieniu do dużych sieci z elementami nieliniowymi lub zależ-
nymi od czasu.  

2.3.2. Metoda kompensacji 

Metoda kompensacji ma bezpośredni związek z twierdzeniem Thévenina (twierdze-
niem o zastępczym źródle napięciowym), zgodnie z którym dowolna sieć liniowa, 
rozpatrywana jako dwójnik o zaciskach k, m, może być zastąpiona przez szeregowo 
połączone źródło napięciowe o sile elektromotorycznej TE  oraz rezystancję TR , przy 
czym TE  jest równe napięciu na rozwartych zaciskach k, m dwójnika, natomiast TR  
jest rezystancją wewnętrzną tego źródła zastępczego. Jest ona równoważna oporowi 
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zastępczemu dwójnika bezźródłowego, otrzymanego w wyniku zastąpienia w rozwa-
żanym dwójniku wszystkich niezależnych źródeł napięciowych zwarciami i wszyst-
kich niezależnych źródeł prądowych rozwarciami [68, 114].  

a) Sieć z jednym elementem nieliniowym 

Idea tej metody zostanie pokazana dla przypadku, gdy w sieci występuje tylko jeden 
element nieliniowy (rys. 2.18). 
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Rys. 2.18. Metoda kompensacji: a) schemat rozważanej sieci z usuniętą gałęzią km  
oraz b) układ równoważny  

Rozważana sieć jest liniowa, z wyjątkiem elementu tworzącego gałąź km (rys. 
2.18a). Część liniową sieci zamieniamy na układ równoważny zgodnie z twierdzeniem 
Thévenina (rys. 2.18b). Łatwo określić równania powstałego obwodu: 
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gdzie: 





= ...,
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Prąd kmi  występuje tu w charakterze źródła prądowego, którego wartość równowa-
ży nieobecność gałęzi k, m w obwodzie. W przypadku nieliniowej indukcyjności i po-
jemności w modelu wystąpią także źródła prądowe lub napięciowe, które odzwiercie-
dlają odpowiedni model matematyczny takiego elementu. Nieliniowy element może 
być również reprezentowany przez model z przewodnością kmG  zależną od napięcia. 
Jeśli funkcja, określająca rezystancję kmR  (przewodność kmG ), jest dana w jawnej po-
staci, to do rozwiązania powyższych równań można zastosować metodę Newtona. 
Często charakterystyka nieliniowa jest dana w postaci odcinkowej5 (rys. 2.19). Wów-

 
5 Taki model elementu w programie EMTP jest nazywany pseudonieliniowym, w odróżnie-

niu od modelu jawnie nieliniowego (ang. true-nonlinear), który jest reprezentowany charakte-
rystyką w postaci analitycznej. 
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czas warunek rozwiązania jest liniowy dla odcinka, który przecina prostą charaktery-
styki układu równoważnego.  

Do rozwiązania równań (2.53) należy najpierw określić parametry układu równo-
ważnego: TE  oraz TR . Siła elektromotoryczna może być określona w wyniku rozwią-
zania równania potencjałów węzłowych (1.78) układu, w którym usunięta została ga-
łąź km (a zatem, w macierzy przewodności G : 0=kmG ) [29]. Powstałą w ten sposób 
stałą macierz oznaczymy jako 0

kmG . Siła elektromotoryczna TE  jest określana w wy-
niku rozwiązania równania:  

 iuG =00
km  (2.54) 

przy czym: 00
mkT uuE −= , gdzie 0

ku , 0
mu  są elementami wektora 0u , związanymi z wę-

złami k i m, odpowiednio; i jest wektorem prądów węzłowych ekwiwalentnej sieci. 

0 ikm

ukm

kmTTkm iREu −=

)( kmkm ifu =

ET

 

Rys. 2.19. Metoda rozwiązania równania nieliniowego z charakterystyką odcinkową 

Rezystancję RT określa się w wyniku odjęcia elementów k i m wektora r, który po-
wstaje przez odjęcie kolumn k i m macierzy ( ) 10 −

kmG  [29]. Wektor r  można także ob-
liczyć w wyniku rozwiązania równania:  

 prG =0
km  (2.55) 

gdzie elementy wektora p  przyjmują następujące wartości: 
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przy czym, warunek dla ml =  jest ważny wówczas, gdy w m-tym węźle nie jest zde-
finiowane napięcie (lub nie jest to węzeł odniesienia). 

Ostatecznie poszukiwany wektor napięć węzłowych sieci z elementem nielinio-
wym jest określony następującym równaniem [29]:  

 kmiruu −= 0  (2.56) 

Stosowanie przedstawionej metody wymaga wykonania w każdym kroku modelo-
wania następującego algorytmu:  

1. Określić wektor 0u  i siłę elektromotoryczną TE  zgodnie z (2.54).  

2. Określić wektor r  i rezystancję TR  zgodnie z (2.55).  
3. Obliczyć prąd kmi  przez rozwiązanie nieliniowego równania (2.53).  
4. Obliczyć skorygowany wektor napięć węzłowych zgodnie z (2.56).  

Drugi krok algorytmu wykonywany jest tylko wówczas, gdy w liniowej części sie-
ci nastąpiła zmiana połączeń. Widać, że jedyną istotną różnicą w numerycznym roz-
wiązywaniu analizowanej sieci, w stosunku do sieci liniowej, jest wyznaczenie 
w trzecim kroku wartości prądu kmi  w gałęzi nieliniowej. Jest to zatem znaczne 
uproszczenie zagadnienia w porównaniu z metodą Newtona–Raphsona w wersji 
przedstawionej w poprzednim punkcie.  

b) Sieć z wieloma elementami nieliniowymi 

Przedstawiony algorytm, z pewnymi ograniczeniami, może być także stosowany 
w odniesieniu do sieci z wieloma elementami nieliniowymi. Załóżmy, że w sieci wy-
stępuje M elementów nieliniowych. W pierwszym kroku przedstawionego algorytmu 
należy obliczyć wektor 0u  według (2.54), przy czym w macierzy 0

kmG  zostaną usu-
nięte wszystkie wartości związane z M gałęziami znajdującymi się pomiędzy węzłami 

1k  – 1m , 2k  – 2m , ..., Mk  – Mm . W rezultacie otrzymuje się zbiór sił elektromoto-
rycznych 00

iii mkT uuE −= , Mi ...,,2,1= .  
W drugim kroku procedury obliczane są wektory ir  zgodnie z (2.55), przy czym 

równanie to należy powtarzać dla każdej pary węzłów ze zmieniającym się wektorem 
prawej strony ip . Najbardziej skomplikowany obliczeniowo jest krok trzeci, w którym 
należy rozwiązać jednoczesny układ równań nieliniowych, wynikających z warunków 
(2.53) dla wszystkich nieliniowych gałęzi. Znaczne uproszczenie tej procedury uzy-
skuje się dzięki zastosowaniu modeli elementów pseudonieliniowych (z odcinkowymi 
charakterystykami). 

Ostateczną postać wektora napięć węzłowych uzyskuje się w kroku czwartym, 
przy czym w równaniu (2.56) należy uwzględnić korekcję od wszystkich gałęzi nieli-
niowych: 
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MM mkMmkmk iii rrruu −−−−= ...

2211 21
0  (2.57) 

Należy zauważyć, że na wszystkich etapach przedstawionej procedury macierz 
0
kmG  powinna być nieosobliwa, co jest równoważne możliwości rozwiązania obwodu 

po usunięciu gałęzi nieliniowych. Zwykle występują także kłopoty z rozwiązaniem 
zadania, jeśli elementy nieliniowe występują w sąsiednich gałęziach sieci. Jednym ze 
sposobów uniknięcia tych trudności jest rozdzielenie takich gałęzi przez sztuczne 
wprowadzenie linii długiej (linii opóźniającej), o opóźnieniu równoważnym jednemu 
krokowi modelowania. Uzyskuje się przez to rozdzielenie wzajemnego wpływu są-
siednich nieliniowości w danym kroku modelowania. Przy dostatecznie małej wartości 
tego kroku operacja ta nie wpływa istotnie na odwzorowanie dynamiki procesu.  

0 ikm

ukm

1

2

3

 

Rys. 2.20. Straty związane z trajektorią rozwiązania (zakreślony obszar) 

Inną charakterystyczną cechą modelowania obwodów nieliniowych jest występo-
wanie zjawiska sztucznej histerezy lub strat (tłumienia) (rys. 2.20). Jest ono związane 
z obszarem zakreślanym przez kolejne punkty rozwiązania na charakterystyce elemen-
tu nieliniowego, co jest szczególnie niekorzystne w przypadku nieliniowej indukcyj-
ności, gdyż może być źródłem pasożytniczych oscylacji [29]. W celu ograniczenia 
tych zjawisk należy stosować odpowiednio zmniejszony krok modelowania. Z tego 
powodu krok modelowania sieci z elementami nieliniowymi powinien być zazwyczaj 
mniejszy niż wynika to z dynamiki tego procesu.  

Szczegóły stosowania metody kompensacji są pokazane w kolejnym przykładzie. 

Przykład 2.9.  Przeprowadzić symulację stanu przejściowego w obwodzie z przykładu 
2.8 (rys. 2.16).  

Zakłada się, że wszystkie parametry obwodu i jego modelu są takie same jak w przykładzie 
2.8. Elementem nieliniowym jest indukcyjność )( µµµ iLL = , określona zgodnie z (2.42). 
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W każdym kroku symulacji należy wykonać cztery etapy przedstawionej powyżej procedury. 
Będziemy ją tu powtarzać, przywołując odpowiednie równania.  
W pierwszym etapie należy określić siłę elektromotoryczną 00

mkT uuE −=  dla części liniowej 
sieci (z pominięciem gałęzi nieliniowej indukcyjności µL ), przy czym 3=k , 0=m  (rys. 
2.21a). 
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Rys. 2.21. Schemat rozpatrywanej sieci z wydzieleniem części liniowej i nieliniowej 

Należy przy tym uwzględnić fakt, że w węźle 4 napięcie jest znane. Odpowiednie równanie ma 
postać, jak (2.49), przy czym indeks n nie jest tu potrzebny, natomiast, zgodnie z (2.54), 
wprowadzono górny indeks 0 dla zaznaczenia, że w macierzy przewodności usunięto prze-
wodność µg  związaną z usuniętą gałęzią: 
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gdzie: 
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W tym równaniu, zgodnie z pierwszym krokiem algorytmu, należy obliczyć wektor potencja-
łów węzłowych 0

Au  liniowej części sieci: 

 BABAAAA uGiuG −= 000  (2.59) 

Ostatecznie 0
3,AT uE = . Wartość tej siły elektromotorycznej zmienia się w czasie w związku ze 

zmianą wymuszenia )(kusB =u  oraz wektora prądów źródłowych Ai : 
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0i  (pominięto tu także prąd pochodzący od nieliniowej indukcyjności). 



106 2. Modele elementów nieliniowych i zależnych od czasu 

Zastępcza rezystancja części liniowej sieci jest określana zgodnie z równaniem (2.55), które 
przyjmuje tu następującą postać: 

 prG =0
AA  (2.60) 

gdzie: [ ]T100=p .  

Wektor r  jest zatem równy ostatniej kolumnie macierzy ( ) 10 −
AAG , a rezystancja TR  (rys. 

2.21b) jest określona przez ostatni wiersz tego wektora. Zauważmy, że ponieważ macierz 0
AAG  

nie zmienia się podczas całego analizowanego procesu, więc również rezystancja TR  jest stała 
i wystarczy ją obliczyć na początku symulacji. 
W celu określenia prądu µi  (rys. 2.21b) należy skorzystać z zależności (2.53), przyjmując od-
powiedni model nieliniowej indukcyjności. Zakładając, że model indukcyjności jest określony 
jak w (2.37) z nieliniową charakterystyką µL  według (2.42), otrzymamy następujący układ 
równań: 
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a, b, c – jak w przykładzie 2.8. 
W rezultacie podstawienia otrzymuje się pojedyncze równanie nieliniowe, które można roz-
wiązać metodą Newtona. Rekursywny zapis procedury ma następującą postać: 
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Ostatecznie wektor nieznanych potencjałów węzłowych Au  jest korygowany zgodnie z (2.56): 

µiAA ruu −= 0 . 
Uzyskane przebiegi są identyczne jak w przykładzie 2.8. Tym razem jednak, w każdym kroku 
modelowania iteracyjna procedura jest ograniczona tylko do pojedynczego równania. Do uzy-
skania satysfakcjonującej zbieżności wystarczy wykonać 1–2 kroki tej procedury.  

Dodatkowe uproszczenie obliczeń można uzyskać przez stosowanie pseudo-
nieliniowych modeli, gdzie rzeczywista charakterystyka nieliniowa jest zastąpiona 
przez szereg prostych odcinków. 
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2.3.3. Metoda odcinkowo-liniowej aproksymacji charakterystyki nieliniowej 

Aproksymacje odcinkowo-liniowe (ang. piecewise approximation) umożliwiają zasto-
sowanie w procesie obliczeniowym efektywnych metod analizy liniowej. W ogólnym 
przypadku nieliniowa funkcja reprezentująca charakterystykę danego elementu jest 
aproksymowana za pomocą dowolnej liczby odcinków, co sprawia, że sieć staje się 
przedziałami liniowa. Pomimo atrakcyjności tego podejścia, pojawiają się problemy 
związane z koniecznością rozstrzygania sposobu postępowania na granicach obszarów 
wyznaczonych przez odcinki prostoliniowe. Aproksymacja liniowa sprawia, że roz-
wiązanie w danym kroku może być uzyskane poza przedziałem obowiązywania danej 
aproksymacji. Dotyczy to zwłaszcza przypadków złożonych sieci, z wieloma elemen-
tami nieliniowymi. Jest wiele sposobów analizy takich sieci [12, 23, 29, 69, 110, 114].  

W programach EMTP spotykamy się zazwyczaj z elementami nieliniowymi o jed-
nostajnej charakterystyce (jak charakterystyka magnesowania, charakterystyka nieli-
niowa warystora i inne), co umożliwia wprowadzenie dalszych uproszczeń, które 
przyczyniają się do zwiększenia efektywności obliczeniowej algorytmu. Przyjmuje się 
przy tym ograniczenia, które najczęściej powinien kontrolować użytkownik:  

– długość kroku modelowania oraz długość liniowych przedziałów aproksymacji 
są tak dobrane, aby rozwiązania w kolejnych krokach symulacji nie wykracza-
ły poza sąsiednie odcinki charakterystyki (sygnalizowany jest błąd, jeśli roz-
wiązanie w kolejnym kroku przekracza sąsiedni odcinek – rys. 2.22);  

– pomijane są błędy związane z przekroczeniem liniowego obszaru w dwóch ko-
lejnych krokach symulacji (rozwiązanie k′′ na rys. 2.22).  

0 i

ψ dopuszczalne punkty rozwiązania

rozwiązanie
niedopuszczalne

k–1k'k''

k'''

 
Rys. 2.22. Ilustracja rozwiązania w dwóch kolejnych krokach w pseudonieliniowym modelu 

Nieliniowa charakterystyka nie powinna być więc aproksymowana zbyt dużą licz-
bą odcinków, gdyż wiązałoby się to z koniecznością odpowiedniego skrócenia kroku 
symulacji [37]. Dla uproszczenia operację zmiany przewodności odpowiednich ele-
mentów i ponownej faktoryzacji macierzy przewodności G  (nachylenie odcinka wy-
znacza parametry modelu rozpatrywanej gałęzi) przeprowadza się przy przejściu do 
kolejnego kroku modelowania [68].  



108 2. Modele elementów nieliniowych i zależnych od czasu 

Wynikające stąd uproszczenie jest zazwyczaj nieistotne z uwagi na wierność od-
wzorowania procesu, dając możliwość projektowania bardzo efektownych oblicze-
niowo programów symulacyjnych. Ilustrują to przebiegi z rys. 2.23 – i1(k) oraz i2(k) są 
takie same jak w przykładzie 2.6 (charakterystyka magnesowania jest dokładna). 

Krzywa i3(k) (linia kropkowana) została uzyskana w tym samym modelu, przy 
czym charakterystyka magnesowania została ograniczona do dwóch odcinków, które 
łączą się w punkcie kolanowym charakterystyki. Widać, że przebiegi obu prądów 
wtórnych są niemal identyczne.  
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Rys. 2.23. Przebiegi uzyskane w wyniku symulacji stanu przejściowego  

w przekładniku prądowym: prąd pierwotny i1(k) oraz wtórny dla dokładnej reprezentacji  
charakterystyki magnesowania (i2(k)) oraz zredukowanej do dwóch odcinków (i3(k)) 

Stosowanie modeli jawnie nieliniowych można wówczas ograniczyć tylko do ta-
kich elementów, w których przebieg charakterystyki jest dobrze znany, a odstępstwa 
od niej mają istotny wpływ na przebieg rozpatrywanego procesu. 

Zadania 

2.1. W nieliniowym obwodzie z rys. Z2.1 rezystancja Rw jest określona następującą zależno-
ścią: i = 10(uw)3 . Napięcie zasilające: u =100 V, R = 5 Ω. 
Określić wartość prądu i za pomocą następujących metod: 
prostej iteracji, Newtona, Aitkena. 
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Rys. Z2.1 
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2.2. W obwodzie przedstawionym na rys. Z2.2 napięcie zasilające u zostaje załączone w chwili 
t = 0 przy zerowych warunkach początkowych. Sformułować równania dynamicznego 
modelu cyfrowego tego obwodu według metody potencjałów węzłowych, przyjmując mo-
del skojarzony trapezów dla indukcyjności. Napisać algorytm rozwiązywania tych równań 
w czasie. Wykonać obliczenia symulacyjne za pomocą programu MATLAB. 
Dane: L =100 mH, pozostałe – jak w zad. 2.1. 
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Rys. Z2.2 

2.3. Stosując metodę kompensacji, zbudować model obwodu z przekładnikiem prądowym, jak 
w przykładzie 2.6. Wykonać obliczenia i porównać wyniki z rezultatami uzyskanymi 
w przykładzie 2.6 oraz przykładzie 2.7.  
Wskazówka: należy utworzyć model dyskretny sieci z rys. 2.11, w którym nieliniową ga-
łąź dołączoną będzie stanowić model indukcyjności Lµ. Wartość tej indukcyjności można 
określić zgodnie z (2.42). 

2.4. Dany jest obwód prądu stałego jak na rys. Z2.3a. Charakterystyka nieliniowej rezystancji 
jest aproksymowana za pomocą podanego wykresu (rys. b). Podać sposób obliczenia prą-
du w tym obwodzie oraz określić jego wartość dla parametrów: R1 = 1 Ω, u1 = 20 V. 
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Rys. Z2.3   





 

3. METODA ZMIENNYCH STANU 

3.1. Wprowadzenie 

Teoria zmiennych stanu posługuje się modelem matematycznym procesu dynamicz-
nego, w którym wielkości wejściowe, określone przez wektor )(tf , i wyjściowe, okre-
ślone przez wektor )(ty  (rys. 3.1), są powiązane za pomocą następujących równań 
[26, 70]: 

 
)()()(
)()()(

ttt
ttt

DfCxy
BfAxx

+=
+=&

 (3.1) 

gdzie:  nn×A , rn×B , nm×C , rm×D  – macierze parametrów, 
 )(tx  – wektor zmiennych stanu. 

układ skupiony
x1, x2, ..., xn

f1
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f3

fr

y1

y2

y3

ym

 

Rys. 3.1. Schemat układu do opisu zmiennymi stanu 

W ogólnym przypadku macierze parametrów mogą być zmienne w czasie (układ 
niestacjonarny) lub zależeć od zmiennych stanu (układ nieliniowy). W odniesieniu do 
układu reprezentowanego za pomocą równań stanu będziemy zakładać, że nie ma 
w nim opóźnienia (układ o stałych skupionych). 

Pierwsze z podanych równań nazywane jest równaniem stanu, a drugie – równa-
niem wyjść. Zmienne stanu w (3.1) są związane z elementami inercyjnymi (reaktan-
cyjnymi), co daje wskazówkę co do sposobu tworzenia takich równań dla danego sys-
temu. W przypadku obwodu elektrycznego zmienne stanu wynikają z zależności 
pomiędzy napięciami a prądami w kondensatorach: 
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 ( ) )()( titCu
t CC =

d
d  (3.2) 

oraz w cewkach: 

 ( ) )()( tutLi
t LL =

d
d  (3.3) 

Parametry L, C w powyższych równaniach mogą być nieliniowe. 
W sposób oczywisty wynika stąd, że w charakterze zmiennych stanu w obwodach 

elektrycznych należy wybrać napięcia (ładunki) na kondensatorach i prądy (strumie-
nie) w cewkach. Ilustruje to symbolicznie schemat na rys. 3.2. Jeśli wszystkie elemen-
ty L, C oraz niezależne źródła zostaną wydzielone z sieci, to pozostała jej część two-
rzy sieć bezinercyjną o parametrach skupionych.  

sieć bezinercyjna

iS

uS

C L

iLiC

uC uL

 

Rys. 3.2. Graficzna reprezentacja sieci opisanej równaniami stanu 

W przypadku złożonej sieci wydzielone elementy inercyjne można opisać następu-
jącymi równaniami: 

 
( )
( )tt

tt

SSLCLL

SSLCCC

,,,,)(
,,,,)(

iuiugu
iuiugi

=
=

 (3.4) 

gdzie: funkcje Cg , Lg  zależą od parametrów i konfiguracji sieci. 
Zależności (3.4), po uwzględnieniu (3.2) i (3.3), prowadzą do równań stanu. Liczba 

niezależnych równań stanu określa rząd układu. Niekoniecznie jest ona równa sumie 
elementów L, C w sieci, gdyż wszystkie równania powinny być niezależne. W odnie-
sieniu do sieci liniowych stacjonarnych o elementach skupionych można tę kwestię 
rozstrzygnąć, rozważając warunki początkowe, niezbędne do rozwiązania odpowied-
nich równań różniczkowych stanu. Stosowne przykłady są pokazane na rys. 3.3.  
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Rys. 3.3. Ilustracja: a) niezależnego obwodu CE i b) niezależnego przekroju LJ  

W przypadku obwodu z rys. 3.3a spełnione jest równanie: 

 0)()()()( 321 =+++ tutututu CCCS  (3.5) 

Jeśli warunki początkowe odpowiednich równań różniczkowych tego obwodu 
(oczka) mają być niezależne, to powyższe równanie musi być także spełnione dla 

0=t  przy niezależnym wyborze wszystkich jego składników, co, jak widać, nie jest 
możliwe (wielkość )(tuS  z definicji jest niezależna jako niezależne źródło napięcio-
we). Widać zatem, że dla spełnienia postulatu niezależności równań obwodu jedna ze 
zmiennych w zależności (3.5) może być zredukowana.  

Podobne związki można wyprowadzić dla przekroju (rozcięcia) z rys. 3.3b (w tym 
przypadku jest to węzeł): 

 0)()()()( 321 =+++ titititi LLLS  (3.6) 

Prądy płynące w cewkach w momencie 0=t  określają warunki początkowe do 
rozwiązywania równań różniczkowych opisujących te cewki. Znów tylko dwa z tych 
prądów są niezależne, a trzeci wynika z równania (3.6). 

W przypadku sieci liniowych stacjonarnych z elementami skupionymi, w której 
występują tylko niezależne źródła prądu i napięcia, liczba n niezależnych równań sta-
nu jest określona następującą zależnością [23, 99]: 

 ( )LJCELC nnnn +−=  (3.7) 

gdzie: LCn  – suma wszystkich kondensatorów i cewek w sieci, 
 CEn  – liczba niezależnych obwodów CE w sieci, 
 LJn  – liczba niezależnych przekrojów LJ w sieci. 
Przykłady niezależnych oczek oraz niezależnych przekrojów są pokazane na rys. 3.4. 

Jeśli w sieci występują źródła sterowane, to zależność (3.7) określa górną granicę 
minimalnego wymiaru układu równań stanu [23, 99].  
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Rys. 3.4. Topologia sieci: a) niezależne przekroje LJ i b) niezależne obwody CE  

Redukcja liczby równań zgodnie z (3.7) prowadzi do tego, że wśród wielkości 
wymuszających, tworzących wektory napięć źródłowych Su  i prądów źródłowych Si , 
mogą się także znaleźć ich pochodne. 

3.2. Formułowanie równań stanu 

Równania stanu obwodu elektrycznego tworzone są zgodnie z regułami wynikającymi 
z praw Kirchhoffa. Ich przekształcenie powinno odbywać się zgodnie z założeniem, 
że zmiennymi stanu są prądy (strumienie) w cewkach oraz napięcia (ładunki) na kon-
densatorach. Liczba równań powinna być zgodna z zależnością (3.7). Ilustruje to ko-
lejny przykład.  

Przykład 3.1.  Utworzyć równania stanu opisujące dynamikę sieci pokazanej na rys. 3.5. 
Jako zmienne wyjściowe przyjąć prądy w elementach reaktancyjnych. 

Obwód zawiera trzy elementy LC ( LCn = 3), przy czym CEn = 1 (oczko utworzone z elementów 
e, C1, C2), LJn = 0. Zatem liczba równań niezależnych: n = 2. 
W charakterze zmiennych stanu wybieramy prąd Li  oraz napięcie 2Cu . 
Piszemy równania obwodu: 

02 =−− RL iij , 01
1

1 =−+ ii
t

uC R
R

d
d , 

021 =−− CR uue , 022 =− R
L iR
t
iL

d
d ,  0111 =− RuiR . 

Należy z nich wyeliminować wszystkie zmienne, z wyjątkiem  prądu Li , napięcia 2Cu  oraz 
wymuszeń e i j. 
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Rys. 3.5. Schemat analizowanej sieci elektrycznej 

Po niezbyt złożonych przekształceniach otrzymamy: 
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Prąd Li  jest także wielkością wyjściową, natomiast pozostałe prądy są określone następująco: 
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Równania te można zapisać w postaci macierzowej: 
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W równaniach tych występuje różniczkowanie sygnału wymuszającego, co nie jest korzystne. 
Można to wyeliminować przez podstawienie: 

e
CC

Cuu Ce
21

1
2 +

−= . 
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Wówczas równania stanu przyjmą postać (3.1), gdzie: 
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Wyeliminowanie pochodnych względem wielkości wymuszających w równaniu stanu nie pro-
wadzi jednak do podobnej redukcji w równaniach wyjść.  

Jak widać, równania stanu są formułowane zgodnie z ogólnymi zasadami opisu 
obwodów elektrycznych. Liczba tych równań może być zredukowana do wartości 
określonej przez (3.7). W ogólnym przypadku równania te przyjmują następującą po-
stać: 

 )(...)()()()( 1 t
t

t
t

ttt p

p

p fBfBBfAxx
d
d

d
d

++++=&  (3.8) 

 )(...)()()()( 1 t
t

t
t

ttt p

p

p fDfDDfCxy
d
d

d
d

++++=  (3.9) 

gdzie LJCE nnp +≤≤0 . 
Na drodze kolejnych podstawień zmiennych: 

 )()()( 1

1

t
t

tt p

p

p fBxz −

−

−=
d
d  (3.10) 

(jak w przykładzie 3.1), można wyeliminować pochodne względem wymuszenia 
z równania stanu (3.8). Równanie wyjść, w ogólnym przypadku, może zawierać po-
chodne wymuszenia [23]. 

Równania zmiennych stanu dla zadanego układu mogą być tworzone automatycz-
nie, za pomocą odpowiednich programów komputerowych [23].  

W przypadku nieliniowych obwodów dynamicznych (z obecnością nieliniowych 
indukcyjności lub pojemności) zazwyczaj należy przyjąć, że zmiennymi stanu są 
strumienie elektromagnetyczne w indukcyjnościach oraz ładunki na pojemnościach. 
W takim przypadku wygodnie jest posługiwać się ogólną formą zapisu równań stanu:  

 ( )tt ,)( xgx =&  (3.11) 
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Zarówno formułowanie równań stanu układów nieliniowych, jak i ich redukcja do 
postaci minimalnej są zazwyczaj znacznie bardziej złożone niż w przypadku układów 
liniowych.  

3.3. Rozwiązywanie równań stanu 

3.3.1. Układy liniowe 

W dynamice procesu istotne jest uzyskanie jedynie rozwiązania równania stanu  
w (3.1). W przypadku liniowym istnieje możliwość uzyskania rozwiązania dokładne-
go tego równania.  

Klasyczny sposób rozwiązania równania różniczkowego pierwszego rzędu polega 
na wstępnym wyznaczeniu rozwiązania równania jednorodnego, które w danym przy-
padku ma następującą postać (brak wymuszenia):  

 )()( tt Axx =&  (3.12) 

Łatwo sprawdzić przez podstawienie, że rozwiązanie ogólne równania (3.12) jest na-
stępujące: 

  )(e)( tt tkx A=  (3.13) 

gdzie: )(tk  jest pewnym wektorem funkcji, który powinien spełniać także równanie 
niejednorodne (a więc o postaci jak w (3.1)). 

W celu podstawienia (3.13) do (3.1) określimy najpierw pochodną zależności 
(3.13): 

 )(e)(e)( ttt tt kkAx AA && +=  (3.14) 

Po podstawieniu (3.14) do (3.1) otrzymamy: 

 )()(e)(e)(e tttt ttt BfkAkkA AAA +=+ &  (3.15) 

przy czym warto zauważyć, że [23]: 

 ttt

t
AAA AA e

d
dee ==  (3.16) 

Na tej podstawie widać, że pierwsze składniki obu stron równania (3.15) redukują 
się, co pozwala zapisać:  

 )(e)( tt tBfk A−=&  (3.17) 

Rozwiązanie tego równania można uzyskać przez całkowanie: 
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 )()()( 0

0
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t

kBfk A += ∫ − τττ de  (3.18) 

Po podstawieniu tego wyniku do (3.13) otrzymamy:  
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Stąd też można uzyskać sposób określania wartości początkowej. Przyjmując w (3.19) 
,0tt =  otrzymamy: 

)(e)( 00 tt kx Aτ= , a więc: 

 )(e)( 00 tt xk Aτ−=  (3.20) 

Ostatecznie rozwiązanie liniowego równania stanu (3.1) ma następującą postać: 

 ∫ −− +=
t

t

ttt tt
0

0 )()()( 0
)( xBfx AAA edee τττ  (3.21) 

Po podstawieniu powyższej zależności do równania (3.9) uzyskuje się również osta-
teczną formę równania wyjść.  

Jeśli funkcja wymuszająca )(tf  jest stała lub liniowa w przedziałach pomiędzy 
punktami czasu, w których należy uzyskać wynik w postaci dyskretnej, to rozwiązanie 
równania (3.19) można uzyskać w postaci analitycznej. Możliwość zastosowania ta-
kiego podejścia jest jednak ograniczona tylko do układów liniowych. 

Należy zauważyć, że równanie (3.21) przedstawia rozwiązanie równania stanu 
w ciągłej przestrzeni czasu. Uzyskanie rozwiązania dla czasu dyskretnego wymaga 
numerycznego obliczenia całki w tym równaniu. Można tu zastosować jedną ze zna-
nych metod numerycznego całkowania [7, 41]. Do obliczenia funkcji wykładniczej  
w (3.21) można posłużyć się jej reprezentacją w postaci szeregu wykładniczego:  

 ( ) ( ) ...
!

1...
!2

1e 2 +++++= mt t
m

tt AAA1A  (3.22) 

Niestety, szereg ten jest wolno zbieżny i aby uzyskać przyzwoitą dokładność, za-
zwyczaj należy użyć wielu jego składników. W literaturze można znaleźć sposoby 
aproksymacji funkcji tAe , które zapewniają dużą dokładność przy małej liczbie opera-
cji arytmetycznych, na przykład za pomocą aproksymacji Pade’a [100].  
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3.3.2. Układy nieliniowe 

W przypadku nieliniowych równań różniczkowych, zapisanych w formie (3.11) sto-
sowane są różne formy aproksymacji rozwiązania. Ponieważ można tego dokonać na 
wiele sposobów, istnieją różne sposoby rozwiązywania takich równań. Ogólnie, wy-
wodzą się one z rozwinięcia rozwiązania w postaci szeregu Taylora lub aproksymacji 
wielomianowej.  

W pierwszym przypadku, przy wyprowadzaniu odpowiednich formuł rozwiązania 
numerycznego zakłada się, że przy warunku początkowym: 00 )( xt =x , )(tx  jest roz-
wiązaniem dokładnym równania (3.11). Rozpatruje się dwa dyskretne punkty czaso-
we: 1−= ktt  oraz ktt =  powiązane zależnością: Ttt kk += −1 , przy czym T  jest dosta-
tecznie małym przedziałem czasu. Rozwinięcie funkcji )(tx  w szereg Taylora 
w otoczeniu czasu dyskretnego 1−= ktt  jest następujące:  
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Po uwzględnieniu, że: ),()( tt xgx =& , otrzymamy: 
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 (3.24) 

Widać, że przy ograniczeniu rozwinięcia do p składników błąd obcięcia jest pro-
porcjonalny do pT . Dla pierwszych dwóch składników (p = 1) otrzymamy zależność: 

 ( )111 , −−− += kkkk tT xgxx  (3.25) 

gdzie: )( 11 −− = kk txx , 
która jest znana jako jawna (ekstrapolacyjna) metoda Eulera (prostokątów). 

Przy aproksymacji wyższego rzędu niezbędne jest obliczanie pochodnej funkcji 
),( txg , co może być kłopotliwe. Problem ten ominęli Runge i Kutta, którzy zapropo-

nowali odpowiednią aproksymację pochodnej przy zachowaniu tego samego rzędu 
błędu odcięcia, co algorytm Taylora. Metoda Rungego–Kutty ma następującą postać 
ogólną [41]:  

 ( )TtT kkpkk ;, 111 −−− += xκxx  (3.26) 

gdzie p określa rząd metody, z którą związana jest także postać funkcji 
( )Ttkkp ;, 11 −−xκ . 
Dla metody Rungego–Kutty czwartego rzędu mamy: 
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 ( ) ( )4321114 22
6
1;, kkkkxκ +++=−− Ttkk  (3.27) 

gdzie:  ( )111 , −−= kk txgk , 

 





 ++= −− 2

,
2 1112

TtT
kk kxgk , 

 





 ++= −− 2

,
2 1213

TtT
kk kxgk , 

( )TtT kk ++= −− 1314 ,kxgk . 
W przypadku pojedynczego równania stanu odpowiednie wektory w tych wyrażeniach 
zamienią się na pojedyncze wielkości (funkcje). 

Aproksymacja w przytoczonych powyżej równaniach obejmuje przedział jednego 
kroku całkowania o długości T. Stąd też powstałe w ten sposób metody określa się 
mianem jednokrokowych metod rozwiązywania równań różniczkowych. 

Aproksymacja rozwiązania równania (3.11) za pomocą wielomianu prowadzi do 
metod wielokrokowych, w których rozwiązanie w kolejnym kroku jest określane na 
podstawie rozwiązań w wielu krokach poprzednich. W celu nakreślenia sposobu wy-
prowadzenia odpowiednich formuł ograniczymy rozważania do przypadku poje-
dynczego równania w formie (3.11). Zakładamy, że przy znanym warunku początko-
wym: 00 )( xtx = , dokładne rozwiązanie ma postać wielomianu stopnia m:  

 
m

mttttx αααα ++++= ...)( 2
210  (3.28) 

gdzie: 0α , 1α , ..., mα  są stałymi współczynnikami wielomianu, które można określić 
na podstawie znanych wartości tego wielomianu w m + 1 punktach. 

Zakładamy również, że funkcja aproksymacyjna (3.28) oraz jej pochodna 
),()( txgtx' =  są znane w punktach 1−kt , 2−kt , ..., pkt − . Poszukiwana jest formuła, któ-

ra na tej podstawie pozwala określić wartość rozwiązania w punkcie kt : 
)()( 1 Ttxtx kk += − . Ogólna postać tego rozwiązania jest następująca [26, 41]:  
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Współczynniki w formule (3.29) można określić na podstawie (3.28), przyjmując 
określoną wartość p oraz dodatkowe warunki dla pozostałych współczynników. 
Otrzymuje się stąd wiele różnych form numerycznego całkowania, które niekiedy łą-
czy się z nazwiskami matematyków, którzy je zaproponowali. Oto niektóre przykłady 
[7, 23, 41].  
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Wzory Adamsa–Moultona: 

 ( )kkkk txTgxx ,1 += −  (niejawna metoda Eulera) (3.30) 

 
( ) ( )( )111 ,,

2 −−− ++= kkkkkk txgtxg
T

xx  (metoda trapezów) (3.31) 

 
( ) ( ) ( )( )22111 ,,8,5

12 −−−−− −++= kkkkkkkk txgtxgtxg
T

xx  (3.32) 

Wzory Adamsa–Bashfortha: 

 ( )111 , −−− += kkkk txTgxx  (jawna metoda Eulera) (3.33) 
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xx , (3.34) 

 
( ) ( ) ( )( )3322111 ,5,16,23
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xx . (3.35) 

Wzory Geara: 

 ( )kkkk txTgxx ,1 += −  (niejawna metoda Eulera) (3.36) 
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W formułach Adamsa–Bashfortha, po prawej stronie występują wyrazy, które zo-
stały określone w poprzednich krokach całkowania, zatem wzory te można stosować 
bezpośrednio. Stąd ich nazwa: metody bezpośrednie lub jawne (ekstrapolacyjne). 
W pozostałych przypadkach po prawej stronie równania występuje niewiadoma, która 
powinna być wstępnie określona (odpowiednie algorytmy noszą nazwę metod pro-
gnozy i korekcji). Formuła może być niekiedy przekształcona tak, aby wszystkie nie-
wiadome znalazły się po lewej stronie równania. Nazywają się one metodami niejaw-
nymi (interpolacyjnymi).  

Na uwagę zasługują metody Geara, które nadają się do rozwiązywania tzw. sztyw-
nych (ang. stiff ) równań różniczkowych. Są to równania opisujące układy dynamicz-
ne, w których występują bardzo różne stałe czasowe (szybkość analizowanych proce-
sów jest bardzo różna). Z tego punktu widzenia dobre właściwości mają także 



122 3. Metoda zmiennych stanu 

niejawne metody Rungego–Kutty, jak na przykład wspominana w rozdz. 1 metoda 2S-
DIRK [7]. Pozostałe metody mogą się okazać niestabilne w takich przypadkach.  

Wśród wymienionych metod znajdziemy również formuły, które były stosowane 
w modelach skojarzonych elementów obwodu elektrycznego (rozdz. 1).  

3.4. Podsumowanie 

Metoda zmiennych stanu znalazła zastosowanie do problemów symulacji stanów 
przejściowych w układach elektrycznych stosunkowo niedawno, gdy zdefiniowane 
zostały efektywne algorytmy tworzenia takich równań dla złożonych układów. Ważne 
jest także pojawienie się skutecznych algorytmów całkowania numerycznego układów 
nieliniowych oraz systemów sztywnych.  

Ważną cechą stosowanych metod numerycznego rozwiązywania równań różnicz-
kowych jest możliwość stosunkowo prostej zmiany długości kroku całkowania, co 
umożliwia jego dobór ze względu na założoną dokładność. Dzięki temu można skró-
cić czas obliczeń.  

Reprezentacja systemu w postaci równań stanu stwarza także możliwość – w przy-
padku układów liniowych – prostego określenia wybranej jego transmitancji. Dzięki 
temu można łatwo badać właściwości częstotliwościowe analizowanego systemu, wa-
runki stabilności czy też problemy czułości na zmiany wybranych parametrów.  

Warto także zauważyć, że prezentowane w tym rozdziale podejście do numerycz-
nej symulacji stanów dynamicznych jest zasadniczo różne od stosowanego w po-
przednich rozdziałach. W tym przypadku system (oraz jego składowe) jest reprezen-
towany odpowiednim modelem matematycznym w ciągłej przestrzeni czasu. Nie ma 
więc etapu ‘modelowania cyfrowego’, natomiast stosowane są tylko cyfrowe metody 
numeryczne do rozwiązywania ciągłych w czasie równań różniczkowych.  

W ogólnym przypadku metoda zmiennych stanu może być stosowana w odniesie-
niu do systemu opisanego w dziedzinie czasu (jak powyżej), ale również w przestrzeni 
częstotliwości. W odniesieniu do systemów ciągłych odbywa się to z wykorzystaniem 
przekształcenia Laplace’a, natomiast w przypadku systemów dyskretnych – prze-
kształcenia Z [26]. Znane są efektywne algorytmy przekształcania odpowiednich za-
leżności odnoszących się do dziedziny czasu i dziedziny częstotliwości [53, 89]. Nie 
znalazły one dotychczas szerszego zastosowania do analizy stanów przejściowych 
w sieciach elektrycznych, ze względu na dużą złożoność numeryczną i problemy 
z wykorzystaniem tych metod do analizy obwodów nieliniowych.  

Używane powszechnie komputerowe programy matematyczne typu MATLAB, 
MATHEMATICA i inne mają gotowe procedury do numerycznego rozwiązywania 
przedstawionych problemów. Użytkownik powinien jedynie ułożyć stosowne równa-
nia stanu i wyjść oraz wybrać odpowiednią procedurę całkowania numerycznego.   
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Zadania  

3.1. Ułożyć równania stanu (w postaci minimalnej) dla podanych obwodów elektrycznych. 
Przyjąć, że w charakterze wielkości wyjściowych występują napięcia na wszystkich opor-
nikach. 
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Rys. Z3.1 

3.2. Określić warunki początkowe ( 0=t ) dla równań stanu z zad. 1, przyjmując wymuszenie 
napięciowe w postaci: 
a) u =10 V, 
b) ( )ϕω += tu sin10  V, ω = 100π, 0=ϕ . 

3.3. Opracować stanowy model sieci z przekładnikiem prądowym z przykładu 2.6. Zapisać 
równania obwodu i przeprowadzić symulację stanu przejściowego z warunkami podanymi 
w przykładzie. Do rozwiązywania równania różniczkowego zastosować algorytm R–K IV. 
Należy zauważyć, że po redukcji sieć będzie opisana jednym równaniem różniczkowym. 





 

4. MODEL LINII ELEKTROENERGETYCZNEJ 

4.1. Linia jednofazowa 

Podstawowe zależności modelu cyfrowego linii rozpatrywanej jako element o parame-
trach rozłożonych zostały podane w p. 1.3.6. Poniżej przedstawione są różne szczegó-
łowe zagadnienia związane z modelowaniem linii jednofazowej. Podane zostały pod-
stawowe informacje na temat sposobu obliczania parametrów linii na podstawie jej 
danych konstrukcyjnych. Szczegółowo przedstawiony jest model linii z parametrami 
zależnymi od częstotliwości. Omówione podejście jest następnie wykorzystane w mo-
delu linii wielofazowej. 

4.1.1. Parametry linii 

Parametry elektryczne linii napowietrznych i kablowych zależą od ich wymiarów 
geometrycznych oraz fizycznych właściwości użytych materiałów i środowiska. War-
tości tych parametrów można obliczyć na podstawie znanych związków [3, 18, 30]. 
W profesjonalnych programach do modelowania linii dostępne są zazwyczaj procedu-
ry do obliczeń tych parametrów na podstawie geometrii linii i danych materiałowych 
użytych przewodników – zarówno dla linii napowietrznych, jak i kablowych. Użyt-
kownik musi się jednak liczyć z koniecznością dostarczenia bardzo szczegółowych 
danych. Ilustruje to następujący przykład. 

Przykład 4.1.  Określić parametry elektryczne linii napowietrznej 400 kV o podanych 
wymiarach geometrycznych oraz stałych fizycznych użytych materiałów. 
W przypadku przewodów podane są wysokości zawieszenia na słupach 
oraz w środku przęsła (wartości pod kreską na rys. 4.1). Obliczenia wy-
konać za pomocą procedury LINE CONSTANTS dostępnej w programie 
ATP–EMTP [8]. 

Konstrukcja linii wraz z wymiarami geometrycznymi jest pokazana na rys. 4.1. Dane wejścio-
we do procedury mają następujący format. 
 
BEGIN NEW DATA CASE 
C Linia 400 kV 
LINE CONSTANTS 
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METRIC 
C   Dane do modułu LINE CONSTANTS 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
  1 .231   .0564 4            3.15   -10.3    24.5    12.0    40.0   0.0       2 
  2 .231   .0564 4            3.15     0.0    24.5    12.0    40.0   0.0       2 
  3 .231   .0564 4            3.15    10.3    24.5    12.0    40.0   0.0       2 
  0  0.5   .2388 4           1.565   -6.87    31.0    23.5 
  0  0.5   .2388 4           1.565    6.87    31.0    23.5 
BLANK CARD ENDING CONDUCTOR CARDS OF  "LINE CONSTANTS"  CASE 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C      >< Freq   >< FCar   > <ICPR> <IZPR> =< DIST > <PP>==< >< >< ><><> 
   100.0      50.0                1   1    0   180.0                 0 
BLANK CARD ENDING FREQUENCY CARDS 
BLANK CARD ENDING  "LINE CONSTANTS" 
BEGIN NEW DATA CASE 
BLANK 
 

Ze względu na wymagania programu w danych tych przyjęto, że długość linii wynosi 180 km, 
chociaż nie ma to wpływu na obliczanie parametrów na jednostkę długości. 

24,5 m
12,0 m

31,0 m
23,5 m

6,87 m

10,3 m
40 cm

Przewody fazowe:
D = 3,15 cm
R' = 0,0564 Ω/km
T/D = 0,231

Przewody odgromowe:
D = 1,565 cm
R' = 0,2388 Ω/km
T/D = 0,5

Rezystywność gruntu:
ρ = 100 Ωm

 

Rys. 4.1. Parametry konstrukcyjne rozważanej linii 
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Rezultaty odnoszą się do składowej zgodnej i zerowej systemu trójfazowego. Parametry skła-
dowej zgodnej są równoważne parametrom ekwiwalentnej linii dwuprzewodowej faza–faza. 
Obwód składowej zerowej odpowiada ekwiwalentnej linii faza–ziemia. Parametr T/D jest wy-
jaśniony w przykładzie 4.2.  
Dla częstotliwości 501 =f  Hz parametry linii są następujące: 

1576,00 =R'  Ω/km, 2966,20 =L'  mH/km, 772900,00 =C'  µF/km, 
0291,01 =R'  Ω/km, 1,0296=1L'  mH/km, 1C' =0,01123 µF/km. 

Prędkości rozprzestrzeniania się fali elektromagnetycznej oraz impedancja falowa (charaktery-
styczna) wynoszą odpowiednio: 

235968=0v  km/s, 293798=1v  km/s, 548,3=cZ0  Ω, 8,021 3=cZ  Ω. 
Widać, że parametry dla składowej zerowej znacznie różnią się od parametrów dla składowej 
zgodnej. Wiąże się to przede wszystkim z tym, że ekwiwalentny przewód ziemnopowrotny 
(ziemia oraz przewód odgromowy) ma parametry znacznie odbiegające od parametrów prze-
wodu fazowego. Przewodność poprzeczna linii G'  jest zazwyczaj pomijana w omawianych tu 
zastosowaniach.  

4.1.2. Uwzględnienie zależności parametrów od częstotliwości 

Zależność parametrów przewodnika od częstotliwości jest efektem zjawiska naskór-
kowości, które jakościowo tłumaczy się jako wypieranie prądu na zewnątrz przewod-
nika w wyniku wzrostu częstotliwości. W ten sposób zmniejsza się efektywny prze-
krój przewodnika, zatem jego rezystancja rośnie. Ponieważ jednocześnie zmniejsza się 
strumień magnetyczny ψ  w otoczeniu osi przewodu, więc przy danym prądzie i 
zmniejsza się indukcyjność L ( iL /ψ= ) [22].  

Stopień tej zależności zmienia się w funkcji materiału przewodnika, jego kształtu 
oraz sposobu usytuowania względem ziemi. W przypadku linii elektroenergetycznej 
mogą występować przewody wiązkowe, gdy jeden przewód fazowy jest utworzony 
z kilku przewodów odległych od siebie o kilkadziesiąt centymetrów. W układzie wie-
lofazowym parametry poszczególnych faz oraz ekwiwalentnego obwodu z ziemią, ja-
ko przewodem powrotnym, zależą od wzajemnego ich usytuowania oraz od sposobu 
modelowania ziemi, jako przewodnika, gdyż w rzeczywistości nie jest to środowisko 
jednorodne. Wszystko to sprawia, że określenie ekwiwalentnych parametrów linii  
w zależności od częstotliwości jest problemem dosyć złożonym.  

Profesjonalne programy zawierają zazwyczaj procedury do obliczeń tych parame-
trów na podstawie geometrii linii napowietrznych lub kablowych i danych materiało-
wych użytych przewodników. Kolejny przykład ilustruje sposób przygotowania sto-
sownych danych wejściowych w programie ATP–EMTP.  

Przykład 4.2.  Przeprowadzić analizę zależności parametrów linii 400 kV z przykładu 
4.1 od częstotliwości. Współczynnik DT/  (od ang. Thickness/Diameter) 
odnosi się do modelowania zjawiska naskórkowości (rys. 4.1). Przewód 
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jest tu reprezentowany w postaci rurki o zewnętrznej średnicy D oraz 
grubości T. W przypadku jednolitego przewodu T/D = 0,5. 

Dla przedstawionej linii zostały wykonane obliczenia jednostkowych parametrów elektrycz-
nych w funkcji częstotliwości za pomocą modułu LINE CONSTANTS w programie ATP–
EMTP [8]. Dane wejściowe mają następujący format.  
 
BEGIN NEW DATA CASE 
C Linia 400 kV 
C  
LINE CONSTANTS 
METRIC 
FREQUENCY 
C   Dane do modułu LINE CONSTANTS 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
  1 .231   .0564 4            3.15   -10.3    24.5    12.0    40.0   0.0       2 
  2 .231   .0564 4            3.15     0.0    24.5    12.0    40.0   0.0       2 
  3 .231   .0564 4            3.15    10.3    24.5    12.0    40.0   0.0       2 
  0  0.5   .2388 4           1.565   -6.87    31.0    23.5 
  0  0.5   .2388 4           1.565    6.87    31.0    23.5 
BLANK CARD ENDING CONDUCTOR CARDS OF LINE CONSTANTS CASE 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
   100.0       0.1         1                                 5  5 
BLANK CARD ENDING FREQUENCY CARDS 
BLANK CARD ENDING  "LINE CONSTANTS" 
BEGIN NEW DATA CASE 
BLANK 
 

Uzyskane parametry w funkcji częstotliwości są pokazane na rys. 4.2. Widać, że parametry dla 
składowej zerowej ( 0R'  – rys. 4.2a oraz 0L'  – rys. 4.2b) w znacznie większym stopniu zależą 
od częstotliwości niż parametry dla składowej zgodnej ( 1R'  – rys. 4.2a oraz 1L'  – rys. 4.2b). 
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Rys. 4.2. Charakterystyki częstotliwościowe linii 400 kV:  
a) rezystancji oraz b) indukcyjności  



4.1. Linia jednofazowa 129 

Wiąże się to z tym, że ekwiwalentny przewód ziemnopowrotny ma znacznie większą średnicę 
niż odpowiedni przewód wynikający z dwuprzewodowej wiązki przewodów fazowych. W ta-
kim przypadku efekt naskórkowy jest znacznie większy.  
Parametry poprzeczne linii (pojemność oraz przewodność) praktycznie nie zależą od częstotli-
wości. Przewodność linii G' jest zazwyczaj pomijana w omawianych tu zastosowaniach, cho-
ciaż w celu stabilizacji wielkości zależnych od częstotliwości przyjmuje się małą wartość, np. 
0,03 µS/km [3].  

Uwzględnienie zależności parametrów od częstotliwości w modelu linii nie jest 
proste, gdyż równania modelu (1.45) odnoszą się do dziedziny czasu i w uzyskanym 
sygnale występują składowe o różnej częstotliwości. Model powinien się wtedy odno-
sić do dziedziny częstotliwości. Wyjściową bazą takiego modelu jest przekształcenie 
Fouriera.  

Aby określić transformaty Fouriera równań (1.45) można zastosować następujące 
związki: 
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Ta ostatnia zależność jest przykładem zastosowania wzoru na całkowanie przez 
części. Pierwszy składnik zastosowania tej reguły znika, gdyż 0),( =±∞xu . Wielkość 

), ωj(xU  jest funkcją zespoloną odległości i częstotliwości. Dla ustalonej częstotliwo-
ści ), ωj(xU  przedstawia wektor napięcia, znany z zastosowania rachunku symbo-
licznego do analizy stanów ustalonych w obwodach elektrycznych.  

Zależności (4.1), (4.2) można również powtórzyć w odniesieniu do równań prądo-
wych w (1.45). Równania linii (1.45), po przejściu z dziedziny czasu do dziedziny 
częstotliwości, przyjmą zatem następującą postać:  
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co po podstawieniu: 
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prowadzi do następujących związków: 
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Pierwsze z tych równań odnosi się do modelu podłużnego linii. Impedancja 
)( ωjZ'  jest funkcją nieliniową, gdyż )(ωR'R' =  oraz )(ωL'L' = . Natomiast drugie 

równanie przedstawia model względem parametrów poprzecznych linii. Najczęściej 
przyjmuje się, że składowe admitancji )( ωjY'  nie zależą od częstotliwości.  

Podobnie jak w przypadku równań czasowych, zależności (4.4) można rozdzielić 
na dwa niezależne równania prądowe i napięciowe. W tym celu pierwsze równanie 
(4.4) różniczkujemy względem zmiennej x  i po uwzględnieniu drugiego równania 
otrzymujemy:  

 ),()()(),
2 ωωωω jjj

d
j(d2

xUY'Z'
x
xU

=  (4.5) 

Przyjmując oznaczenie )()(2 ωωγ jj Y'Z'= , otrzymamy: 

 ),(), 2
2 ωγω j

d
j(d2

xU
x
xU

=  (4.6) 

Ogólna postać rozwiązania tego równania jest następująca [96]:  

 ))),( 11 xBxAxU γγω sh(ch(j +=  (4.7) 

gdzie: 1A , 1B  – stałe, które można wyznaczyć z warunków brzegowych, natomiast  

 βαωωγ jjj +== )()( Z'Y'  (4.8) 

przy czym z dwóch pierwiastków w tym wyrażeniu należy wziąć ten, dla którego 
0≥α . Wielkość γ  (1/km) jest nazywana stałą propagacji (współczynnikiem przeno-

szenia) linii, α  jest stałą tłumienia (Np/km)6, a β  jest nazywana stałą fazową 
(rad/km).  

Po podstawieniu (4.7) do drugiego równania (4.4) otrzymamy ogólne rozwiązanie 
dla prądu:  

 ( )))1),( 11 xBxA
Z

xI
f

γγω ch(sh(j +−=  (4.9) 

 
6 Np (neper) jest jednostką tłumienia (podobnie, jak dB) i odpowiada mu zmiana wartości 

sygnału co do modułu w stopniu e = 2,718 ...; 1 Np = 8,686 dB.  
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gdzie:  
γ

ω
ω
ωω )(
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j
jj Z'

Y'
Z'ZZ ff ===  (4.10) 

jest zespoloną impedancją falową linii.  
Stałe 1A , 1B  można wyznaczyć na podstawie warunków dla obu końców linii: po-

czątku, gdy 0=x  (indeks 1) oraz końca, gdy lx =  (2). Dla tych przypadków równa-
nia (4.7), (4.9) przyjmują następującą postać:  
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Załóżmy, że z tego układu równań należy wyznaczyć wielkości )j(1 ωU , )j(1 ωI  
odnoszące się do początku linii, przy założeniu, że odpowiednie wielkości na końcu 
linii są znane. Po prostych przekształceniach otrzymamy:  
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 (4.15) 

przy czym przyjęto, że prądy na obu końcach linii są skierowane do linii (rys. 4.3). 
Można zauważyć, że dzięki zmianie strzałkowania kierunku prądu na końcu linii 

macierz parametrów w powyższym równaniu pozostaje stała niezależnie od tego, 
względem którego końca linii obliczane są odpowiednie wielkości – należy tylko za-
mienić indeksy odpowiednich zmiennych.  

Równanie (4.15) przedstawia model odcinka linii w stanie ustalonym, o długości l 
i węzłach granicznych, oznaczonych, odpowiednio, 1 i 2. Łatwo sprawdzić (zadanie 
4.1), że model ten można przedstawić w postaci czwórnika Π (rys. 4.3), którego pa-
rametry są określone następująco:  
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Rys. 4.3. Czwórnik Π reprezentujący linię długą w stanie ustalonym 

Reprezentacja linii w postaci czwórnika Π może być wykorzystana do obliczenia 
warunków początkowych do symulacji, jeżeli odpowiadają one ustalonemu stanowi 
sinusoidalnemu. Model ten można łatwo rozszerzyć do przypadku linii wielofazowej 
przez zastąpienie parametrów linii przez odpowiednie macierze parametrów linii wie-
lofazowej.  

Zatrzymajmy się chwilę na interpretacji tych znanych równań. Zapisując równanie 
(4.15) względem końca linii i zakładając, że drugi koniec (indeks 2) położony jest 
w odległości x , można otrzymać zależności dla napięć i prądów w dowolnym miejscu 
linii, na przykład:  

 )sh()j()j()ch()(j)j,( 11 xIZxUxU f γωωγωω −=  (4.17) 

Wyrażając funkcje hiperboliczne przez funkcje wykładnicze, po odpowiednim 
zgrupowaniu wyrazów, otrzymamy: 
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gdzie:  ( ))()()(
2
1)( 11 ωωωω jjjj IZUU fa += , ( ))()()(

2
1)( 11 ωωωω jjjj IZUU fb −= , 

xxA γω −= ej ),( .  
Wielkości )( ωjaU , )( ωjbU  przedstawiają zespolone amplitudy fali początkowej 

( )j( ωaU ) oraz odbitej ( )j( ωbU ), które są rozłożone wzdłuż linii zgodnie ze stałą pro-
pagacji γ , reprezentowaną przez funkcję )j,( ωxA . W przypadku odkształconego sy-
gnału napięciowego jego składowe są odpowiednio tłumione i przesuwane w fazie 
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zgodnie ze stałą propagacji. Dla danej odległości x  funkcję tę można rozpatrywać jak 
transmitancję filtru o charakterystyce częstotliwościowej amplitudy określonej przez 

xxA αω −= e)j,(  oraz odpowiedniej charakterystyce fazowej: ( ) xxA βω je)j,(arg −= . 
W przypadku całej długości linii ( lx = ) otrzymamy:  

 llAA γωω −== ejj ),()( , lA αω −= ej )( , ( ) lA βω jej −=)(arg  (4.19) 

Podana interpretacja stałej propagacji jest wykorzystana w syntezie modelu linii 
z uwzględnieniem zmian parametrów od częstotliwości [30, 78]. Kolejny przykład 
przybliża interpretację analizowanych charakterystyk linii oraz podaje ich przykłado-
we parametry. 

Przykład 4.3.  Przeanalizować podane powyżej charakterystyki linii na przykładzie linii 
400 kV z przykładu 4.1.  

Przykładowy rozkład składowej urojonej fali podstawowej dla częstotliwości 2000=pf  Hz 
w linii 400 kV o długości 300=l  km jest pokazany na rys. 4.4. Dla porównania pokazane są 
dwie fale stojące napięcia składowej zgodnej oraz składowej zerowej. Krzywe te odpowiadają 
następującym funkcjom: 

( ))j()j,(Re)( 111 pap UxAxU ωω= , ( ))j()j,(Re)( 000 pap UxAxU ωω= ,  

przy czym: )j(
1

11e)j,( pp
pxA βαω +−= , )j(

0
00e)j,( pp

pxA βαω +−= , 1)()( 01 == papa UU ωω jj ; in-

deks p  odnosi się do wybranej częstotliwości (pominięto go w oznaczeniu napięć )(0 xU  
i )(1 xU ), natomiast indeksy 0, 1 wskazują na odpowiednie składowe. 
Parametry linii dla częstotliwości 2000=pf Hz (przykład 4.1) są podane w tabeli 4.1.  

Tabela 4.1. Parametry linii 400 kV dla częstotliwości 2 kHz 

Wielkość Składowa zgodna Składowa zerowa 
R' , Ω/km 0,09619 2,0075 

L' , mH/km 1,0194 1,968 
C' , µF 0,01123 0,00779 

α , Np/km 1,596⋅10–4 0,0020 
β , rad/km 0,0425 0,0491 

 
Długość fali rozpatrywanych przebiegów można określić, badając zmianę fazy funkcji 

)j,(1 pxA ω  oraz )j,(0 pxA ω . Otrzymamy następującą ogólną zależność:  

β
λ π2

= , 

co w danym przypadku daje następujące wartości: 097,1280 =λ  km oraz 776,1471 =λ  km.  



134 4. Model linii elektroenergetycznej 

–1 0 50 100 150 200 250 x, km

–0,8
–0,6
–0,4
–0,2

0
0,2
0,4
0,6
0,8

1

U1(x)U0(x)

xe 1α−

xe 0α−

 

Rys. 4.4. Rozkład fali pierwotnej wzdłuż linii 

Prędkość rozchodzenia się fali zależy od jej długości i częstotliwości zgodnie ze znaną zależ-
nością:  

β
ω

λ == fv , zatem: 5
0 10562,2 ⋅=v  km/s, 5

1 10955,2 ⋅=v  km/s. 

Jak widać, prędkość rozchodzenia się fali elektromagnetycznej w dużym stopniu zależy od pa-
rametrów linii. Ponadto tłumienie w ekwiwalentnej linii faza–faza jest znacznie mniejsze niż 
w przypadku, gdy przewodem powrotnym jest ziemia (dla składowej zerowej).  

Zależność (4.15) przedstawia równanie linii w dziedzinie częstotliwości, z uwzglę-
dnieniem zależności jej parametrów od częstotliwości. Mnożąc równanie prądowe 
w (4.15) przez fZ  i odejmując od pierwszego równania (napięciowego), otrzymamy: 

 ( ) l
ff IZUIZU γωωωωωω −+=− e)j()j()j()j()j()j( 2211  (4.20) 

co może być zapisane w postaci równania napięciowego lub prądowego:  

 ( ) )j()j()j()j()j()j()j( 2211 ωωωωωωω AIZUIZU ff ++=  (4.21) 

 ( ) )j()j()j(/)j()j(/)j()j( 2211 ωωωωωωω AIZUZUI ff +−=  (4.22) 

gdzie: A(jω) jest określone jak w (4.19). 
Można zauważyć, że jeśli wyrażenie (4.20) odnieść do linii bezstratnej, z parame-

trami niezależnymi od częstotliwości: 

C'L'ZZ ff /)( ==ωj , L'C'ωγ j= , ωτγ jee −− =l ,  

to dokonując odwrotnego przekształcenia Fouriera zależności (4.20), otrzymamy: 

)()()()( 2211 ττ −+−=− tiZtutiZtu ff , 

przy czym: { } ωτωτ je)j()( −=− XtxF . 
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Wyrażenie to jest analogiczne do związku (1.51), który odpowiada modelowi 
w dziedzinie czasu dla linii bezstratnej. Można zatem rozpatrywać (4.21) jako opera-
torowe równania modelu linii w dziedzinie częstotliwości. Parametry Zf (jω) oraz 
A(jω) można traktować jako transmitancje filtrów o odpowiednich charakterystykach 
częstotliwościowych.  

Zespoloną funkcję propagacji A(jω) można rozpatrywać jako połączenie transmi-
tancji filtru o parametrach skupionych P(jω) oraz linii opóźniającej:  

 fPA ωτωω je)j()j( −=  (4.23) 

gdzie: fτ  jest czasem przejścia przez linię składowej o największej szybkości. 
W ten sposób transmitancję A(jω) rozpatruje się jako połączenie transmitancji 

układu minimalno-fazowego P(jω) oraz linii opóźniającej, która nie jest układem mi-
nimalno-fazowym7 (jednostkowej amplitudzie odpowiada wiele różnych charaktery-
styk fazowych).  

Wielkość opóźnienia fτ  można określić ze związku:  

 ( ) ( ) ( ) lPAPf βωωωωτ +=−= )(arg)(arg)(arg jjj  (4.24) 

przy czym, do określenia funkcji P(jω) ważna jest zależność bezpośrednio wynikająca 
z (4.19) oraz (4.23):  

 lAP αωω −== e)j()j(  (4.25) 

Przedstawione zależności są podstawą syntezy odpowiednich filtrów, reprezentują-
cych parametry częstotliwościowe linii wyrażone za pomocą funkcji Zf (jω) oraz A(jω) 
w (4.21), (4.22). Funkcje te zależą od parametrów konstrukcyjnych linii i ekwiwalent-
nej rezystywności gruntu. Ich właściwości częstotliwościowe dla typowej linii trójfa-
zowej są przedstawione w następującym przykładzie.  

Przykład 4.4.  Zbadać charakterystyki częstotliwościowe dla składowej zgodnej i zero-
wej linii 400 kV o parametrach jak w przykładzie 4.1. Przyjąć, że linia ma 
długość 180 km.  

Podobnie jak w przykładzie 4.1, obliczenia wykonano za pomocą procedury LINE 
CONSTANTS w programie ATP–EMTP. Rozważany zakres zmian częstotliwości: 0,001 Hz–
1 MHz. Częstotliwościowe charakterystyki funkcji propagacji A(jω) są pokazane na rys. 4.5. 
Linia ciągła (1) odnosi się do składowej zgodnej, a przerywana (2) – do składowej zerowej li-

 
7 Transmitancja układu minimalno-fazowego nie ma zer w dodatniej części płaszczyzny ze-

spolonej s, dzięki czemu charakterystyce amplitudowej jednoznacznie odpowiada charaktery-
styka fazowa i odwrotnie [99]. Właściwość ta jest wykorzystywana do syntezy układów, dla 
których znana jest tylko częstotliwościowa charakterystyka amplitudy. 
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nii. Widać, że faza tej funkcji ( ) βω lA −=)j(arg  niemal liniowo narasta w kierunku ujemnym 
wraz ze wzrostem częstotliwości. Wynika to z zależności v/ωβ = , co przy nieznacznie zmie-
niającej się prędkości v  powoduje niemal liniowe narastanie fazy propagacji. Jest to również 
zrozumiałe w sensie interpretacji fizycznej: współczynnik βl  wskazuje na przesunięcie fazo-
we pomiędzy końcami linii, a przesunięcie to jest, obrazowo mówiąc, równe długości (liczonej 
w stopniach lub radianach) fali odłożonej wzdłuż linii. Ta miara jest więc proporcjonalna do 
częstotliwości fali.  
Dla linii bezstratnej mamy L'C'v ωωβαγ jjj ==+= / , co daje L'C'A ωω jej −=)( . Funkcja 
propagacji przedstawia zatem tylko przesunięcie fazowe, proporcjonalne do częstotliwości. 
W takim przypadku funkcja A(jω) reprezentuje również odkształcenie związane ze stratami 
w linii, a także ze zmianami parametrów w funkcji częstotliwości. 
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Rys. 4.5. Częstotliwościowe charakterystyki funkcji propagacji A(jω):  
a) charakterystyka amplitudowa, b) charakterystyka fazowa 

Przez analogię do opisu filtru, funkcję tę można traktować jako transmitancję układu tłumiące-
go o charakterystyce amplitudowej jak na rys. 4.5a. Racjonalnie jest wówczas charakterystykę 
fazową podzielić na dwie części, z których pierwsza związana jest ze wspomnianym odkształ-
ceniem, a druga odnosi się do przesunięcia fazowego wynikającego z propagacji fali (4.23). 
W tej zależności fωτ  jest fazą propagacji (dla wybranej pulsacji ω jest to kąt przesunięcia fa-
zowego fali na obu końcach linii).  
W charakterze czasu propagacji fτ  należy wybrać minimalną wartość w rozpatrywanym prze-
dziale zmian częstotliwości [78]. Odnosi się to zazwyczaj do największej częstotliwości w tym 
przedziale. Można zauważyć, że funkcja propagacji jest iloczynem transmitancji P(jω) oraz 
przesunięcia fazowego fωτje− , przy czym )()( ωω jj AP =  (wzór (4.25)). Charakterystyki fa-
zowe { } =)j(arg ωP lf βωτ −  funkcji P(jω) dla składowej zgodnej (krzywa 1) oraz składowej 
zerowej (2) rozpatrywanej linii 400 kV są pokazane na rys. 4.6. 
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Rys. 4.6. Częstotliwościowe charakterystyki fazy transmitancji P(jω) linii 400 kV:  
1 – dla składowej zgodnej, 2 – dla składowej zerowej  

Wartości czasu propagacji τf dla obu składowych zostały oszacowane dla częstotliwości fgr, 
przy której amplitudy funkcji )( ωjP  zmniejszają się do wartości poniżej 0,01 (rys. 4.5a) we-

dług następującej relacji: ( ) ==
= grfff vl /τ  ( )

grff
l

=
ωβ / . Próg ten można uznać za graniczną 

wartość poprawnego oszacowania amplitudy transmitancji P(jω).  
Charakterystyki z rys. 4.5a oraz 4.6 odnoszą się zatem do impedancji ekwiwalentnego obwodu 
tłumiącego, który odzwierciedla w schemacie zastępczym odpowiednich linii straty oraz zależ-
ność jej parametrów od częstotliwości.  
Charakterystyki impedancji falowej są pokazane na rys. 4.7. Również w tym przypadku zależ-
na od częstotliwości zastępcza impedancja falowa może być traktowana jak impedancja sku-
piona o odpowiedniej charakterystyce amplitudowej i fazowej.  
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Rys. 4.7. Częstotliwościowe charakterystyki impedancji falowej linii: a) charakterystyka  
amplitudowa, b) charakterystyka fazowa; 1 – dla składowej zgodnej, 2 – dla składowej zerowej 

Transmitancje operatorowe filtrów odpowiadających parametrom linii Zf(s) 

sfZ
=

=
ω

ω
j

j )(  oraz 
s

PsP
=

=
ω

ω
j

j )()(  można określić zgodnie z zasadami syntezy 



138 4. Model linii elektroenergetycznej 

układów minimalno-fazowych [22, 70, 99]. Zakłada się, że znane są charakterystyki 
amplitudowe )( ωjfZ  oraz )( ωjP  (można je wyznaczyć na podstawie znanych pa-

rametrów konstrukcyjnych linii – przykład 4.1). W przypadku impedancji falowej linii 
poszukiwana jest transmitancja o następującej postaci:  
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 (4.26) 

Do określenia czynników w reprezentacji iloczynowej funkcji (4.26) można posłu-
żyć się procedurą aproksymacji logarytmicznej charakterystyki amplitudowej (metoda 
Bodego [78]). Po zlogarytmowaniu (4.26) otrzymuje się:  

 
m

n

k

kzf

bsbsbs

zszszsksZ

−−−−−−−

−++−+−+=

log20..log20log20

log20..log20log20log20)(log20

21

21
 (4.27) 

Ta zasada aproksymacji jest często stosowana do pobieżnego sposobu analizy 
i syntezy układów regulacji automatycznej. Rzeczywista charakterystyka amplitudowa 
(przedstawiona w skali logarytmicznej) jest aproksymowana za pomocą sumy odcin-
ków, których kąt nachylenia jest określony przez ±20dB/dekadę (zerowe nachylenia 
odpowiada wartości stałej). Każdy ze składników (4.27) (poza wartością stałą) jest re-
prezentowany dwoma półprostymi, których parametry są określane według następują-
cego schematu (na przykładzie składnika związanego z pierwszym zerem transmitan-
cji):  
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Wyrażenie to jest aproksymowane zgodnie z przybliżeniem asymptotycznym:  
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Błąd przybliżenia maleje wraz z oddalaniem się argumentu ω  od wartości pulsacji 
odpowiadającej zeru mianownika 1z  (rys. 4.8 – linią przerywaną oznaczono przebieg 
rzeczywistej charakterystyki, a linią ciągłą – aproksymację logarytmiczną). Podobne 
zależności odnoszą się również do członów związanych z biegunami transmitancji, 
przy czym należy wówczas uwzględnić ujemny znak, co zmienia kierunek nachylenia 
półprostej.  

Na tej zasadzie można utworzyć procedurę aproksymacji charakterystyki amplitu-
dowej przedstawionej w postaci logarytmicznej (obie osie: pulsacji oraz amplitudy). 
Do określenia najlepszego przybliżenia można stosować kryterium najmniejszych 
kwadratów [81].  
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Rys. 4.8. Charakterystyka logarytmiczna transmitancji )10()( −= ssH  

Zaletą przedstawionego sposobu aproksymacji jest możliwość bezpośredniego 
określenia zer i biegunów transmitancji układu, które przy dodatkowych założeniach, 
mogą spełniać założone warunki. Na przykład, jeśli transmitancja ma być fizycznie 
realizowana w postaci łańcucha dwójników RC, to zera i bieguny transmitancji po-
winny być rozmieszczone naprzemiennie na ujemnej osi rzeczywistej płaszczyzny s, 
przy czym najbliżej początku układu znajduje się biegun.  
Sposób syntezy takiego układu jest pokazany w następującym przykładzie.  

Przykład 4.5.  Dokonać syntezy łańcucha dwójników RC, który aproksymuje impedan-
cję falową linii 400 kV dla składowej zerowej Zf0(jω). Parametry linii 
przyjąć jak w przykładzie 4.1.  

Charakterystyka amplitudowa rozpatrywanej impedancji falowej jest pokazana na rys. 4.7, 
krzywa 2. Zakładając aproksymację piątego stopnia otrzymuje się następującą transmitancję 
(obliczenia wykonano z zastosowaniem procedur programu MATLAB [85]):  

))()()()((
))()()()(()(

54321

54321
0 bsbsbsbsbs

zszszszszsksZ Zf −−−−−
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= , 

gdzie: 
15,446=Zk  37112 −=1z  1266,4 −=2z   18,708 −=3z  4,469 −=4z  088,15 −=z  

   33789 −=1b  1165,5 −=2b    14,013 −=3b   3,929 −=4b  0,9057 −=5b . 
Jak widać, spełnione są warunki reprezentacji tej transmitancji za pomocą dwójników RC.  
Po rozłożeniu transmitancji )(0 sZ f  na ułamki proste otrzymamy: 
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W ten sposób otrzymuje się: 
6

1 10478,1 ⋅=K  4
2 10935,4 ⋅=K  2,23353 =K  0,3964 =K  86,1555 =K . 

Postępując zgodnie z metodą Fostera syntezy dwójników, otrzymamy łańcuch RC (rys. 4.9), 
w którym parametry poszczególnych elementów są określane następująco [70]:  

ZkR =0 , iii bKR /−= , ii KC /1= , i = 1, ..., 5. 
Po podstawieniu, otrzymamy: 
R0 = 446,15 Ω, R1 = 43,738 Ω, R2 = 42,345 Ω, R3 = 166,65 Ω, R4 = 100,78 Ω, R5 =172,10 Ω, 
C1 = 0,6766 µF, C2 = 20,26 µF, C3 = 428,2 µF, C4 = 2525 µF, C5 = 6416 µF. 
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Rys. 4.9. Łańcuch RC reprezentujący transmitancję )(0 ωjfZ  

Porównanie charakterystyk częstotliwościowych impedancji uzyskanych z obliczeń i w rezul-
tacie modelowania jest pokazane na rys. 4.10.  
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Rys. 4.10. Charakterystyki częstotliwościowe: a) amplitudy i b) fazy impedancji falowej  
składowej zerowej Zf0 (jω); 1 – układ oryginalny, 2 – model w postaci łańcucha RC 

Model cyfrowy uzyskanego w ten sposób obwodu zastępczego może być utworzo-
ny zgodnie z zasadami modelowania sieci o parametrach skupionych. Pojedynczy i-ty 
człon RC łańcucha jest opisany następującym modelem ciągłym:  

 )(1)(1)( ti
C

tu
CRt

tu
fZ

i
i

ii

i +−=
d

d  (4.28) 

który ma następujące rozwiązanie ogólne: 

 ττταα dee ∫ −−−− +=
t

t
Z

t

i
i

tt
i f

iiii i
C

tutu
0

0 )(1)()( )(
0

)(  (4.29) 

gdzie: iii CR/1=α , 0t  oznacza początek obserwacji. Należy zauważyć, że prąd 
)(ti

fZ  odnosi się do wszystkich członów schematu.  

Stosując metodę trapezów do aproksymacji całki, otrzymamy ( Ttt =− 0  – okres 
modelowania):  
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Szeregowe połączenie m członów RC oraz rezystancji R0 może być przedstawione 
następującym modelem cyfrowym:  

 )1()()( −+= kvkiRku
fff ZZZ  (4.31) 

gdzie: ∑
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Napięcie )(ku  jest sumą napięć )(kui  wszystkich elementów łańcucha RC, co jest 
równoważne napięciu linii w rozpatrywanym węźle. Zapisując zależność (4.31) w po-
staci prądowej, otrzymamy: 
 )1()()( −+= kjkuGki

ff ZfZ  (4.32) 

gdzie: 
fZf RG /1= , )1()1( −−=− kvGkj

ff ZfZ . 

Jak widać, aproksymacja impedancji falowej linii w postaci łańcucha dwójników 
RC prowadzi do prostego zastępczego modelu cyfrowego. Należy jednak zauważyć, 
że zależność (4.29) ma bardziej ogólny charakter: można ją zastosować do składo-
wych pierwszego rzędu, które uzyskuje się w wyniku rozkładu transmitancji (4.26) na 
ułamki proste (także wówczas, gdy na przykład ujemna rezystancja nie może być re-
alizowana fizycznie).  

W przypadku aproksymacji funkcji propagacji A(jω) analogiczną procedurę można 
zastosować w odniesieniu do transmitancji minimalno-fazowej P(jω) (wzór (4.23)) 
Ilustruje to kolejny przykład.  

Przykład 4.6.  Dokonać syntezy układu, który aproksymuje funkcję P0(jω), odpowiada-
jącą składowej zerowej linii 400 kV o parametrach jak w przykładzie 4.4. 

Charakterystyka amplitudowa funkcji P0(jω) jest pokazana na rys. 4.5a, krzywa 2. Przedział 
rozpatrywanych częstotliwości można sensownie ograniczyć, zakładając, że pomija się dane 
dla amplitudy mniejszej od 0,01. Postępując podobnie jak w poprzednim przypadku (aproksy-
macja piątego stopnia), otrzymuje się następującą transmitancję:  
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gdzie: 
 0465,0=Pk , 29424 −=1z ,     659,99 −=2z , 12,89 −=3z , 0,1915 −=4z , 
 9842,8 −=1b , 3089,5 −=2b ,   4,5693 −=b , 12,58 −=4b , 0,1908 −=5b . 
Rozkładając transmitancję )(0 sP  na ułamki proste otrzymamy: 
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gdzie: 
ibsii bssPK
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−= ))((0 . 

W ten sposób otrzymuje się: 
6,23721 −=K , 3,31062 =K , 41,923 =K , 2916,04 =K , 4

5 100,6 −⋅=K . 
W przyjętym sposobie aproksymacji amplitudowej charakterystyki logarytmicznej [43] współ-
czynnik 1K  jest ujemny, co uniemożliwia reprezentację tej transmitancji w postaci łańcucha 
RC (transmitancja P0 (jω) nie jest odpowiednikiem impedancji, jak w przypadku Zf0 (jω)), jed-
nak w dalszym ciągu można stosować obliczenia zgodnie z zależnościami (4.28)–(4.31), przy 
czym, ii b−=α . Przy wymuszeniu prądowym )(kiPw  (prąd wejściowy) zależność (4.32) można 
zapisać następująco (uzyskuje się w rezultacie prąd skorygowany):  
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Po uproszczeniu uzyskuje się następujące zależności, pozwalające określić prąd :)(kiPi  
)1()()( −+= kjkiLki PiPwiPi , i = 1, ..., 5,  

przy czym: )1()1()1()1( −−+−=− kikLkiekj PwiPi
Tb

Pi
i , iPi KGTL

2
= .  

W przedstawionych zależnościach )(kiPw  jest prądem wejściowych do bloku o transmitancji 
P0 (jω), natomiast )(kiP  jest prądem wyjściowym (skorygowanym).  
Porównanie uzyskanych w ten sposób charakterystyk częstotliwościowych z charakterystyka-
mi oryginalnymi jest pokazane na rys. 4.11.  
Stosując aproksymację Bodego (jak powyżej), również można uzyskać realizację aproksymu-
jącej transmitancji w postaci rzeczywistego łańcucha RC [78].  

Stosunkowo duża różnica charakterystyk fazowych (rys. 4.11b) wynika z tego, że 
charakterystyka funkcji oryginalnej została oszacowana bardzo niedokładnie, na pod-
stawie czasu propagacji składowej o najwyższej częstotliwości. Ponieważ w tym za-
kresie częstotliwości tłumienie jest bardzo duże, więc dokładność tej części charakte-
rystyki jest także niewielka. Zakładając, że charakterystyka funkcji P(jω) jest 
poprawnie reprezentowana przez transmitancję )(sP , opóźnienie fτ  można określić 



4.1. Linia jednofazowa 143 

ze związku (4.24). Wygodnie jest odnieść obliczenia do pulsacji znamionowej syste-
mu ω1. Uwzględniając (4.8), uzyskamy:  
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Rys. 4.11. Charakterystyki częstotliwościowe: a) amplitudy  
i b) fazy funkcji propagacji P0 (jω); 1 – układ oryginalny, 2 – model piątego rzędu  

Obie funkcje określające właściwości częstotliwościowe linii Zf (jω) oraz A(jω) 
mogą być zatem przedstawione w postaci zastępczych obwodów skupionych, repre-
zentujących odpowiednie transmitancje )(sZ f , )(sP , a także przesunięcie fτ . To 
ostatnie może być przedstawione w postaci linii opóźniającej, jak w modelu linii bez-
stratnej. Należy zauważyć, że w modelu prądowym (4.22) rozpatrywanej linii transmi-
tancja A(jω) pełni rolę odpowiedniego współczynnika tłumienia z historią (jest to 
wielkość bezwymiarowa). Wymuszeniem dla tej transmitancji są parametry elektrycz-
ne określone na drugim końcu linii: U2 (jω) / Zf (jω) + I2 (jω), które przedstawiają su-
mę prądu płynącego z węzła do linii oraz płynącego przez impedancję falową Zf (jω). 
Uwzględniając strukturę transmitancji A(jω), równanie (4.22) w dziedzinie czasu 
można napisać w następującej formie:  

 )()()( 111 mkjkiki
fZ −+=  (4.34) 

gdzie: 
fZi1  jest określone zgodnie z (4.32) dla węzła 1; )(1 mkj −  jest prądem okre-

ślonym na podstawie parametrów drugiego końca linii, z uwzględnieniem tłumienia 
przez transmitancję )(sP ; m  jest liczbą próbek opóźnienia, którą należy określić po-
dobnie jak dla linii bezstratnej, na podstawie czasu fτ .  
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Jeśli się uwzględni (4.32), wartość dyskretna wymuszenia w stosunku do impedan-
cji )(sP  w k-tym kroku, w 2 węźle linii, będzie określona przez sumę prądów:  

 )1()()()()()( 222222 −++=+= kjkikuGkikiki
ff ZfZPw  (4.35) 

Biorąc pod uwagę opóźnienie o m  próbek oraz rezultat przetwarzania przez blok 
transmitancji )(sP , otrzymamy (patrz przykład 4.6):  

 )1()()( 221 −−+−=− mkjmkimkj PPw  (4.36) 
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mk  jest liczbą biegunów ib  transmitancji )(sP , natomiast Pk  oraz iK  to odpowiednie 
współczynniki rozkładu transmitancji na ułamki proste. 

Zależności (4.32)–(4.36) tworzą cyfrowy model linii z parametrami zależnymi od 
częstotliwości. Pomimo wielu parametrów występujących w tych równaniach, struktu-
ra modelu jest prosta (rys. 4.12).  

Prądy )(1 mkj − , )(2 mkj − , podobnie jak w linii bezstratnej, są odbiciem propa-
gacji fali elektromagnetycznej wzdłuż linii i należy je określać na podstawie parame-
trów z drugiej strony linii, zgodnie z (4.35), (4.36) (gdzie uwzględnia się transmitancję 

)(sP ).  
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Rys. 4.12. Schemat zastępczy linii z uwzględnieniem zależności parametrów 
 od częstotliwości 

Prądy )1(1 −kj
fZ , )1(2 −kj

fZ  wraz z przewodnością fG  tworzą obwody reprezentu-

jące impedancję falową Zf (jω) zgodnie z (4.32). 
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4.2. Linia wielofazowa 

4.2.1. Model o parametrach skupionych 

Model linii o dowolnej liczbie przewodów został pierwotnie sformułowany w pracy 
[18]. Carson wprowadził tam model uogólniony, w którym rozważa się układ z prze-
wodami fizycznymi oraz ekwiwalentnymi przewodami powrotnymi (rys. 4.13). Za-
kłada się, że przewody powrotne są identyczne jak przewody fizyczne i są rozmiesz-
czone symetrycznie względem powierzchni ziemi.  

Parametry schematu zastępczego rozpatrywanej linii można wyprowadzić z zało-
żenia, że suma prądów we wszystkich przewodach linii z rys. 4.13 jest równa zero. 
Schemat zastępczy odcinka linii jest pokazany na rys. 4.14. Wektor określający spa-
dek napięcia na tym odcinku linii jest określony następującym równaniem:  
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gdzie: 
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AR , ..., NMR  – oporności odpowiednich przewodów, z uwzględnieniem temperatury, 
częstotliwości i wartości prądu; 

lfRD ⋅×= −710869,9  (Ω), f  – częstotliwość (Hz), l – długość przewodu, (m); 

km

km
km d

DlL ln
2

0

π
µ

=  (H), 7
0 104 −×= πµ H/m – przenikalność magnetyczna próżni, mk,  
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– numery odpowiednich przewodów, kkd  – promień przewodu (w przypadku przewo-
du wiązkowego – promień zastępcy).  

dkm

k

m

k'

m'

Dkm

 

Rys. 4.13. Rozmieszczenie przewodów ekwiwalentnej linii napowietrznej 

Rzadko bywa zasadne stosowanie modelu linii określonego przez równanie (4.37). 
W analizie obwodów trójfazowych wygodnie jest posługiwać się modelem uprosz-
czonym. 

RA LAiA

RB LBiB

RC LCiC

RN1 LN1iN1

RNM LNMiNM

. . .

LAB

LAC

LAN1

LANM

 

Rys. 4.14. Schemat zastępczy linii wieloprzewodowej z parametrami podłużnymi 
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Uproszczenie może polegać na zastąpieniu M przewodów powrotnych przez jeden 
przewód ekwiwalentny (model linii trójfazowej z przewodem powrotnym) lub uprosz-
czeniu modelu do trzech przewodów fazowych.  

W celu wyprowadzenia odpowiednich zależności zapiszmy równanie (4.37) w spo-
sób bardziej szczegółowy:  
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gdzie: 
kkDkkk LRRZ ωj++= , kmDkm LRZ ωj+= . 

Jak widać, sprzężenia pomiędzy przewodami występują zarówno w odniesieniu do in-
dukcyjności, jak i do rezystancji.  

Równanie (4.38) można zapisać w postaci: 
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 (4.39) 

gdzie poszczególne macierze i wektory blokowe reprezentują odpowiednie fragmenty 
równania (4.38).  

Na podstawie (4.39) można napisać dwa niezależne równania: 

 
NDfC

NBfA

IZIZ0
IZIZ∆U

+=

+=
 (4.40) 

Z drugiego z tych równań otrzymujemy: 
 fCDN IZZI 1−−=  (4.41) 

Po podstawieniu (4.41) do pierwszego równania (4.40) otrzymujemy: 
 ff IZ∆U =  (4.42) 

gdzie: 

 















=−= −

CCBCAC

BCBBAB

ACABAA

CDBAf

ZZZ
ZZZ
ZZZ

ZZZZZ 1  (4.43) 

jest macierzą ekwiwalentnej linii trójfazowej (rys. 4.15). 
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W przypadku linii transponowanej zachodzą następujące relacje: 

SCCBBAA ZZZZ === , MBCACAB ZZZZ === . 

RA LAiA

RB LBiB

RC LCiC

LAB

LAC LBC

RAB

RAC RBC

 

Rys. 4.15. Schemat uproszczony modelu podłużnego linii trójfazowej 

Zależności te odnoszą się do dziedziny częstotliwości. Spadek napięcia na odcinku 
rozważanej linii w dziedzinie czasu wyraża się następującą zależnością:  
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Korzystając z modelu linii wieloprzewodowej przedstawionej na rys. 4.13, można 
także wyprowadzić odpowiednie zależności dla ekwiwalentnego modelu poprzeczne-
go linii. Tym razem zakłada się, że przewody napowietrzne są całkowicie izolowane 
od siebie i od ziemi (a zatem i od ekwiwalentnych przewodów w ziemi). Napięcie 
pomiędzy przewodami jest zależne od rozkładu ładunków elektrycznych na tych 
przewodach. Ładunki q  na fizycznych przewodach mają przeciwne znaki do ładun-
ków zgromadzonych na ekwiwalentnych przewodach pod ziemią. Zakładając, że na-
pięcie między wybranym, k-tym przewodem a ziemią jest równe połowie napięcia 
między tym przewodem, a jego zwierciadlanym odbiciem w ziemi, otrzymamy [45]:  
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gdzie: 12
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0
0 10854,81 −×==

cµ
ε  F/m – przenikalność elektryczna próżni, iq  – ładunek 

i-tego przewodu, (C/m), c – prędkość fali elektromagnetycznej w próżni (m/s). 
Podobne równanie można zapisać dla każdego z przewodów linii, przy czym, 

w rozważanym przypadku, tylko przewody fazowe są odizolowane od ziemi. Pozosta-
łe przewody są uziemione i mają potencjał zerowy. Pełne równanie w postaci macie-
rzowej przyjmuje następującą formę:  
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gdzie: 
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0επ
=  (m/F) (4.47) 

Wielkość kmP  jest znana jako współczynnik Maxwella (potencjałowy). 
Podobnie jak w przypadku (4.38), równanie można uprościć do przypadku ekwi-

walentnej linii trójfazowej:  
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skąd: 

 ( ) fCDBAf qPPPPU 1−−=  (4.49) 

Wygodniej jest posługiwać się odwrotnym zapisem: 

 ( ) fffCDBAf UCUPPPPq =−=
−− 11  (4.50) 
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gdzie: 
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jest macierzą pojemności ekwiwalentnego układu trójfazowego. 
Czynnym składnikiem modelu poprzecznego linii jest jej przewodność. Jeśli ogra-

niczyć rozważania do przypadku liniowego, odpowiedni model będzie określony na-
stępującym równaniem:  

 ffG UGI = , 
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W liniach elektroenergetycznych zazwyczaj pomija się składową czynną w para-
metrach poprzecznych ze względu na jej małą wartość w stosunku do reaktancji po-
jemnościowej. W takim przypadku model linii trójfazowej przyjmuje postać jak na 
rys. 4.16.  
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Rys. 4.16. Schemat zastępczy linii trójfazowej 

Prąd płynący przez elementy poprzeczne modelu linii trójfazowej z jednej strony 
linii można określić na podstawie następujących zależności: 

 ffY UYI = , fff CGY ωj+=  (S/m) (4.53) 

w dziedzinie częstotliwości lub: 

 )()()( t
t

tt ffffY UCUGI
d
d

+=  (4.54) 

w dziedzinie czasu. 
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Należy zauważyć, że w przyjętym modelu wartości przewodności i pojemności li-
nii są rozdzielone na dwie równe części umieszczone na obu końcach linii. Pojemno-
ści międzyfazowe mają wartości ujemne, natomiast pojemności doziemne w schema-
cie zastępczym mają następujące wartości:  

.
,
,
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−−=
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Podobnie jak w modelu podłużnym, w przypadku linii transponowanej zachodzą 
następujące relacje: 

SCCBBAA CCCC === , MBCACAB CCCC === . 

Model linii transponowanej ma istotne znaczenie praktyczne, gdyż w wielu przy-
padkach wygodnie jest przyjąć założenie o jednakowych parametrach wszystkich 
trzech faz rzeczywistej linii. Można wówczas korzystać z parametrów linii dla skła-
dowych symetrycznych. Odpowiednie zależności uzyskuje się przez przekształcenie 
układu trójfazowego we współrzędnych fazowych do składowych symetrycznych. 
W ogólnym przypadku zachodzi następujący związek:  

 sf SUU =  (4.55) 

w odniesieniu do napięć (analogicznie dla prądów), gdzie: 
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sU  – wektor składowych symetrycznych napięcia (prądu). 

Stosując przekształcenie (4.55) w odniesieniu do (4.42), otrzymuje się następującą 
relację pomiędzy macierzą impedancji składowych fazowych fZ  i odpowiadającą jej 
macierzą impedancji składowych symetrycznych sZ :  

 SZSZ fs
1−=  (4.57) 

Jeśli układ trójfazowy jest transponowany (to znaczy, że macierz parametrów ma 
tylko dwa różne elementy: na przekątnej oraz poza przekątną), to macierz składowych 
symetrycznych jest diagonalna: 
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W przypadku linii: 21 ZZ = . 
Z relacji (4.57) wynika, że dla przypadku linii transponowanej prawdziwe są za-

leżności:  
MS ZZZ 20 += , MS ZZZ −=1 , 

3
2 10 ZZZ S

+
= , 

3
10 ZZZ M

−
=  

i podobnie dla rezystancji, indukcyjności i pojemności. W tym ostatnim przypadku na-
leży pamiętać, że wartość MC  jest ujemna.  

Należy zauważyć, że przekształcenie składowych symetrycznych odnosi się do ze-
spolonych wektorów napięć lub prądów reprezentujących sinusoidalne przebiegi tych 
wielkości dla określonej częstotliwości. Dlatego, nie znalazło ono bezpośredniego za-
stosowania do rozważanego tu modelowania stanów dynamicznych sieci. Przytoczone 
powyżej związki są jednak istotne ze względu na to, że parametry elementów sieci są 
najczęściej podawane dla składowych symetrycznych.  

Schemat przedstawiony na rys. 4.16 jest w istocie trójfazowym czwórnikiem Π. 
Może on być łatwo rozszerzony na dowolną liczbę faz w celu uwzględnienia przewo-
dów odgromowych lub powłokę przewodzącą w liniach kablowych (rys. 4.17). W tym 
ostatnim przypadku, przy założeniu pełnej symetrii kabla, macierz rezystancji ma na-
stępującą postać:  
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i podobnie dla indukcyjności, przewodności i pojemności. 
W sytuacji dostatecznej symetrii budowy kabla można przyjąć, że spełnione są na-

stępujące zależności: 

SCCBBAA RRRR === , MBCACAB RRRR === , MGCGBGAG RRRR === . 

Podobnie jak w przypadku linii napowietrznych, również w modelu kabli zazwy-
czaj pomija się przewodność. 



4.2. Linia wielofazowa 153 

powłoka przewodzącaprzewód fazowy

izolacja przewodu
 

Rys. 4.17. Struktura kabla trójżyłowego z powłoką przewodzącą 

Parametry linii kablowych są zazwyczaj znacznie trudniejsze do obliczenia niż pa-
rametry linii napowietrznych. Wynika to z tego, że oprócz danych geometrycznych 
i stałych materiałowych mają tu wpływ różne czynniki, jak sposób rozmieszczenia po-
szczególnych żył, sposób prowadzenia i głębokość ułożenia kabla w ziemi i inne. 
W przypadku kabli z powłokami przewodzącymi należy także uwzględnić sposób 
uziemienia pancerza na końcach kabla. W profesjonalnych programach komputero-
wych do modelowania stanów dynamicznych sieci dostępne są zazwyczaj procedury 
do obliczania parametrów linii napowietrznych i kablowych na podstawie danych 
geometrycznych i materiałowych.  

4.2.2. Model o parametrach rozłożonych 

Równania modelu linii wielofazowej o parametrach rozłożonych można wyprowadzić 
podobnie jak w przypadku linii jednofazowej. W przypadku n faz równanie (1.45) 
przyjmie następującą postać:  
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gdzie: 



















=

),(

),(
),(

),( 2

1

txu

txu
txu

tx

n

M
U , 



















=

),(

),(
),(

),( 2

1

txi

txi
txi

tx

n

M
I  – napięcia i prądy n-fazowej linii; 
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R  (Ω/km) – macierz rezystancji jednostkowych linii (po-

dobnie dla 'G , 'L , 'C ). 
W ogólnym przypadku parametry równań (4.60) są zależne od częstotliwości. 

W wielu jednak rozważaniach wpływ ten można pominąć, co istotnie upraszcza mo-
del. Poniżej oba te podejścia rozpatrywane są oddzielnie.  

a) Model linii o stałych parametrach względem częstotliwości 

W cyfrowych modelach linii najczęściej nie korzysta się z równań w postaci (4.60), ze 
względu na ich dużą złożoność. Sposób podejścia jest tu podobny do założeń stoso-
wanych w odniesieniu do linii jednofazowej. Zakłada się zatem, że rozważana linia 
długa może być rozpatrywana jako linia bezstratna, natomiast rezystancja (a niekiedy 
także przewodność) – w postaci modelu o parametrach skupionych.  

Po pominięciu rezystancji i przewodności równania (4.60) mogą być zapisane 
w następującej formie (analogicznie do (1.48)):  
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 (4.61) 

Należy zauważyć, że macierze: 

''u CLA = , ''i LCA = , 

są pełne i na ogół różne, przy czym, ponieważ macierze parametrów są symetryczne:  

 ( )T
ui AA =  (4.62) 

Indeksy i oraz u wskazują na przynależność macierzy parametrów do równania prą-
dowego lub napięciowego w (4.61).  

Cyfrową realizację modelu linii można znacznie uprościć, jeśli macierze parame-
trów w równaniach (4.61) przedstawić w postaci diagonalnej. Układ wielofazowy nie 
jest wówczas sprzężony, a model linii n-fazowej jest reprezentowany przez n równań 
linii jednofazowych.  

Diagonalizacja macierzy parametrów jest związana z problemem obliczania warto-
ści własnych i wektorów własnych tej macierzy. Przekształcenie diagonalizujące daną 
macierz iA  ma następującą postać:  

 iiii TATA 1
mod

−=  (4.63) 
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gdzie: iT  jest kwadratową macierzą przekształcenia, której k-ta kolumna ks  (nazywa-
na wektorem własnym macierzy8 iA ) jest funkcją kolejnej k-tej wartości własnej kλ  
macierzy iA , tak, że spełnione jest następujące równanie [66]: 

 ( ) 0=− kki s1A λ  (4.64) 

Związek (4.63) jest znany jako przekształcenie przez podobieństwo, które ma tę 
właściwość, że wartości własne macierzy oryginalnej iA  oraz przekształconej diago-
nalnej modiA  są te same. Podobne zależności można napisać także w odniesieniu do 
macierzy parametrów równania napięciowego w (4.61):  

 uuuu TATA 1
mod

−=  (4.65) 

Odwrócenie zależności (4.63) i (4.65) prowadzi do wyznaczenia oryginalnych ma-
cierzy w równaniach (4.61) na podstawie ich reprezentacji modalnych (diagonalnych):  

 1
mod

1
mod

−

−

==

==

iiii

uuuu

''

''

TATLCA

TATCLA
 (4.66) 

Podstawienie zależności (4.66) do (4.61) prowadzi do równania linii wielofazowej 
w składowych modalnych:  
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gdzie: 
fii ITITI 11

mod
−− == , fuu UTUTU 11

mod
−− == ; 

indeks f wskazuje na wielkości fazowe. 
Zbadajmy zależności pomiędzy macierzami transformującymi iT  i .uT  Na podsta-

wie (4.62) oraz (4.66) można napisać: 

 ( ) ( ) T
i

T
i

T
i

T
iiiuuu TATTATTAT mod

11
mod

1
mod

−−− ==  (4.68) 

skąd: 

 ( ) modmod
1

mod
11

mod iiu
T
i

T
i

T
iuu ADADTTATTA === −−−  (4.69) 

 
8 Wartości własne macierzy kwadratowej A są pierwiastkami wielomianu względem 

zmiennej λ, który odpowiada równaniu: det(A–λ1) = 0; wektor własny x, związany z wartością 
własną λ, spełnia równanie: Ax = λx [61, 66]. 
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gdzie: 

 1TTD du
T

i == , 0≠d  (4.70) 

jest macierzą diagonalną o jednakowych elementach. Należy zauważyć, że:  
modmod i

T
i AA = , ponieważ jest to także macierz diagonalna.  
W wielu przypadkach wygodnie jest przyjąć, że d = 1, co prowadzi do następującej 

zależności dla macierzy przekształceń pomiędzy składowymi fazowymi i modalnymi: 
1−= u

T
i TT . Dalej rozważane są niektóre specjalne przypadki.  

Gdy macierz iA  ( uA ) jest rzeczywista (jak w rozważanym modelu (4.61)), to ma-
cierz przekształceń iT  ( uT ) jest także rzeczywista. Jeśli ponadto macierz parametrów 
jest symetryczna, to zachodzi następujący związek: 

 1TT =i
T
i , a więc: T

ii TT =−1  (4.71) 

i podobnie dla macierzy Tu. Macierz o właściwościach jak w (4.71) jest nazywana or-
togonalną9. W takim przypadku dla d = 1 obie macierze są jednakowe: 

 TTT == ui  (4.72) 

Warunek ten jest także zawsze spełniony dla linii transponowanych. 
Zauważmy, że równania (4.67) można traktować jak zbiór niezależnych równań 

o takiej strukturze, jak w (1.48). Jeśli zostanie spełniony warunek (4.71) w odniesieniu 
do macierzy transformacji prądów i napięć, to prędkości rozchodzenia się fal w rów-
naniach prądowych i napięciowych będą takie same, przy czym:  
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kk
k C'L'

v 1
=  – prędkość rozchodzenia się fali w k-tej modzie, 

kL' , kC'  – parametry k-tej mody. 
Podobne zależności zachodzą także w odniesieniu do impedancji falowych (1.50).  

 
9 W przypadku macierzy zespolonej odpowiednikiem macierzy ortogonalnej jest macierz 

unitarna. 
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Model cyfrowy odpowiadający równaniom (4.67) jest powieleniem dla każdej mo-
dy modelu jednofazowej linii bezstratnej. Można tu więc bezpośrednio zastosować 
odpowiednie algorytmy z rozdziału 1.  

Podstawowym uproszczeniem przyjętym w modelu (4.61) jest pominięcie rezy-
stancji linii. Aby uwzględnić tę rezystancję, można zapisać model linii długiej w dzie-
dzinie częstotliwości (dla stanu ustalonego – patrz (4.5)):  
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 (4.74) 

gdzie: 
LRZ ωj+=' , CGY ωj+='  (przewodność G  jest zazwyczaj pomijana),  

natomiast wektory napięcia U  i prądu I  są utworzone przez zespolone wielkości na-
pięć i prądów poszczególnych faz (jako funkcje odległości x), przy czym analogicznie 
do (4.4):  
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 (4.75) 

Zakłada się przy tym, że pulsacja ω jest parametrem stałym. Pominięcie przewod-
ności znacznie upraszcza analizę modelu i jest zazwyczaj praktycznie uzasadnione.  

Dla modelu zespolonego (4.74) macierze diagonalizujące: uT  oraz iT  są, w ogól-
nym przypadku, także zespolone, przy czym:  
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gdzie: ''u YZA = , ''u ZYA = .  
Po diagonalizacji macierzy parametrów równanie (4.74) przyjmie postać:  
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 (4.77) 

Diagonalne elementy macierzy parametrów w tych równaniach mają taką samą in-
terpretację jak w (4.6):  
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gdzie: kkkkk Y'Z' βαωωγ jjj +== )()(  jest stałą propagacji k-tej mody.  
Równość obu macierzy parametrów w (4.78) zachodzi również po spełnieniu wa-

runku (4.71). Jeśli porównamy (4.73) z (4.78) zobaczymy, że βk = ω/vk. Podstawiając 
(4.76) do (4.4) można łatwo sprawdzić poprawność następujących zależności:  
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W przekształceniach tych, macierze transformacji uT  oraz iT  są na ogół zespolo-
ne. Ta cecha znacznie komplikuje obliczenia i wobec tego dąży się do ich aproksyma-
cji za pomocą odpowiednich macierzy rzeczywistych. W tym celu należy odpowied-
nio ‘skręcić’ zespoloną macierz, aby zminimalizować urojone części jej 
współczynników. W pracy [30] podany jest następujący algorytm tej aproksymacji:  
1. Określić wstępną postać macierzy uuw TT =  (będzie to, w ogólnym przypadku, ma-

cierz zespolona), zakładając, że macierz admitancji 'Y  ma czysto reaktancyjny 
charakter.  

2. Obliczyć wstępną postać macierzy uw
T
uww ' TYTY =mod  na podstawie (4.79), przy 

czym 1−= iw
T

uw TT  (d = 1 w (4.70)).  
3. Ze względu na zespoloną postać macierzy uwT , macierz modwY  może zawierać tak-

że części rzeczywiste (w miejsce tylko urojonych). Jej elementy można zapisać na-
stępująco: k

kC αω jej mod . Normalizacja macierzy uwT → uT  polega na pomnożeniu 
jej kolumn przez współczynnik zespolony 2/kαje . Po tej normalizacji macierzy 
transformacji uzyskana macierz modY  jest pozbawiona części rzeczywistych (od-
rzucenie części rzeczywistych nie wprowadza istotnego błędu).  
Jeśli istnieje potrzeba uwzględnienia także przewodności poprzecznej linii, to mo-

del można w prosty sposób uzupełnić przez ograniczenie go tylko do przewodności 
doziemnych (z pominięciem przewodności międzyfazowych). Wówczas przewodno-
ści te znajdą się w poszczególnych modach – jeśli tylko są one jednakowe we wszyst-
kich fazach [30].  

Należy zauważyć, że model linii w dziedzinie częstotliwości, określony równania-
mi (4.74), służy jedynie do określania parametrów modelu oraz odpowiednich macie-
rzy transformacji, natomiast algorytm modelowania jest taki sam jak dla linii bezstrat-
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nej, z odpowiednim uzupełnieniem go o model rezystancji w postaci modelu o para-
metrach skupionych (w programach EMTP stosuje się podział całkowitej rezystancji 
linii na cztery części – patrz rys. 4.11b). Struktura rozważanego modelu jest pokazana 
na rys. 4.18.  

Model każdej mody jest realizowany zgodnie z algorytmem podanym w p. 1.3.6. 
W kolejnym kroku modelowania na obu końcach modelu linii wielkości fazowe na-
pięć są transformowane do składowych modalnych (prądy i napięcia) – aby zgodnie 
z algorytmem modelowania (1.65) i (1.66) określić prądy i odpowiednie wielkości, 
odnoszące się do historii procesu w poszczególnych składowych modalnych. Obliczo-
ne wartości prądów są z kolei przetwarzane na wielkości fazowe.  
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Rys. 4.18. Struktura modelu linii wielofazowej w układzie modalnym 

Następny przykład ilustruje problem obliczania macierzy diagonalizujących z wy-
korzystaniem procedur stosowanych w programie ATP–EMTP.  

Przykład 4.7.  Obliczyć parametry linii z przykładu 4.1 dla składowych fazowych i mo-
dalnych, zakładając, że jest to linia nietransponowana. Obliczenia wyko-
nać za pomocą procedury LINE CONSTANTS dostępnej w programie 
ATP–EMTP.  

Przekrój poprzeczny linii (rys. 4.1) jednoznacznie wskazuje na to, że parametry fazy środkowej 
(pojemność i indukcyjność) (B) są z pewnością odmienne od parametrów pozostałych faz. Plik 
danych wejściowych do obliczenia parametrów linii w programie ATP–EMTP różni się w sto-
sunku do pliku użytego w przykładzie 4.1 tylko jednym wierszem (który jest poniżej wyróż-
niony przez pogrubienie). Różnice użytego w tej linii kodu mają następujące znaczenie:  
poz. 34: 1 – pojemności będą liczone dla faz ekwiwalentnego układu trójfazowego (poprzednio 
jedynka była umieszczona na poz. 35, co oznaczało żądanie obliczenia pojemności dla składo-
wych symetrycznych ekwiwalentnego transponowanego układu trójfazowego);  



160 4. Model linii elektroenergetycznej 

poz. 38: 1 – impedancja podłużna liczona także dla faz ekwiwalentnego układu trójfazowego 
(poprzednio: 1 na poz. 39 oznacza określenie impedancji składowych symetrycznych ekwiwa-
lentnego transponowanego układu trójfazowego);  
poz. 44: 1 – pojemność będzie reprezentowana w jednostkach (F), a nie jako ω C (S) – jak po-
przednio;  
poz. 70: 1 – linia jest traktowana jako nietransponowana, co także oznacza konieczność obli-
czania macierzy transformacji prądów iT .  
 
BEGIN NEW DATA CASE 
C Linia 400 kV 
LINE CONSTANTS 
METRIC 
C   Dane do modułu LINE CONSTANTS 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
  1 .231   .0564 4            3.15   -10.3    24.5    12.0    40.0   0.0       2 
  2 .231   .0564 4            3.15     0.0    24.5    12.0    40.0   0.0       2 
  3 .231   .0564 4            3.15    10.3    24.5    12.0    40.0   0.0       2 
  0  0.5   .2388 4           1.565   -6.87    31.0    23.5 
  0  0.5   .2388 4           1.565    6.87    31.0    23.5 
BLANK CARD ENDING CONDUCTOR CARDS OF  "LINE CONSTANTS"  CASE 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C      >< Freq   >< FCar   > <ICPR> <IZPR> =< DIST > <PP>==< >< >< ><><> 
   100.0      50.0               1   1     1   180.0                 1   
BLANK CARD ENDING FREQUENCY CARDS 
BLANK CARD ENDING  "LINE CONSTANTS" 
BEGIN NEW DATA CASE 
BLANK  
 

Fragment pliku wynikowego jest pokazany na następnej stronie. Omówmy ważniejsze z uzy-
skanych wielkości (obliczenia wykonano dla częstotliwości znamionowej 50 Hz). 
Capacitance matrix odnosi się do macierzy pojemności dla poszczególnych faz fC  (F) (4.51). 
Ponieważ jest to macierz symetryczna, więc podana jest tylko dolna trójkątna jej część. Widać, 
że dwie skrajne fazy (rys. 4.1) mają jednakowe pojemności. Zauważmy, że poszczególne fazy 
są oznaczane kolejno: 1, 2, 3.  
Podobnie jest z macierzą impedancji (impedance matrix): ff LR ωj+  (Ω), przy czym elemen-
ty macierzy reaktancji są podane w dolnych wierszach. Również tutaj widać, że wyróżniona 
jest faza środkowa.  
Z kolei podane są parametry linii w składowych modalnych (modal parameters): rezystancja, 
reaktancja, susceptancja, impedancja falowa (surge impedance), prędkość rozchodzenia się 
fali elektromagnetycznej v : w linii bezstratnej (lossless) i rzeczywistej (actual), a także tłu-
mienie α (attenuation). Można zauważyć, że wszystkie trzy składowe modalne mają różne 
parametry. Macierz transformacji prądów iT  (eigenvector matrix – macierz wektorów wła-
snych) jest, ogólnie, macierzą zespoloną. W danym przypadku części urojone poszczególnych 
jej elementów są równe zero – co jest rezultatem odpowiednich normalizacji w algorytmie 
obliczeniowym.  
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Można sprawdzić, że macierz iT  nie jest ortogonalna: 1TT ≠i
T
i , a więc nie zachodzi równość  

(4.72). Zakładając d = 1, można obliczyć: ( ) 1−
= T

iu TT , co daje:  

















−−−−
−−−−
−−−−−

=
017084001e3,76012805011865482e7,07106781  011013300e5,80217429
014204246e8,48391748  151006496e2,24877083 019739805e5,73790282
017084046e3,76012805011865468e7,07106781 011013298e5,80217429

uT . 

Prześledźmy sposób obliczania macierzy transformacji uT , iT  przez odwołanie się do funkcji 
programu MATLAB [85]. Macierz ''u YZA = , obliczona dla danych z analizowanego wydru-
ku, ma następującą wartość (dla większej przejrzystości, zmniejszono liczbę znaczących 
miejsc):  

















−−−−−−−−−
−−−−−−−−−
−−−−−−−−−

=
5j0,0197E + 50,1353E5j0,0085E + 50,0195E5j0,0100E + 50,0205E
5j0,0095E +5E 0,02185j0,0192E + 50,1310E5j0,0095E +5E 0,0218
5j0,0100E + 50,0205E50,0085E j+ 50,0195E5j0,0197E + 50,1353E

'' YZ . 

Stosując funkcję eig() można bezpośrednio obliczyć wartości własne i macierz wektorów wła-
snych macierzy '' YZ :  
[Tu,V]=eig(ZY), 
gdzie: Tu odpowiada poszukiwanej macierzy uT , natomiast V (= V ) jest diagonalną macierzą 
wartości własnych:  

















⋅⋅−
⋅⋅−

⋅⋅−
=

−−

−−

−−

55

55

55

10j0,0108 + 100,1118
10j0,0097 + 100,1148

10j0,0383 + 100,1751
V . 

Kolumny ks , k = 1, 2, ..., n, macierzy wektorów własnych [ ]nu sssT L21=  powstają 
w wyniku rozwiązania następujących równań (4.64):  
( ) 0=− kki s1A λ , 
gdzie: kλ , k = 1, 2, ..., n, są kolejnymi wartościami własnymi macierzy '' YZ . 
Rozwiązanie równania o powyższej postaci nie jest jednoznaczne: jedno z rozwiązań należy 
przyjąć arbitralnie. W konsekwencji macierz uT  jest także niejednoznaczna, zgodnie z (4.68). 
W rozpatrywanym przypadku, w programie MATLAB uzyskuje się wynik:  

















−
−−−

−−−
=

j0,0105 + 0,3754j0,0003 + 0,70710,0179 j 0,5792
j0,0280  0,8469j0,0000 + 0,0000j0,0195  0,5727
j0,0105 + 0,3754j0,0003  0,70710,0179 j 0,5792

uT . 

Widać, że uzyskana macierz różni się od tej otrzymanej w rezultacie obliczeń w programie 
ATP–EMTP. Podstawowa różnica polega na zmianie znaku elementów ostatniej kolumny ma-
cierzy, co związane jest ze wspomnianą niejednoznacznością rozwiązania (kolumny obu ma-
cierzy mogą się różnić o stały, różny od zera, mnożnik).  
Można teraz obliczyć modalną macierz admitancji modY : 
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5
mod 10−⋅

















+−
++

+
==

j0,3769 + 0,0000j0,0000 0,0000j0,0001 + 0,0011
j0,0000 0,0000j0,3270 + 0,0000j0,0000 0,0000
0,0001 j+ 0,0011j0,0000 0,0000j0,2429 + 0,0000

u
T
u ' TYTY  (S/km). 

Jak widać, uzyskana macierz nie jest ‘w pełni’ diagonalna, ponadto części rzeczywiste elemen-
tów mogą być różne od zera (chociaż powinna to być macierz reaktancyjna). Jest to rezultat 
różnych błędów obliczeniowych. W celu ich uniknięcia w profesjonalnych programach do sy-
mulacji stosowane są różne techniki normalizacji macierzy uT  [30]. Tutaj ograniczymy się je-
dynie do przyjęcia założenia, że jest to macierz diagonalna reaktancyjna:  

















⋅
⋅

⋅
=

−

−

−

5

5

5

10j0,3769 
10j0,3270

10j0,2429 

modY  (S/km). 

Impedancja we współrzędnych modalnych może zostać obliczona na podstawie znanej macie-
rzy wartości własnych V, z wykorzystaniem zależności modmodYZV = . Stąd:  

mod
mod

k

k
k Y

Z λ
= , gdzie indeks k wskazuje na numer współrzędnej (mody), natomiast kλ  jest k-

tym elementem macierzy V (wartością własną). W ten sposób otrzymujemy:  
















=

j0,2966 + 0,0285 
j0,3512 + 0,0298

j0,7206 + 0,1575 

modZ  (Ω/km). 

Impedancja falowa (charakterystyczna) linii w składowych modalnych może być określona 
zgodnie z (4.10):  

mod

mod
mod

k

k
fk Y

ZZ = , co daje następującą macierz: 

















−
−

−
=

j13,48  280,85 
j13,88  328,02

j59,16  547,83 

modfZ  (Ω). 

Elementy macierzy modfZ  są parametrami modelu linii w dziedzinie czasu. Powinny one być 
zatem wielkościami rzeczywistymi. W większości przypadków można założyć, że mamy do 
czynienia z linią niezniekształcającą (dla której R/L = G/C), co pozwala pominąć części urojo-
ne (ich źródłem w takim wypadku są błędy numeryczne) [30].  
Na podstawie (4.79) można obliczyć macierz impedancji falowych we współrzędnych fazo-
wych (po pominięciu części urojonej):  
















== −

387,58  92,5559,56
92,55381,5592,56
59,5692,56387,58 

1
mod ifuf TZTZ  (Ω), 

co dosyć dobrze przybliża macierz impedancji falowej w ostatniej części pliku wynikowego 
(Z-surge).  
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Do obliczania macierzy przekształceń T  można wykorzystać znane algorytmy, 
które są dostępne w różnych pakietach obliczeń numerycznych [103]. Odpowiednie 
procedury są także standardowym wyposażeniem programów do symulacji kompute-
rowej. Gdy linia jest transponowana, macierze przekształceń są zawsze rzeczywiste, 
ponadto spełnione są związki (4.71), (4.72). Można wówczas bezpośrednio stosować 
jedno ze znanych w elektrotechnice przekształceń odnoszących się do sieci trójfazo-
wych (są one także uogólniane na sieci wielofazowe). Oto niektóre z nich.  

W przekształceniu Clarke10 (znanym także jako przekształcenie 0αβ) stosuje się 
macierze o następującej postaci [24]:  

 
















−−
−=

312
312
022

2
1T , 

















−
−−=−

330
112
111

3
11T  (4.80) 

które, po unormowaniu11 w celu spełnienia warunku (4.71), tworzą następującą parę 
macierzy przekształceń:  

 
























−−

−
=

2
3

2
11

2
3

2
11

021

3
1T , 

























−

−−
=−

2
3

2
30

2
1

2
12

111

3
11T  (4.81) 

Ważną cechą tego przekształcenia jest to, że parametry modelu w składowych mo-
dalnych (0αβ) są takie same, jak dla składowych symetrycznych. Jeśli na przykład za-
stosuje się macierze przekształceń (4.81) do macierzy rezystancji linii transponowa-
nej, to uzyska się (zgodnie z (4.79) oraz (4.71)):  

 

TTR















=
















= −

SMM

MSM

MMS

RRR
RRR
RRR

R
R

R
1

1

1

0

0αβ  (4.82) 

 
10 Edith Clarke (1883–1959). 
11 Powszechnie stosowane jest unormowanie kwadratowe, w którym współczynnik norma-

lizujący a jest określany z zależności 1
1

22 =∑ =

n

j ijsa , gdzie ijs  jest elementem wiersza (ko-

lumny) macierzy T. 
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i podobnie z innymi wielkościami. Ponadto, uzyskane w wyniku tego przekształcenia 
składowe αβ są w stanie ustalonym wzajemnie ortogonalne. Na ich bazie definiowany 
jest wektor przestrzenny (ang. space vector) [105]:  

 

( )*

212
3 fffff

s
+=+= βα j  (4.83) 

którego składowe łączą się poprzez macierz (4.81) z wielkościami fazowymi ABC12:  
















=
















−

C

B

A

f
f
f

f
f
f

1
0

T

β

α  

oraz ze składowymi symetrycznymi: zgodną – 
1

f  i przeciwną – 
2

f ; indeks:* oznacza 

wielkość zespoloną sprzężoną. Współczynnik ustalający relacje tego przekształcenia 
ze składowymi symetrycznymi wynika z normalizacji macierzy (4.81). Przy stosowa-
niu macierzy (4.80) jest on równy jedności.  

Wektor przestrzenny odgrywa ważną rolę w wielu szczegółowych zastosowaniach 
odnoszących się do obwodów trójfazowych prądu przemiennego [30, 105].  

b) Model linii o parametrach zależnych od częstotliwości 

Znanych jest obecnie wiele algorytmów modelowania linii wielofazowych z rozłożo-
nymi parametrami, z uwzględnieniem zależności tych parametrów od częstotliwości, 
które znalazły praktyczne zastosowanie w odpowiednich programach komputerowych. 
Rozwój dokładnych metod (a więc wiernie odzwierciedlających zachodzące zjawiska 
fizyczne) stał się możliwy dzięki doskonaleniu techniki komputerowej, co pozwala 
wykonać złożone obliczenia w rozsądnym czasie.  

W proponowanych algorytmach stosowany jest jeden z dwóch sposobów reprezen-
tacji zjawisk dynamicznych w linii długiej:  

– odwzorowanie stanu przejściowego w linii za pomocą modelu Bergerona 
(patrz p. 1.3.6, odnoszący się do linii bezstratnej (metoda biegnących fal));  

– reprezentacja modelu linii w przestrzeni częstotliwościowej; rozwiązanie 
w dziedzinie czasu uzyskuje się w wyniku stosowania odwrotnego przekształ-
cenia Fouriera.  

Dodatkowo, w przypadku linii wielofazowej, należy uwzględnić w modelu sprzę-
żenia pomiędzy wspólnie powiązanymi fazami. Do rozwiązania tego problemu stosuje 
się jedną z dwóch technik:  

 
12 Można zauważyć, że kierunek składowej fα pokrywa się tu z osią 0A układu trójfazowego 

(z którą jest związana składowa fA), natomiast składowa fβ wyprzedza ją o kąt π/2. W teorii 
maszyn elektrycznych często stosuje się odwrotne przyporządkowanie, co łączy się z odpo-
wiednią zmianą macierzy (4.81). 
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1. Przeprowadza się diagonalizację macierzy parametrów linii, sprowadzając problem 
modelowani linii wielofazowej do modelowania wielu linii jednofazowych w skła-
dowych modalnych (to podejście jest prezentowane powyżej).  

2. Model linii zapisuje się w naturalnych składowych fazowych i również obliczania 
prowadzi się z  zastosowaniem pełnych macierzy, przy założeniu, że, w ogólnym 
przypadku, linia jest nietransponowana.  
Praktyczna realizacja każdego z wymienionych podejść wymaga rozwiązania wielu 

problemów, zarówno analitycznych, jak i numerycznych. Zagadnienia te są obszernie 
omawiane w literaturze [3, 30, 78, 123]. Poniżej zasygnalizowano jedynie podstawo-
we problemy i nieco szerzej omówiono model linii wielofazowej z uwzględnieniem 
zależności parametrów od częstotliwości, stosowany w programie ATP–EMTP. To 
podejście w odniesieniu do linii jednofazowej jest przedstawione w p. 4.1.2.  

Zgodnie z tą koncepcją struktura modelu linii wielofazowej pozostaje taka jak na 
rys. 4.18), z tym że w miejsce stałych rezystancji w modelach poszczególnych skła-
dowych modalnych znajdą się odpowiednie filtry, odwzorowujące zadane charaktery-
styki zależności parametrów od częstotliwości: Zf (jω) oraz A(jω) – jak w (4.20) 
i (4.21). Są to szeregowo połączone liniowe człony RC o wypadkowych transmitan-
cjach, odpowiednio, )(sZ f  i )(sA  (rys. 4.9).  

Modele poszczególnych składowych modalnych linii są takie jak na rys. 4.11. 
Szczegółowa realizacja tych modeli jest podana w p. 4.1.2. W kolejnym przykładzie 
pokazano sposób obliczania parametrów takiej linii.  

Przykład 4.8.  Obliczyć parametry linii z przykładu 4.1 dla składowych fazowych i mo-
dalnych, zakładając, że jest to linia nietransponowana. Przyjąć, że linia 
będzie reprezentowana modelem z uwzględnieniem zależności parame-
trów od częstotliwości. Obliczenia wykonać za pomocą procedury 
JMARTI SETUP dostępnej w programie ATP–EMTP [3]. 

Model linii długiej, z uwzględnieniem zależności parametrów od częstotliwości, w programie 
ATP–EMTP nosi nazwę JMARTI [30, 78]. Dane do tej procedury można określić, korzystając 
z procedury JMARTI SETUP. Podstawowe parametry linii w tej procedurze są obliczane z za-
stosowaniem procedury LINE CONSTANTS (przykład 4.7). Tekst odpowiedniego pliku wsa-
dowego jest zamieszczony poniżej.  
 
BEGIN NEW DATA CASE 
JMARTI SETUP, 1.0,          { Note use of  PDT0 = 1  to allow reduction of order 
$ERASE 
C Linia 400 kV 
BRANCH   PA    KA    PB    KB    PC    KC 
LINE CONSTANTS 
METRIC 
C   Dane do modulu LINE CONSTANTS 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
  1 .231   .0564 4            3.15   -10.3    24.5    12.0    40.0   0.0       2 
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  2 .231   .0564 4            3.15     0.0    24.5    12.0    40.0   0.0       2 
  3 .231   .0564 4            3.15    10.3    24.5    12.0    40.0   0.0       2 
  0  0.5   .2388 4           1.565   -6.87    31.0    23.5 
  0  0.5   .2388 4           1.565    6.87    31.0    23.5 
BLANK CARD ENDING CONDUCTOR CARDS OF  "LINE CONSTANTS"  CASE 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C      >< Freq   >< FCar   > <ICPR> <IZPR> =< DIST > <PP>==< >< >< ><><> 
   100.0    5000.0                             180.0     1           1 
   100.0      50.0                             180.0     1           1 
   100.0       .01                             180.0     1   3  4    1 
BLANK CARD ENDING FREQUENCY CARDS 
BLANK CARD ENDING  "LINE CONSTANTS" 
DEFAULT 
$PUNCH 
BLANK card ending  JMARTI SETUP  data cases 
BEGIN NEW DATA CASE 
BLANK 
 

Plik ten powtarza w dużej części tekst podobnego pliku z przykładu 4.7. Różnice dotyczą na-
stępujących elementów:  

– kluczowe hasło: JMARTI SETUP identyfikuje żądaną procedurę; 
– zadeklarowano nazwy węzłów na obu końcach linii (deklaracja BRANCH); 
– w części odnoszącej się do częstotliwości, dla której należy obliczyć parametry, znaj-

dują się trzy wiersze z deklaracją częstotliwości: 5000, 50 oraz 0,01 (Hz), co oznacza, 
że charakterystyka częstotliwościowa będzie obliczana w tych właśnie punktach, 
a w pozostałych – aproksymowana; 

– w ostatnim wierszu odnoszącym się do częstotliwości znajdują się liczby: 3 (poz. 62) 
oraz 4 (poz. 65); pierwsza z nich oznacza, że charakterystyka częstotliwościowa ma 
być ograniczona do trzech dekad (w skali logarytmicznej), a druga z nich oznacza, że 
charakterystyka jest aproksymowana w czterech punktach na każdą dekadę (liczby te 
powinny być znacznie większe: na przykład: 9, 10; tu wybrano małe wartości w celu 
ograniczenia objętości zbioru wynikowego);  

– wiersz: $PUNCH zawiera żądanie umieszczenia wyników obliczeń w oddzielnym 
zbiorze *.PCH. 

Ten właśnie zbiór wynikowy ma następującą postać (pominięto nieistotne fragmenty): 
 
-1 PA    KA                   2.  1.00              -2 3 
       9       7.3615544019279970000E+02 
   5.16160970375891200E+03  -4.62836678876982000E+03   2.34908920073601300E+02 
   2.21428884708777900E+02   4.37807446832278400E+02   3.04928174781558700E+02 
   2.24591087014093900E+02   4.55263702130293400E+02   1.02771805987124600E+03 
   2.54324867047940400E-01   2.58267247958202700E-01   4.75266615734256900E-01 
   7.43821799922729000E-01   1.32805685385736000E+00   1.97949231121861500E+00 
   2.90622851912841100E+00   6.69971775060332200E+00   1.50030074511141000E+01 
       1       1.0175027775544130000E-03 
   4.96285426218186400E+02 
   4.96823791675659200E+02 
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-2 PB    KB                   2.  1.00              -2 3 
       9       3.4134523824302410000E+02 
   5.30870510194876300E+02   2.02556181590067800E+01   2.68086180404834000E+02 
   3.50337060561525300E+02   6.29292421363313800E+02   4.27034282349728200E+02 
   2.48049348808883800E+03  -1.24353670385984700E+03   3.20930281998335600E+02 
   1.97752951677736800E-01   2.77134426872770100E-01   5.53515928524456700E-01 
   1.06867294826728000E+00   2.21360731622174100E+00   3.74655773786376000E+00 
   8.95197627537033100E+00   9.97585888710791700E+00   1.65795393675722400E+01 
       1       6.2796878107565830000E-04 
   4.68508344800458900E+02 
   4.69023674409433600E+02 
-3 PC    KC                   2.  1.00              -2 3 
      12       2.9404800772668510000E+02 
   4.05546694218969000E+02   5.42993557914113500E+01  -1.04056571557813800E+02 
   1.28675981115441400E+02   3.02482667071249200E+02   3.59727123238581600E+02 
   3.84565069398721800E+02   7.79608344392276500E+02   2.12278761695224800E+03 
  -1.19401802383945500E+03   1.92613893168671900E+02   2.99694164961513600E+02 
   1.75763316432903900E-01   2.65010489469351300E-01   2.77287520425178000E-01 
   2.19898614965812600E-01   5.56134028988414100E-01   1.08558003958717100E+00 
   2.02757957168211700E+00   4.44555679851210300E+00   9.65825030962793800E+00 
   1.10764943326363400E+01   1.13569798059043500E+01   1.81281850219694700E+01 
       1       6.2206229083791410000E-04 
   4.22175997238486200E+02 
   4.22644824279796200E+02 
  0.58407538 -0.70710678 -0.41958805 
  0.00000000  0.00000000  0.00000000 
  0.56365939  0.00000000  0.80491722 
  0.00000000  0.00000000  0.00000000 
  0.58407538  0.70710678 -0.41958805 
  0.00000000  0.00000000  0.00000000 
 

W zbiorze tym można wyróżnić trzy części odnoszące się do trzech modalnych składowych 
modelu linii (zaczynają się od wierszy, wskazujących na numery tych składowych: –1 …,  
– 2 ..., –3 ...). 
W kolejnym wierszu każdej z tych części znajduje się informacja o tym, jaki jest rząd transmi-
tancji )(sZ f , aproksymującej impedancję falową pierwszej mody (9 dla pierwszej i drugiej 

mody, 12 – dla trzeciej) oraz graniczna wartość tej impedancji dla częstotliwości dążącej do 
nieskończoności.  
W kolejnych trzech wierszach znajdują się wartości zer (łącznie 9) aproksymującej funkcji, 
a w następnych trzech wierszach – wartości zer tej funkcji.  
Z kolei podana jest informacja o parametrach transmitancji )(sA  aproksymującej funkcję pro-
pagacji pierwszej mody. W pierwszych wierszu tej grupy znajduje się również informacja 
o rzędzie funkcji przejścia (w tym przypadku 1) oraz czas propagacji fali dla nieskończonej 
częstotliwości.  
W kolejnych dwóch wierszach znajdują się wartości, odpowiednio: zera i bieguna transmitancji 

)(sA  (w tym przypadku jest to funkcja pierwszego rzędu). 
Te dane odnoszą się do kolejnych składowych modelu linii. W ostatniej części zbioru zamiesz-
czona jest macierz transformacji Ti (części urojone poszczególnych składników są w tym wy-
padku równe zero).  
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Uzyskane dane można bezpośrednio zastosować w modelu linii o parametrach zależnych od 
częstotliwości.  

Istotnym uproszczeniem w modelu linii z podanego przykładu jest założenie, że 
macierz transformacji pomiędzy układem współrzędnych fazowych a przestrzenią 
składowych modalnych jest niezależna od częstotliwości. Tymczasem, zależność pa-
rametrów linii od częstotliwości powoduje, że także macierz przekształceń 

)(ωii TT =  staje się zależna od częstotliwości (4.76). Ta zależność jest szczególnie 
duża w przypadku modeli linii kablowych [82]. Rozwiązaniem może być reprezenta-
cja elementów zależnej od częstotliwości macierzy przekształceń za pomocą transmi-
tancji, jak to stosuje się w odniesieniu do impedancji falowej lub funkcji propagacji. 
Taka aproksymacja jest możliwa po odpowiednim unormowaniu wierszy macierzy 
diagonalizującej [82].  

Metodologicznie najbardziej adekwatnym modelem linii, z uwzględnieniem zależ-
ności parametrów od częstotliwości, jest model bazujący na bezpośrednim rozwiąza-
niu równań (4.74). Rozwiązanie ma postać analogiczną do równań (4.21) i (4.22), któ-
re odnoszą się do linii jednofazowej. Po przeprowadzeniu podobnych przekształceń 
dla linii wielofazowej otrzymamy:  
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gdzie, analogicznie do (4.19): l'' ZYA −= ej )( ω , natomiast macierz impedancji falowej 
(4.10) wyraża się następująco:  

( ) 1)( −= ''f YZZ ωj . 
Indeksy: 1, 2 odnoszą się do końców linii.  
Otrzymuje się w ten sposób model w dziedzinie częstotliwości. Parametry modelu 
(macierze )( ωjfZ  oraz )( ωjA ) należy określić dla zadanych punktów częstotliwo-
ści, tak aby były one aproksymowane w całym zakresie zmian częstotliwości [90]. Na 
wejściu i na wyjściu takiego modelu (wymuszenie – odpowiedź) należy zapewnić 
numeryczne przekształcenie dyskretnej funkcji czasu w funkcję częstotliwości i od-
wrotnie. Znane są efektywne algorytmy tego przetwarzania [91].  

Zadania 

4.1. Sprawdzić, że schemat zastępczy linii długiej w postaci czwórnika Π z rys 4.3, wraz 
z równaniami (4.16), odpowiada modelowi linii, reprezentowanemu przez równania 
(4.15).  

4.2. W Przykładzie 4.3 analizowane są właściwości linii 400 kV dla czterdziestej harmonicznej 
(przy częstotliwości sieciowej 50 Hz). Długość fali dla czterdziestej harmonicznej składo-
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wej zgodnej wynosi 776,1471 =λ  km. Określić przebieg ustalony prądu zwarciowego na 
końcu linii (założyć zwarcie bezrezystancyjne), gdy napięcie składowej zgodnej na po-
czątku linii wynosi: 

( )ttu 11 40cos400
3
2)( ω=  kV. 

Obliczenia przeprowadzić dla dwóch długości linii: a) l = λ1, b) l = 0,75 λ1. 
Wskazówka: zapisać wymuszenie napięciowe w postaci wektora zespolonego i skorzystać 
z zależności (4.15), przyjmując, że w miejscu zwarcia napięcie jest równe zero. Należy 
zauważyć, że wykres napięcia U1 na rys. 4.4 przedstawia obwiednię (j.w.) ustalonego 
przebiegu napięcia w funkcji czasu.  

4.3. W modelach trójfazowej linii transponowanej macierze parametrów zawierają tylko dwa 
różne elementy: leżące na przekątnej i poza nią. Do ich macierzy można stosować wiele 
różnych macierzy przekształceń, zwłaszcza przekształcenie składowych symetrycznych. 
W praktyce stosuje się jednak macierze ze współczynnikami rzeczywistymi, jak (4.81), 
lub przekształcenie Karrenbauera [37, 57]:  
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Sprawdzić, że we wszystkich tych przypadkach otrzymuje się takie same macierze diago-
nalne (macierze parametrów modelu linii w składowych modalnych).  
 



 

5. MODEL TRANSFORMATORA  

5.1. Wprowadzenie 

Transformator jest urządzeniem, w którym energia pomiędzy dwoma obwodami elek-
trycznymi jest przenoszona za pośrednictwem indukcji elektromagnetycznej. Obwód 
magnetyczny transformatora jest zbudowany z rdzenia ferromagnetycznego, który 
charakteryzuje się nieliniową zależnością indukcji magnetycznej B od natężenia pola 
magnetycznego H. Zależność ta ma charakter histerezy. W obwodzie takim, poza stra-
tami wynikającymi z rezystancji przewodów, występują straty związane z histerezą 
charakterystyki magnesowania rdzenia (straty na przemagnesowanie) oraz prądami 
wirowymi w rdzeniu, które powodują jego nagrzewanie.  

Transformatory stosowane w elektroenergetyce (transformatory elektroenergetycz-
ne) mogą mieć bardzo różne przeznaczenie, a także znacznie zróżnicowaną konstruk-
cję obwodu elektrycznego i magnetycznego. Można tu wyróżnić: transformatory jed-
nofazowe (głównie jako przekładniki prądowe i napięciowe, a także transformatory 
pomocnicze) oraz transformatory trójfazowe dwu- i wielouzwojeniowe. Uzwojenia 
trójfazowych transformatorów mocy mogą być połączone w trójkąt (∆) lub w gwiazdę 
(Y), co daje możliwość tworzenia różnych grup połączeń.  

Uzwojenia dwóch stron transformatora mogą być połączone elektrycznie, co jest 
charakterystyczne dla autotransformatorów. Ponadto, transformatory regulacyjne (po-
przeczne lub podłużne) mogą mieć możliwość zmiany przekładni pod obciążeniem.  

Przystępując do tworzenia modelu transformatora, należy brać pod uwagę zakres 
częstotliwości, dla którego jest on przeznaczony. Z tego punktu widzenia, rozpatruje 
się modele nisko- oraz wysokoczęstotliwościowe. W tych ostatnich należy wziąć pod 
uwagę pojemności zwojowe i międzyuzwojeniowe, a także zależność parametrów 
transformatora od częstotliwości (efekt naskórkowości).  

Inny podział jest związany ze strukturą modelu matematycznego transformatora. 
Wyróżnia się tu dwa podejścia. W pierwszym z nich odzwierciedlona jest struktura 
poszczególnych uzwojeń, które są powiązane za pomocą transformatorów idealnych. 
Model gałęzi magnesowania jest dołączony do jednego z uzwojeń. W drugim przy-
padku model transformatora jest reprezentowany w formie wielobiegunnika. 

W rozdziale tym przedstawione są różne podejścia do komputerowego modelowa-
nia transformatorów elektroenergetycznych. 
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5.2. Transformator jednofazowy 

5.2.1. Schemat zastępczy 

Schemat strukturalny transformatora dwuuzwojeniowego jednofazowego jest pokaza-
ny na rys. 5.1. Zaznaczono strumień główny φM oraz strumienie rozproszenia φ1 i φ2 
związane z odpowiednimi uzwojeniami transformatora o liczbie zwojów odpowiednio 
N1 i N2. Przedstawiony schemat odpowiada zgodnemu nawinięciu uzwojeń, co ozna-
cza, że strumienie magnetyczne wytworzone przez prądy przepływające w obu uzwo-
jeniach ( 1i , 2i ) mają ten sam kierunek, a więc dodają się. Początki uzwojeń na rysun-
ku zaznaczono gwiazdkami, co ma istotne znaczenie wówczas, gdy nie są pokazane 
kierunki uzwojeń. Obowiązuje tu znana reguła: jeśli w jednym uzwojeniu prąd wpły-
wa ‘do gwiazdki’, to w drugim ‘z niej wypływa’ (rys. 5.1).  

Przypomnijmy podstawowe zależności dla obwodu transformatora. 

φµ

φ1 φ2 u2

i1 i2

N1 N2

*

*
 

Rys. 5.1. Schemat transformatora dwuuzwojeniowego jednofazowego 

Przy wyprowadzaniu równań transformatora wygodnie jest posługiwać się poję-
ciem transformatora idealnego, w którym pomija się strumienie rozproszenia uzwojeń: 

021 == φφ  oraz ich rezystancję: 021 == RR . W takim przypadku napięcia na obu 
uzwojeniach są określone następująco: 

 
t

t
Ntu

t
t

Ntu
d

d
d

d )(
)(,

)(
)( 2211

µµ φφ
==  (5.1) 

skąd: ϑ==
2

1

2

1

N
N

u
u   jest przekładnią zwojową. 

Siła magnetomotoryczna związana z prądami przepływającymi przez oba uzwoje-
nia jest określona zależnością [10]: 
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 µφmRiNiNF =+= 2211  (5.2) 

gdzie: Rm jest reluktancją (opornością) obwodu magnetycznego. W transformatorze 
idealnym wielkość ta jest równa zero (nieskończona permeancja – przewodność ma-
gnetyczna), skąd otrzymujemy:  

 ϑ==
−

2

1

1

2

N
N

i
i  (5.3) 

Jak widać, w transformatorze idealnym prąd jest transformowany odwrotnie propor-
cjonalnie do transformacji napięć.  

Jeśli w rozważanym transformatorze uwzględnić rezystancję uzwojeń i strumienie 
rozproszenia, to bardziej realne równania obwodów obu stron przyjmą następującą 
postać:  
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gdzie: ( )1111 φφψψψ +=+= MMM N  – strumień elektromagnetyczny (Wb) sprzężony 
(skojarzony) z pierwszym uzwojeniem i podobnie dla uzwojenia drugiego: 

( )2222 φφψψψ +=+= MMM N . 
Ponadto, uwzględniając, że: 

 Li=ψ  (5.5) 

L – indukcyjność (H), po wydzieleniu w (5.4) składników związanych ze strumieniem 
głównym (wzajemnym) Mφ  otrzymamy: 
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skąd, po prostym przekształceniu, uzyskuje się następującą zależność: 
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Równanie to można zapisać w następującej formie: 
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gdzie: 

 )()( 22 tutu' ϑ= , 
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2 LL' ϑ=  (5.9) 

są odpowiednimi wielkościami strony wtórnej transformatora, sprowadzonymi na 
stronę pierwotną. Schemat zastępczy transformatora, odpowiadający równaniu (5.8), 
jest pokazany na rys. 5.2a, natomiast schemat z rys. 5.2b jest zgodny z zależnością 
(5.7). Można zauważyć, że transformator idealny może być umieszczony również 
w innym miejscu schematu zastępczego, na przykład na jednym z jego zacisków.  

Następny krok w kierunku urealnienia modelu transformatora można zrobić, zakła-
dając, że w (5.2) reluktancja: 0>mR  (permeancja ma skończoną wartość). Wówczas: 
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gdzie: 
1N
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i m µ
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φ
=  jest prądem magnesującym, który jest czynnikiem powodującym 

zmianę strumienia magnetycznego w rdzeniu transformatora.  
Prąd magnesujący jest powiązany z napięciem poprzez strumień (5.4):  
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Rys. 5.2. Schemat zastępczy transformatora dwuuzwojeniowego jednofazowego:  
a) sprowadzony do jednego poziomu napięć, b) z transformatorem idealnym  

oraz c), d) z uwzględnieniem modelu gałęzi poprzecznej 
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W rzeczywistym transformatorze z rdzeniem ferromagnetycznym występują po-
nadto zjawiska prowadzące do strat czynnych w rdzeniu, których źródłem jest charak-
terystyka magnesowania z histerezą (straty na histerezę, ang. hysteresis losses) oraz 
prądy wirowe w przewodzącym rdzeniu (ang. eddy currents). Straty te reprezentuje 
rezystancja .FeR  Oba te elementy tworzą gałąź poprzeczną w schemacie zastępczym 
transformatora (rys. 5.2c i 5.2d).  

5.2.2. Model transformatora dwuuzwojeniowego 

a) Model wielozaciskowy 

Widać z rysunku 5.2, że schemat zastępczy omawianego transformatora może być 
rozpatrywany w postaci czwórnika. Jeśli pominąć rezystancję FeR , to zależności po-
między prądami i napięciami na zaciskach czwórnika będą określone następującym 
związkiem (dla schematu z rys 5.2d):  

 )()()( t
t

tt iLRiu
d
d

+=  (5.12) 

gdzie: 









=

)(
)(

)(
2

1

tu
tu

tu , 







=

)(
)(

)(
2

1

ti
ti

ti , 







= 2

2

1

/ϑR
R

R , ( ) 







+

+
= 2

2

1

//
/

ϑϑ
ϑ

µµ

µµ

LLL
LLL

L . 

Równanie (5.12) jest rozszerzeniem znanej zależności dla gałęzi RL na przypadek 
dwuwymiarowy. Model cyfrowy można zatem uzyskać, postępując analogicznie jak 
dla gałęzi RL. Po wydzieleniu pochodnej zależność (5.12) przybiera następującą po-
stać:  

 )()()( 11 ttt
t

RiLuLi −− −=
d
d  (5.13) 

w odniesieniu do której można zastosować odpowiedni cyfrowy model stowarzyszo-
ny. 

W niektórych przypadkach mogą powstać trudności z uzyskaniem macierzy 1−L . 
Wynika to z tego, że indukcyjność gałęzi magnesowania jest dużo większa niż induk-
cyjności rozproszenia uzwojeń: 21, LLL >>µ  i dla 1=ϑ  wszystkie elementy macierzy 
L  mają bardzo zbliżone wartości. Należy zatem podawać te wartości z dużą dokład-
nością.  

Macierz L  jest osobliwa, jeśli pominięty zostanie prąd magnesowania: ∞=µL  
(lub jest on bardzo mały). Aby obejść wynikający stąd problem numeryczny, można 
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bezpośrednio określić macierz odwrotną 1−L 13 pomiędzy węzłami 1 i 2 przez analogię 
do macierzy admitancji w metodzie potencjałów węzłowych [15, 30]: 
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W celu powiązania parametrów transformatora z jego danymi znamionowymi, wy-
godnie jest rozpatrywać równanie (5.12) dla stanu ustalonego. Dla częstotliwości 
znamionowej otrzymamy: 
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co można zapisać w następującej postaci admitancyjnej: 

 IUY =  (5.16) 

gdzie: 1−= ZY . 
Ze względu na wspomniany powyżej problem odwracania macierzy L  (jeśli także 

pominięta zostanie rezystancja) w praktycznych realizacjach programów symulacyj-
nych, w sprzężonych obwodach RL parametry obwodu są reprezentowane przez ma-
cierze R  oraz 1−L  w miejsce macierzy impedancji lub admitancji. W takim wypadku, 
w równaniach (5.15) i (5.16) uwzględnia się jedynie reaktancję (susceptancję), nato-
miast rezystancja jest traktowana oddzielnie (zabieg taki jest dopuszczalny jedynie 
wówczas, gdy rezystancja danego obiektu jest dużo mniejsza od jego reaktancji) [30]. 
Zatem, z pominięciem rezystancji, równanie (5.16) przyjmie następującą postać:  
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Zależności tej odpowiada czwórnik o schemacie jak na rys. 5.3. Uwzględniając 
(5.14) i (5.17), łatwo wyznaczyć jego parametry: 
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 
13 W programie ATP–EMTP nazywa się to notacją AR, w odróżnieniu od notacji RL, która 

odnosi się do reprezentacji indukcyjności jak w (5.12) [8]. 
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Rys. 5.3. Schemat zastępczy transformatora w postaci czwórnika Π 

Wartości tych parametrów można określić na podstawie danych znamionowych 
transformatora: 
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parametry gałęzi poprzecznej (reprezentowane względem napięcia strony 1): 
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gdzie: 1rS  – moc znamionowa strony 1, (MVA), 

1rU  – napięcie znamionowe strony 1, (kV), 

CuP∆  – straty mocy czynnej w uzwojeniach, (kW), 

FeP∆  – straty mocy czynnej w rdzeniu, (kW), 

0i  – prąd biegu jałowego, (%) w odniesieniu do prądu znamionowego. 
Bardziej ogólne podejście polega na reprezentacji rozpatrywanego transformatora 

dwuuzwojeniowego w postaci elementu 5-zaciskowego. Tym piątym zaciskiem, roz-
szerzającym przedstawiony powyżej model czwórnika, jest ziemia. Ma to istotne zna-
czenie w przypadku transformatorów wielouzwojeniowych czy też wielofazowych, 
gdzie każde uzwojenie może być inaczej połączone z ziemią. 

Ogólny sposób rozważanego tu rozszerzania liczby zacisków obiektu, w którym 
jednym z zacisków jest ziemia, jest pokazany na rys. 5.4.  

Równanie opisujące uzyskany obwód ma tzw. postać pierwotną (ang. primitive) 
[15, 30]. Widać, że wynikowa macierz przewodności jest osobliwa i aby rozwiązać 
powstały w ten sposób obwód, należy zapewnić połączenie któregoś z węzłów dwu-
biegunnika z ziemią.  

Przez analogię, równanie (5.17) można rozszerzyć do następującej postaci: 
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Rys. 5.4. Ilustracja sposobu rozszerzania liczby zacisków  
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 (5.18) 

Odpowiada mu schemat zastępczy z rys. 5.5. Zaciski 1–2 są związane z uzwoje-
niem pierwotnym, a 3–4 – z uzwojeniem wtórnym transformatora. Również i w tym 
wypadku obwód nie jest rozwiązywalny bez dodatkowego uziemienia. Zapewniają to 
zaznaczone przerywaną linią admitancje. Ich wartości zostaną dodane do macierzy 
przewodności na odpowiednich pozycjach diagonalnych w (5.18). W ten sposób moż-
na odwzorować pojemności doziemne uzwojenia oraz jego połączenie z ziemią przez 
rezystancję [6].  
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Rys. 5.5. 5-zaciskowy schemat zastępczy transformatora dwuuzwojeniowego 

W przedstawionym modelu nie jest reprezentowana rezystancja odwzorowująca 
straty w żelazie. Zazwyczaj pomijana jest także indukcyjność magnesowania 
( ∞=µL ), natomiast obie gałęzie poprzeczne w schemacie zastępczym transformatora 
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(rys. 5.2) są dołączane do jednej ze stron schematu z rys. 5.5. W programie ATP–
EMTP ten sposób reprezentacji modelu transformatora jest realizowany za pomocą 
procedury BCTRAN [8].  

b) Model strukturalny 

Inny sposób tworzenia modelu transformatora polega na rozdzieleniu schematu z rys. 
5.2d na dwie części, jak na rys. 5.6. 
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Rys. 5.6. Schemat zastępczy transformatora z podziałem na dwie części 

Pierwsza część, obejmująca gałąź poprzeczną, jest reprezentowana w postaci mo-
delu czwórnika typu Γ: 
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natomiast model drugiej części z transformatorem idealnym jest określony następują-
cym równaniem [30]: 
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Uwzględniono tutaj także rezystancję FeR . 
Przedstawione podejście łatwo rozszerzyć na przypadek transformatora wielo-

uzwojeniowego, w którym równanie (5.19) odnosi się do strony pierwotnej, natomiast 
poszczególne uzwojenia wtórne są reprezentowane równaniem o postaci (5.20). Jak 
widać, podział modelu wiąże się z wprowadzeniem dodatkowego węzła S (rys. 5.6).  

Powyższe rozważania odnoszą się do modelu liniowego transformatora. Podane 
równania opisują model ciągły. Model cyfrowy można łatwo uzyskać przez zastoso-
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wanie odpowiedniej procedury numerycznej aproksymacji różniczkowania. Następu-
jący przykład ilustruje sposób obliczania parametrów transformatora.  

Przykład 5.1.  Trójfazowy transformator 400/15,75 kV jest zbudowany z trzech trans-
formatorów jednofazowych. Określić model cyfrowy transformatora jed-
nofazowego oraz przeprowadzić symulację zwarcia na stronie WN. 

Parametry transformatora trójfazowego: 
Moc znamionowa rS  = 250 MVA, napięcie zwarcia Ku  = 12%, straty obciążeniowe 

CuP∆  = 500 kW, straty w żelazie rdzenia FeP∆  = 240 kW, prąd jałowy 0i = 0,7%, przekładnia 

znamionowa pojedynczego transformatora rϑ = 400/ 3 /15,75 kV/kV. 
Zakłada się, że gałąź poprzeczna jest związana z uzwojeniem strony górnej (H, ang. high), na-
tomiast parametry podłużne należy określić oddzielnie dla strony H oraz L (ang. low). 
Parametry zastępcze wzdłużne strony H określane są według następujących równań: 
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35,3892,14,38 2222 =−=−= HHH RZX Ω. 
Współczynniki ½ w powyższych zależnościach oznaczają, że całkowita impedancja wzdłużna 
jest podzielona równo na dwie części po obu stronach transformatora. Te same wielkości od-
niesione do strony L są następujące: 

0089,0/ 2 == ϑHL RR Ω, 

178,0/ 2 == ϑHL XX Ω. 
Parametry gałęzi poprzecznej (na stronie H): 
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Zauważmy, że w ostatniej zależności odzwierciedlone jest równoległe połączenie gałęzi FeR  
oraz µX . 
Do symulacji zwarcia załóżmy, że źródło o impedancji: 069,0j008,0 +=SZ Ω znajduje się po 
stronie niskiej, natomiast zwarcie zachodzi poprzez rezystancję 5,0=FR Ω na stronie wysokiej 
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transformatora. W stanie normalnej pracy transformator jest obciążony impedancją o wartości 
450j610 +=oZ Ω (rys. 5.7).  
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Rys. 5.7. Schemat analizowanego obwodu 

Przebieg prądu po stronie niskiej transformatora podczas zwarcia jest pokazany na rys. 5.8. 
Zwarcie zachodzi w czasie Ft  = 25 ms. Wartość chwilowa napięcia zasilającego ma wówczas 
wartość zerową, co prowadzi do powstania w prądzie zwarciowym dużej składowej aperio-
dycznej. 
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Rys. 5.8. Przebieg prądu po stronie niskiej transformatora 

Schemat modelu przygotowany w programie ATPDraw jest pokazany na rys. 5.9. Wybrano 
liniowy model transformatora, w którym wartość indukcyjności µL  jest określana przez poda-

nie jednego punktu na charakterystyce magnesowania µψ i− : ψ =15971 Vs, µi =1 A (drugi 
punkt na prostej wyznaczającej liniową indukcyjność ma współrzędne 0,0). Zauważmy, że 
wartości bezwzględne tych wielkości nie są istotne; ważne jest natomiast, aby uzyskana induk-
cyjność µL  (5.5) odpowiadała reaktancji  µµ ωLX = .  
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Rys. 5.9. Schemat modelu ATPDraw 

Gałąź poprzeczna w modelu stosowanym w EMTP jest związana ze stroną pierwotną trans-
formatora (oznaczenia na rys. 5.9: p – strona pierwotna (ang. primary), s – strona wtórna (ang. 
secondary)).  

5.2.3. Model transformatora trójuzwojeniowego 

Model transformatora trójuzwojeniowego jest najczęściej przedstawiany jak na rys. 
5.10, przy czym model gałęzi poprzecznej może być skojarzony z dowolnym spośród 
trzech uzwojeń. Wszystkie trzy uzwojenia są sprzężone magnetycznie dzięki obecno-
ści rdzenia ferromagnetycznego.  
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Rys. 5.10. Schemat zastępczy transformatora trójuzwojeniowego 

Indeksy zmiennych na rys. 5.10 wskazują na numer uzwojenia; można także spo-
tkać oznaczenia P (ang. primery), S (ang. secondary), T (ang. tertiary) lub H (ang. hi-
gh), L (ang. low), M (ang. medium), a także ich kombinacje, na przykład H, L, T.  
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Parametry schematu zastępczego są określane na podstawie próby zwarciowej oraz 
pomiaru biegu jałowego. Podstawą jest zazwyczaj za podstawę moc i napięcie uzwo-
jenia o najwyższym napięciu (H). Dla parametrów wzdłużnych transformatora stosuje 
się w takim wypadku schemat zastępczy, jak na rys. 5.11a. Impedancje w tym sche-
macie są określane według następujących zależności:  
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 (5.21) 

gdzie: KHLu , KHTu , KLTu  są odpowiednimi napięciami zwarcia (%); rHU , rLU , rTU  są 
znamionowymi napięciami poszczególnych uzwojeń (kV); rS  jest bazową mocą zna-
mionową (MVA) (zwykle jest to moc uzwojenia strony H).  
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Rys. 5.11. Schemat zastępczy transformatora trójuzwojeniowego dla parametrów wzdłużnych 
w postaci: a) trójkąta oraz b) gwiazdy  

Podobnie, znając moce strat w uzwojeniach transformatora podczas prób zwarcio-
wych, można określić ich rezystancje:  
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Na podstawie (5.21) i (5.22) można łatwo określić reaktancje odpowiednich uzwo-
jeń. Należy zauważyć, że parametry LTZ  i LTR  odnoszą się do napięcia strony L. 
W celu sprowadzenia ich do poziomu strony H należy wykonać działanie:  

 LTLT ZZ' 2ϑ=  (5.23) 

i analogicznie dla rezystancji. 
Parametry schematu z rys. 5.10 można uzyskać po przekształceniu układu z rys. 

5.11a do postaci gwiazdy (rys. 5.11b): 
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przy czym wszystkie impedancje są sprowadzone do poziomu napięcia strony H.  
Parametry gałęzi poprzecznej można określić podobnie jak dla transformatora 

dwuuzwojeniowego, na podstawie pomiaru biegu jałowego:  
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gdzie przyjęto, że gałąź ta jest umieszczona na stronie H.  

5.2.4. Model autotransformatora 

Biorąc pod uwagę schemat zastępczy, autotransformator niewiele różni się od trans-
formatora. Uzwojenie strony L jest w takim wypadku częścią uzwojenia strony H (rys. 
5.12a). Takie rozwiązanie prowadzi do mniejszych rozmiarów transformatora i jest 
tańsze. Oba uzwojenia pozostają połączone galwanicznie, co w niektórych przypad-
kach może być niedopuszczalne (na przykład w obwodach pomiarowych).  
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Rys. 5.12. Schemat autotransformatora: a) układ połączeń oraz b) schemat zastępczy  

Model gałęzi poprzecznej może być umieszczony z dowolnej strony w schemacie 
zastępczym.  

5.2.5. Modele obwodu magnetycznego 

W przedstawionych rozważaniach zakładano, że obwód magnetyczny oraz straty 
czynne w żelazie rdzenia są reprezentowane w sposób liniowy, co oznacza, że ekwi-
walentna gałąź poprzeczna w schemacie zastępczym transformatora ma stałe parame-
try. Takie założenie ma bardzo ograniczone zastosowanie i wszystkie wersje progra-
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mu EMTP oferują jakiś sposób bardziej adekwatnego odwzorowania rzeczywistych 
zjawisk w rdzeniu transformatora. W tym punkcie omówione są podstawowe nieli-
niowe modele indukcyjności.  

a) Charakterystyka magnesowania rdzenia 

Charakterystyka magnesowania materiału ferromagnetycznego, z którego jest wyko-
nany rdzeń transformatora jest określona przez zależność natężenia pola magnetycz-
nego H (A/m) względem indukcji magnetycznej B (T): H = f (B)14. Jest to zależność 
nieliniowa z histerezą, która jest zazwyczaj podawana dla granicznej, dla danego ma-
teriału, pętli histerezy (rys. 5.13a). Pętla ta wyznacza maksymalną szczątkową induk-
cję magnetyczną rB  oraz natężenie koercji cH .  
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Rys. 5.13. Charakterystyka magnesowania z histerezą: a) pętla graniczna oraz b) wewnętrzne 
pętle symetryczne  

Przy wolnej symetrycznej zmianie natężenia pola magnetycznego (lub wywołują-
cego go prądu) tor charakterystyki zakreśla odpowiednie pętle wewnętrzne, których 
zakres zależy od amplitudy natężenia pola H (rys. 5.13b). Wierzchołki tych pętli two-
rzą podstawową charakterystykę magnesowania danego materiału (krzywa 1) [130]. 
W przypadku pominięcia histerezy najczęściej korzysta się z tzw. bezhisterezowej 
krzywej magnesowania, która powstaje jako wartość średnia z pętli granicznej (krzy-
wa 2).  

W celu powiązania charakterystyki magnesowania materiału rdzenia z wielkościa-
mi elektrycznymi uzwojenia przypomnimy niektóre zależności. Prąd i  płynący 
w cewce o liczbie zwojów cN , nawiniętej na rdzeń o średniej długości l , wytwarza 
w tym rdzeniu pole magnetyczne o natężeniu H (A/m):  

 i
l

NH c=  (5.26) 

 
14 1 T = 1 Wb/m2 = 1 Vs/m2. 
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Pomija się przy tym strumień rozproszenia, co oznacza, że prąd i  jest tzw. prądem 
magnesującym. Prąd oraz natężenie pola magnetycznego mogą być, w ogólnym przy-
padku, funkcjami czasu: )(tii = , )(tHH = . 

Związana z tym natężeniem pola indukcja magnetyczna B = f(H) jest charaktery-
zowana przez strumień magnetyczny ψ  (Wb) skojarzony z cewką o liczbie zwojów 

cN , którego wartość średnia jest określana według zależności15:  

 φψ cc NSBN ==  (5.27) 

gdzie S  (m2) jest przekrojem rdzenia.  
Uwzględniając, że skojarzony strumień magnetyczny jest związany z napięciem na 

cewce zależnością (5.4), otrzymamy:  

 0

0

)()( ψττψ += ∫
t

t

ut d  (5.28) 

Podobna zależność odnosi się również do indukcji B (z uwzględnieniem parametrów 
cewki, jak w (5.27)).  

Z równania (5.27) widać, że bieżąca wartość strumienia magnetycznego zależy od 
przebiegu napięcia na uzwojeniu oraz od jego wartości początkowej. W przypadku 
napięcia przemiennego strumień magnetyczny w dużym stopniu zależy od wartości 
początkowej. Jeśli napięcie jest określone przez funkcję sinusoidalną o pulsacji ω , to 
na podstawie (5.27), w stanie ustalonym, pomiędzy amplitudami (wartościami sku-
tecznymi) napięcia i strumienia magnetycznego zachodzi następująca zależność:  

 U
ω
1

=Ψ  (5.29) 

Właściwości materiału magnetycznego są także charakteryzowane za pomocą 
przenikalności magnetycznej µ  (H/m): 

 
H
B

d
d

=µ  (5.30) 

która jest powiązana z indukcyjnością L  poprzez wymiary cewki i rdzenia:  

 µψ
l

SN
i

L c
2

==
d

d  (5.31) 

Jak widać, indukcyjność L  pełni tę samą rolę na charakterystyce )(if=ψ , co przeni-
kalność µ  w odniesieniu do funkcji )(HfB = . 

 
15 1 Wb = 1 Vs. 



5.2. Transformator jednofazowy 187 

Powyższe zależności wiążą charakterystyki obwodu magnetycznego z wielkościa-
mi elektrycznymi skojarzonego z nim obwodu elektrycznego, co znacznie ułatwia 
pomiar i reprezentację tych charakterystyk. I tak, w miejsce charakterystyki B = f(H), 
znacznie wygodniej jest posługiwać się charakterystyką ψ = f(iµ), gdzie indeks µ 
wskazuje, że chodzi tu o prąd magnesujący, a więc tę część prądu uzwojenia, który 
wytwarza pole magnetyczne H. Jak widać z (5.26) i (5.27), funkcja ψ = f(iµ) odnosi się 
nie tylko do określonego materiału magnetycznego, ale za pośrednictwem liczby 
uzwojeń Nc, długości obwodu magnetycznego l oraz jego średniego przekroju S wiąże 
się z określoną realizacją układu elektromagnetycznego, jakim jest transformator.  

Jest wiele sposobów reprezentacji charakterystyki magnesowania rdzenia ferroma-
gnetycznego w modelach dławików i transformatorów. Niektóre z nich są przedsta-
wione na rys. 5.14.  

0 iµ

ψ

0

ψ

0

ψ

0

ψ

a) b)

c) d)

iµ

iµ

iµ  

Rys. 5.14. Niektóre sposoby reprezentacji charakterystyki magnesowania rdzenia 

W najprostszym przypadku nieliniowa charakterystyka magnesowania jest ograni-
czona do trzech odcinków, dla których (rys. 5.14a): Lµ = 0 (charakterystyka pokrywa 
się z osią ψ) oraz Lµ = L (dwa odcinki dla ujemnych i dodatnich wartości prądu ma-
gnesującego). Wprowadzenie większej liczby odcinków (rys. 5.14b) lepiej przybliża 
rzeczywisty przebieg charakterystyki. Z tego względu najlepsza jest charakterystyka 
określona przez funkcję ciągłą (rys. 5.14c).  

Charakterystyka magnesowania może być aproksymowana za pomocą funkcji cią-
głej, co pozwala zastosować odpowiedni model nieliniowy typu true type. Stosuje się 
w tym funkcje nieparzyste, na przykład:  
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 ...)( 5
5

3
31 +++= µµµµψ iaiaiai , (5.32) 

przy czym dobre przybliżenie uzyskuje się dla dwóch wyrazów tego szeregu, gdy 
a1 ≠ 0 oraz a2 ≠ 0. 

Odwzorowanie strat związanych z histerezą oraz wierniejsze odtworzenie zjawisk 
zachodzących w żelazie daje charakterystyka z histerezą (rys. 5.14d), która również 
może być przybliżona odcinkami. Istotne jest przy tym także odwzorowanie zależno-
ści ψ = f(iµ) wewnątrz obwiedni histerezy (cząstkowe pętle histerezy). Można w tym 
celu zastosować funkcję o postaci jak w (2.41):  

 ( )( ) µµµψ iaIiaai c 321 arctg)( +±⋅=  (5.33) 

gdzie Ic oznacza prąd magnesowania odpowiadający natężeniu koercji Hc. Jeśli Ic > 0, 
to funkcja ta umożliwia zgrubne odwzorowanie pętli histerezy także z pętlami cząst-
kowymi (wybór znaku zależy od znaku pochodnej dψ/dt).  

Dokładne odwzorowanie zjawisk zachodzących w rdzeniu ferromagnetycznym 
podczas stanu przejściowego jest problemem trudnym [19, 120]. Jednak z uwagi na 
analizę stanu przejściowego w sieci nawet uproszczone modele charakterystyki ma-
gnesowania transformatora dają zadowalające przybliżenia. Ważne jest natomiast, aby 
w modelu można było odwzorować warunki początkowe w postaci początkowej war-
tości indukcji (B0) lub skojarzonego strumienia (ψ0).  

Gdy charakterystyka magnesowania rdzenia jest reprezentowana za pomocą funk-
cji z histerezą, początkowa wartość strumienia wyznacza punkt na cząstkowej pętli hi-
sterezy. Dalszy jej przebieg zależy od kształtu napięcia zasilającego, zgodnie z (5.28) 
(rys. 5.15a).  
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Rys. 5.15. Wprowadzenie warunku początkowego w modelu: a) z histerezą  
 oraz b) z charakterystyką bezhisterezową  

W modelu bezhisterezowym nie ma bezpośredniej możliwości zadawania warun-
ków początkowych (charakterystyka magnesowania przechodzi przez początek układu 
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współrzędnych – rys. 5.15b). Różną od zera początkową wartość strumienia magne-
tycznego można zadać w modelu w sztuczny sposób, wprowadzając na przykład do-
datkowe źródło napięcia na czas pierwszego okresu modelowania. Dalszy przykład 
pokazuje sposób rozwiązania tego problemu w programie ATP–EMTP.  

Przykład 5.2.  Korzystając z programu ATPDraw, opracować model przekładnika prą-
dowego zabezpieczeniowego, w którym charakterystyka magnesowania 
jest reprezentowana za pomocą elementu 98 (pseudo-nonlinear), z moż-
liwością wprowadzania początkowej wartości strumienia magnetycznego. 

Rozpatrywany jest przekładnik klasy 5P2016 o następujących parametrach: 
moc znamionowa: nS  = 20 VA ( nnn ZIS obc

2
2= ), 

znamionowa impedancja obciążenia: nZobc  = 20 Ω, ϕcos  = 0,5, 
przekładnia prądowa: 500:1 ( nn II 21 : ) A/A, przekładnia zwojowa: 500:1 ( 12 : NN ), 
przekrój rdzenia: S = 28,8cm2 = 2,88⋅10–3 m2, długość obwodu magnetycznego: l = 0,675 m,  
rezystancja uzwojenia wtórnego: R2 = 4,5 Ω.  
Charakterystyka magnesowania rdzenia jest pokazana na rys. 5.16. Została ona otrzymana 
w rezultacie pomiaru, przy wymuszeniu napięciem sinusoidalnym, a odpowiednie wartości są 
odniesione do wielkości maksymalnych (należy zauważyć, że taki pomiar wnosi przekłamanie 
w odniesieniu do natężenia pola H, gdyż jest ono obliczane względem mierzonej wartości sku-
tecznej prądu, który jest silnie odkształcony dla dużych wartości indukcji; w profesjonalnych 
programach stosowane są procedury odpowiedniej korekcji takiej charakterystyki [30]). 
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Rys. 5.16. Charakterystyka magnesowania rdzenia przekładnika prądowego 

 
16 Przekładnik prądowy zabezpieczeniowy o błędzie całkowitym 5% i granicznym współ-

czynniku dokładności KG = 20. 
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W programie ATP–EMTP charakterystyka magnesowania w elemencie 98 jest reprezentowana 
w postaci zależności )(if=ψ  (dla wartości maksymalnych). Do przekształcenia tej charakte-

rystyki można wykorzystać zależności (5.26), (5.27): H
N
li

2

=µ ,  .2SBN=ψ  

Po podstawieniu wybranych wielkości z rys. 5.16 otrzymuje się postać tabelaryczną szukanej 
funkcji (tabela 5.1). Te dane można bezpośrednio wykorzystać w modelu elementu 98.  

Tabela 5.1. Charakterystyka magnesowania rdzenia przekładnika: )( µψ if=  

µi , A ψ , Vs 

0,0143 0,1440 
0,0382 1,4400 
0,0573 2,0160 
0,0955 2,3184 
0,1909 2,4912 
0,7637 2,6928 
3,8184 2,8368 

28,6378 2,9664 
 
Do symulacji wybrano krok modelowania T =10–5 s. Schemat modelu utworzonego z wyko-
rzystaniem programu ATPDraw jest pokazany na rys. 5.17. Linią przerywaną zaznaczono 
fragment obwodu odnoszący się do modelu przekładnika. Pozostałe elementy oznaczają impe-
dancję źródła ( SZ _ ) oraz impedancję obciążenia ( obcZ _ ).  
Przyjęto znamionowe obciążenie przekładnika ( j17,310obc +=nZ  Ω), natomiast parametry 
wymuszenia zostały tak dobrane, aby uzyskać 20-krotną wartość prądu znamionowego. 
Gałąź magnesowania przekładnika została utworzona z elementu 98 oraz źródła napięcia stałe-
go (źródło 11), którego zadaniem jest wprowadzenie określonej wartości początkowej indukcji 
skojarzonej .ψ   
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Rys. 5.17. Schemat obwodu z modelem przekładnika prądowego 

Wykorzystuje się tu zależność (5.28), w której zewnętrzne źródło napięcia jest włączane 
w zasie tzał = 0 (TSTART = 0) i następnie jest wyłączane po jednym okresie modelowania: twył 
= tzał + T (TSTOP= ε+T , gdzie ε  jest częścią okresu modelowania – deklarowany okres uru-
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chomienia źródła musi być nieco większy od okresu modelowania, gdyż inaczej źródło nie zo-
stanie w ogóle uruchomione). Amplitudę źródła napięcia U  oblicza się wychodząc z zależno-
ści (5.28), zapisanej w postaci numerycznej dla jednego kroku całkowania: 

UT=ψ , skąd: TU r /ψ= , gdzie: rψ  – początkowa wartość strumienia remanentu. 
Na rysunku 5.18 pokazane są przebiegi prądu wtórnego 2i , prądu magnesującego µi  oraz skoja-
rzonego strumienia ψ  dla dwóch wartości strumienia remanentu: 0ψ  = 2 Vs (rys. 5.18a) oraz 

0ψ  = 0 (rys. 5.18b). Widać istotną różnicę w przebiegu obu prądów po załączeniu zasilania.  
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Rys. 5.18. Rezultat symulacji załączania przekładnika: a) indukcja resztkowa 0ψ  = 2 Vs  
oraz b) zerowa wartość indukcji resztkowej  
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b) Modele złożonego obwodu 

Obwód magnetyczny jest opisywany podobnymi modelami matematycznymi jak ob-
wód elektryczny. Wobec tego, do rozwiązywania obwodu magnetycznego można sto-
sować algorytmy używane do obliczania obwodów elektrycznych (zasada dualności). 
Zgodnie z tą zasadą, w miejsce siły elektromotorycznej e  w obwodzie elektrycznym 
wprowadza się siłę magnetomotoryczną cewki o liczbie zwojów cN : 

 iNf c=  (5.34) 

Podobnie reluktancja Rm: 

 
µS
lRm =  (5.35) 

pełni rolę rezystancji w obwodzie magnetycznym o przekroju S  i długości l  (jej od-
wrotnością jest permeancja). 

Jak widać, reluktancja obwodu ferromagnetycznego jest wielkością zależną od pola 
magnetycznego H (5.30), a zatem także od wytwarzającego go prądu i  (5.26). 

W tej analogii rolę prądu w obwodzie elektrycznym spełnia strumień magnetycz-
ny φ  w obwodzie magnetycznym. Dzięki temu obwód magnetyczny transformatora 
z rys. 5.19a może być przedstawiony w postaci schematu zastępczego, jak na rys. 5.19b. 

W przedstawionym schemacie zastępczym reluktancje są, w ogólnym przypadku, 
nieliniowe względem siły magnetomotorycznej f. Jeśli się uwzględni (5.26), (5.27), 
(5.30) oraz (5.34), zależność (5.35) przyjmie następującą postać dla reluktancji: 
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dla permeancji. W tym ostatnim przypadku odpowiedni schemat dualny należy spo-
rządzić przez analogię do obwodu prądowo-przewodnościowego. Wartości pochod-
nych w zależnościach (5.36) i (5.37) są określone na podstawie znanej charakterystyki 
magnesowania rdzenia. 

Elementy Rm1r oraz Rm2r (rys. 5.19b) reprezentują reluktancję obwodu zamykające-
go się przez powietrze, którego wielkość przenikalności magnetycznej jest stała 
( 7

0 104 −⋅=≈ πµµ  H/m). Wartość tych parametrów może być także określona na dro-
dze pomiarowej (dla cewki o liczbie zwojów Nc wartość reluktancji można określić 
według zależności: Rmr = (Nc)2/Lr, gdzie Lr jest indukcyjnością rozproszenia). 
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Rys. 5.19. Obwód elektromagnetyczny a) i jego schemat zastępczy b) 

W ten sposób można modelować złożone obwody magnetyczne transformatorów 
i innych maszyn elektrycznych. Utworzone równania obwodu magnetycznego należy 
rozwiązywać jednocześnie z modelem obwodu elektrycznego. Równowagę obu tych 
modeli uzyskuje się dzięki wymianie wspólnych wielkości: prądu i  w (5.34) oraz na-
pięcia zgodnie z (5.28).  

5.3. Transformator trójfazowy 

5.3.1. Transformator dwuuzwojeniowy 

Właściwości transformatora trójfazowego zależą od sposobu połączeń jego uzwojeń, 
co jest określone przez tzw. grupę połączeń uzwojeń oraz od budowy rdzenia magne-
tycznego. W większości zastosowań uzwojenia są połączone w trójkąt (∆) lub 
w gwiazdę (Y). W ostatnim przypadku istotna jest także wartość impedancji uziemie-
nia punktu gwiazdowego uzwojenia.  

Zazwyczaj zakłada się, że uzwojenia transformatora są symetryczne, co oznacza, 
że parametry zastępcze uzwojeń wszystkich faz są jednakowe. Ponadto, w odniesieniu 
do rozważań w przedziale niskich częstotliwości (do ok. 2000 Hz), pomija się pojem-
ności międzyzwojowe i międzyuzwojeniowe, a także pojemności doziemne. W tym 
zakresie częstotliwości pomija się także efekt naskórkowości w przewodach uzwoje-
nia (który objawia się zmianą parametrów elektrycznych przewodów w funkcji często-
tliwości). 

Podobnie jak w odniesieniu do transformatorów jednofazowych, model transfor-
matora trójfazowego rozpatruje się w postaci elementu wielozaciskowego lub w po-
staci układu, odwzorowującego jego budowę, z podziałem na stronę pierwotną i wtór-
ną. Podejście wielozaciskowe będzie dalej prezentowane na przykładzie 
transformatora wielouzwojeniowego.  
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Sposób połączenia uzwojeń transformatorów regulują odpowiednie normy. W róż-
nych systemach elektroenergetycznych obowiązują na ogół różne zestawy grup połą-
czeń [60, 127]. Niektóre z nich są przedstawione w tabeli 5.2. Podane schematy i wy-
kresy wektorowe napięć ilustrują sposób tworzenia odpowiednich połączeń uzwojeń 
transformatora.  

Tabela 5.2. Wybrane sposoby połączenia uzwojeń transformatorów dwuuzwojeniowych 

Lp. 
Układ  
połą-
czeń 

Schemat Wykres wektorowy  
napięć Uwagi* 

1 Yy0 

Y y

N n

U1Y

U2Y

U3Y

U1y

U2y

U3y
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Na podstawie znanego układu połączeń transformatora można łatwo utworzyć jego 
model. Schemat zastępczy transformatora o układzie połączeń Yd11 jest pokazany na 
rys. 5.20a. Widać, że poszczególne pary uzwojeń mają schematy zastępcze takie same 
jak dla transformatora jednofazowego. Połączenie uzwojeń strony niskiej (L) powodu-
je, że wektory napięć fazowych tej strony wyprzedzają wektory napięć fazowych stro-
ny Y o kąt 30˚ (wskazuje on na godzinę 11. – rys. 5.20b). Należy zauważyć, że napię-
cie na uzwojeniach strony Y jest równe napięciu fazowemu, natomiast to samo 
napięcie na stronie ∆ jest równe napięciu międzyfazowemu (po pominięciu spadku na-
pięcia na gałęzi wzdłużnej). Przekładnia zwojowa różni zatem się o 3  od przekładni 
analogicznej wynikającej ze stosunku napięć fazowych obu stron transformatora.  
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Rys. 5.20. Schemat zastępczy transformatora Yd11 
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Gałęzie poprzeczne w poszczególnych fazach mogą być umieszczone po stronie 
wysokiej lub niskiej transformatora. W modelach transformatorów zazwyczaj wyróż-
nia się stronę pierwotną (ang. primary – p) oraz wtórną (ang. secondary – s), niezależ-
nie od poziomu napięcia. W programie ATP–EMTP gałąź poprzeczna jest związana 
ze stroną pierwotną modelu transformatora. Przy zmianie położenia tej gałęzi należy 
pamiętać o odpowiedniej zmianie jej parametrów (także o odpowiednim przeskalowa-
niu charakterystyki magnesowania).  

Rozpatrywany sposób reprezentacji transformatora trójfazowego jest dopuszczalny 
jedynie wtedy, gdy konfiguracja obwodu magnetycznego pozwala wydzielić trans-
formatory poszczególnych faz jako oddzielne elementy. Można tego dokonać (z du-
żym przybliżeniem) jedynie w przypadku transformatora z rdzeniem cztero- (4k) lub 
pięciokolumnowym (5k), jak na rys. 5.21b.  

W transformatorze trójfazowym konstrukcja rdzenia magnetycznego ma istotny 
wpływ na jego właściwości, zwłaszcza na schemat zastępczy dla składowej zerowej. 
Składowa zerowa prądu powoduje powstanie odpowiedniej składowej strumienia ma-
gnetycznego, która ma ten sam kierunek we wszystkich kolumnach rdzenia. W przy-
padku transformatora trójkolumnowego (5.21a) strumień ten może się zamknąć jedy-
nie przez otoczenie rdzenia (powietrze, olej, obudowa), natrafiając na duży opór 
magnetyczny (reluktancję).  

uL1L uL2L uL3L

uL1H uL2H uL3H

uL1L uL2L uL3L

uL1H uL2H uL3H

a) b)

 

Rys. 5.21. Rdzenie transformatora trójfazowego: a) trójkolumnowy, b) pięciokolumnowy  

Zastępcza charakterystyka magnesowania takiego obwodu jest w porównaniu 
z charakterystyką rdzenia ferromagnetycznego bardziej ‘płaska’ (przy tej samej warto-
ści strumienia magnetycznego prąd magnesujący jest znacznie większy), a nielinio-
wość jest mniej wydatna. W konsekwencji indukcyjność magnesowania dla składowej 
zerowej µ0L  jest znacznie mniejsza. Problem ten nie występuje w transformatorze 
z rdzeniem cztero- lub pięciokolumnowym (5.21b), gdyż strumień składowej zgodnej 
zamyka się przez dodatkowe kolumny rdzenia.  

Podobnie jak w przypadku transformatora jednofazowego, obwód magnetyczny 
może być przedstawiony w sposób uproszczony, za pomocą gałęzi magnesowania 
z nieliniową indukcyjnością (jak na rys. 5.20) lub za pomocą dodatkowego modelu, 
z odwzorowaniem struktury tego obwodu [123]. W pierwszym przypadku, jeśli rdzeń 
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transformatora jest trójkolumnowy, to jego właściwości dla składowej zerowej można 
uwzględnić za pomocą dodatkowego obwodu, jak na rys. 5.22.  
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Rys. 5.22. Schemat zastępczy transformatora Yy0 z rdzeniem trójkolumnowym 

W tego typu transformatorach droga składowej zerowej strumienia magnetycznego 
(powstałego w wyniku przepływu prądu składowej zerowej, tj. jednej trzeciej sumy 
prądów fazowych) znacznie różni się od strumienia składowej zgodnej. Dlatego wy-
padkowa impedancja takiego transformatora dla składowej zerowej jest 3–5 razy 
większa od odpowiedniej impedancji dla składowej zgodnej [60].  

Dzięki wprowadzeniu dwóch dodatkowych transformatorów idealnych o jednost-
kowej przekładni (rys. 5.22), w obwodzie tym otrzymuje się potrójną wartość napięcia 
kolejności zerowej: 3u0Hµ odnoszącego się do strony wysokiej transformatora. Potrój-
na wartość nieliniowej indukcyjność dla składowej zerowej odwzorowuje obwód ma-
gnetyczny dla składowej zerowej strumienia.  

W programie ATP–EMTP ten typ modelu jest zadawany w postaci zbioru danych 
wejściowych, który jest określony przez format TRANSFORMER THREE PHASE 
(w edytorze ATPDraw odpowiada mu element TRAYYH_3). Szczegóły tworzenia mo-
delu i pozyskiwania odpowiednich danych, są przedstawione w przykładzie 5.3.  

Przykład 5.3.  Korzystając z edytora graficznego ATPDraw opracować model fragmentu 
systemu elektroenergetycznego 110/20 kV z transformatorem Yn0y0 
(gwiazda–gwiazda z uziemionym punktem gwiazdowym na stronie H 
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i izolowanym na stronie L) z trzykolumnowym rdzeniem (3k) o mocy 
40 MV⋅A (rys. 5.23). Strona średniego napięcia (20 kV) pracuje z izolo-
wanym punktem neutralnym. Parametry transformatora zostały uzyskane 
w rezultacie pomiaru biegu jałowego i zwarcia, które jednak odbyły się 
w nieco odmiennych od znamionowych warunkach. 

Zs

Za Zb

Es 110kV 15km20kV
Tr

 

Rys. 5.23. Schemat analizowanego systemu 

Parametry transformatora: 
moc znamionowa nS  = 40 MV⋅A; 
znamionowe napięcie: 115/22 kV. 
Następujące pomiary zostały wykonane na stronie L transformatora: 
pomiar dla składowej zgodnej: 
 straty w żelazie rdzenia pPFe∆  = 32 kW; 
 prąd magnesowania pIµ  = 11,4 A; 
 napięcie magnesowania pUµ  = 19,0 kV; 
 straty obciążeniowe w uzwojeniach CuP∆  = 205 kW; 
 prąd próby zwarciowej NHz II =  = 200,8 A; 
 napięcie zwarcia zU  = 12,07 kV; 
pomiar dla składowej zerowej: 
 straty w żelazie rdzenia pP 0Fe∆  = 168,1 kW; 
 prąd magnesowania pI 0µ  = 280 A (suma prądów w trzech fazach); 
 napięcie magnesowania pU 0µ  = 1,636 kV (napięcie na zwartych zaciskach strony L); 
 straty w uzwojeniach pP 0Cu∆  = 12,5 kW; 
 prąd próby zwarciowej pzI 0  = 95 A; 
impedancja źródła sZ1  = 0,15+j2,5 Ω, sZ0  = 0,26+j3,4 Ω; 
moc obciążenia  aS _obc  = 25,4+j15,8 VA, bS _obc  = 4,5+j2,2 MVA. 
Charakterystyka magnesowania rdzenia w odniesieniu do uzwojenia L jest zamieszczona poni-
żej (tabela 5.3). 
Linia napowietrzna 20 kV: 
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długość linii l = 15 km; 1R  = 0,36 Ω/km; 1X  = 0,38 Ω/km; 0R  = 0,60 Ω/km; 

0X  = 1,55 Ω/km; 1C  = 10,5 nF/km; 0C  = 4,2 nF/km. 
Dane odnoszące się do transformatora służą do określenia parametrów jego schematu zastęp-
czego. Są one danymi wejściowymi do modułu TRAYYH_3 w programie ATPDraw. Podane 
poniżej obliczenia są automatycznie wykonywane przez ten program.  
Ponieważ test biegu jałowego nie był wykonywany w warunkach znamionowych (sygnalizuje 
to indeks p w podanych oznaczeniach), więc, zakładając liniowość obwodu w tym zakresie, 
można łatwo przeliczyć odpowiednie parametry do wartości znamionowych:  
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Tabela 5.3. Charakterystyka magnesowania rdzenia transformatora względem 
 uzwojenia 22 kV: )( µψ if=  

µi , A ψ , Vs 

18,62 57,20 
38,95 64,56 
367,6 75,27 
1121,0 77,97 
3587,0 80,43 

 
Podobnie dla składowej zerowej: 
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Zmierzony prąd magnesujący pIµ  oraz napięcie magnesowania pU µ  wyznaczają punkt na li-
niowej części charakterystyki magnesowania )( µψ if= . Odpowiednie wielkości mają nastę-
pujące wartości: 

12,1624,112 === pIi µµ A, ( ) ( ) 38,493314/2190003/2 === ωψ µpU  Vs. 
Służą one w programie symulacyjnym do wyznaczenia reaktancji gałęzi magnesowania: 

µ
µ

ωψ
i

X = , 

co jest wykorzystywane do obliczenia początkowego ustalonego stanu sieci. 
Impedancja wzdłużna transformatora może być określona na podstawie wyników pomiaru 
w stanie zwarcia:  
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66,34695,17,34 2222 =−=−= TTT RZX Ω. 
Parametry wzdłużne obu uzwojeń są zatem następujące: 

8475,02/ == TH RR Ω, 35,172/ == TH XX Ω,  
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Straty w żelazie nie mogą być w tym wypadku tradycyjnie reprezentowane przez rezystancję 
łączoną równolegle z indukcyjnością Lµ (rys. 5.22), gdyż różne są jej wartości dla składowej 
zgodnej i zerowej. Można to uwzględnić przez dodanie trójfazowego elementu ze sprzężonymi 
rezystancjami na zewnątrz modelu transformatora. Wartości własnych i wzajemnych rezystan-
cji w macierzy tego elementu można określić na podstawie odpowiednich wartości dla składo-
wych symetrycznych:  
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Rezystancje te są obliczone względem strony L. Tworzą one macierz o następującej strukturze: 
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Do odwzorowania tych rezystancji sprzężonych, w programie ATP–EMTP można wykorzy-
stać modele typu 51, 52, 53. Są one automatycznie dołączane do modelu transformatora w pro-
gramie ATPDraw [8].  
Obwód magnetyczny dla składowej zerowej jest utworzony przez indukcyjność L0µ o stałej 
wartości, którą w programie należy przedstawić za pomocą reluktancji odniesionej do napięcia 
strony L:  
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Indukcyjność L0µ można estymować za pomocą zależności: 
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w odniesieniu do strony pierwotnej i wtórnej, odpowiednio. 
Wyrażenie w nawiasie tej zależności uwzględnia rozpływ prądu magnesującego w schemacie 
zastępczym transformatora (rys. 5.22). Po podstawieniu odpowiednich wielkości otrzymuje się:  
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Pozostaje jeszcze do obliczenia rezystancja uziemienia punktu gwiazdowego transformatora 
RNg. Jej wartość jest określona przez różnicę pomiędzy zmierzonymi stratami mocy w uzwoje-
niu dla składowej zerowej i składowej zgodnej (obie te wielkości są sobie równe dla uzwoje-
nia):  
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Wartość poszukiwanej rezystancji wynosi:  
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W programie ATPDraw jest ona automatycznie umieszczana między punkt gwiazdowy N 
transformatora i ziemię. 
Wartości impedancji obciążeń można obliczyć według zależności:  
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Do reprezentacji tych obciążeń wykorzystano trójfazowe modele połączone w gwiazdę typu 
RLCY3.  
Linia jest reprezentowana za pomocą trójfazowego czwórnika Π, w którym macierze R, X, C 
mają następujące parametry:  
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Podobnie dla reaktancji linii:  

25,2355,1150 =⋅=X Ω, 7,538,0151 =⋅=X Ω, 55,11=SX Ω, 85,5=MX Ω.  
Pojemności linii będą reprezentowane w postaci susceptancji ( fCCB π2== ω , 50=f Hz): 
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Należy zauważyć, że sieć 20 kV pracuje z izolowanym punktem neutralnym, zatem parametry 
poprzeczne linii spełniają istotną rolę, zapewniając połączenie tej części sieci z ziemią.  
Model ATPDraw rozpatrywanego systemu jest pokazany na rys. 5.24. Po obu stronach trans-
formatora umieszczono wyłączniki, co umożliwia prowadzenie prób załączania transformatora.  
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Przebiegi prądów na stronie H transformator podczas jego załączania przy wyłączonym obcią-
żeniu pokazano na rys. 5.25. Podczas załączenia napięcie fazy L1 przyjmuje wartość najwięk-
szą, czego rezultatem jest bardzo mały prąd magnesujący w tej fazie. Prądy pozostałych dwóch 
faz są na początku spolaryzowane jednobiegunowo (dodatnie lub ujemne połówki), co objawia 
się dużym udziałem drugiej harmonicznej w tych przebiegach. 
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Rys. 5.24. Model ATPDraw rozpatrywanego systemu 
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Rys. 5.25. Przebiegi prądów podczas załączania nieobciążonego transformatora  

Można zauważyć, że prądy te zamykają się przez punkt gwiazdowy transformatora i przez zie-
mię, o czym świadczy prąd HI03  ( HI0  – składowa zerowa), będący sumą prądów fazowych. 
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5.3.2. Transformator wielouzwojeniowy 

W systemie elektroenergetycznym często stosowane są transformatory trójuzwoje-
niowe. Wiążą one systemy o różnych poziomach napięć. Często też, jak w przypadku 
autotransformatora, trzecie uzwojenie jest połączone w trójkąt, co stwarza dogodne 
warunki do obniżenia impedancji dla składowej zerowej w sieci z uziemionym punk-
tem neutralnym. Transformatory o liczbie uzwojeń większej niż trzy mają najczęściej 
specjalne zastosowanie i są rzadko stosowane.  

Sposób połączenia uzwojeń w takich transformatorach jest podobny do połączenia 
w transformatorach dwuuzwojeniowych. Niektóre przykłady są pokazane na rys. 5.26. 

T

H L

Yy0d11
T1

H T2

Yd11d11

 

Rys. 5.26. Układy połączeń wybranych transformatorów trójuzwojeniowych 

Trzecie uzwojenie jest oznaczane literą T (ang. tertiary); stosowane są także ozna-
czenia: H, T1 i T2. 

Model trójfazowego transformatora trójuzwojeniowego można utworzyć w rezul-
tacie odpowiedniego złożenia trzech modeli trójuzwojeniowego transformatora jedno-
fazowego (s. 182) z uwzględnieniem sposobu połączenia uzwojeń. W przypadku 
transformatorów trójuzwojeniowych jedno z uzwojeń jest zazwyczaj połączone 
w trójkąt (∆) i wówczas z dużym przybliżeniem można pominąć odwzorowanie stru-
mienia magnetycznego składowej zerowej17. Przykład 5.4 pokazuje sposób formowa-
nia modelu transformatora trójuzwojeniowego z wykorzystaniem programu ATP–
EMTP.  

Przykład 5.4.  Korzystając z edytora graficznego ATPDraw opracować model fragmentu 
systemu elektroenergetycznego 220/110/10 kV z transformatorem 
Yn0yn0d11 o mocy 160 MV⋅A (rys. 5.27). Na stronie średniego napięcia 
(10 kV) umieszczone jest lokalne obciążenie o mocy So = 32 + j18 MV⋅A. 
Na stronę uzwojenia wtórnego przepływa moc S2 = 105 + j28 MV⋅A. Po-
zostałe parametry rozpatrywanego systemu są podane poniżej. 

Parametry transformatora: 
moc znamionowa: rTrLrH SSS // = 160/160 /50 MV⋅A; 

 
17 Napięcie składowej zerowej na uzwojeniach strony Y, które wymusza ten strumień, jest 

niewielkie, gdyż uzwojenie ∆ stwarza łatwą drogę przepływu prądu składowej zerowej od 
strony YN. 
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znamionowe napięcie: 230/120/10,5 kV; 
napięcia zwarcia: %10=KHLu , %5,33=KHTu , %8,20=KLTu  (odniesione do uzwojenia H); 
prąd biegu jałowego: %5,00 =i ; 
straty w żelazie rdzenia: %25,0=∆ FeP ; 
rezystancja uzwojeń: 320/80/2,4 mΩ; 
impedancja źródeł: sHZ1 =0,35+j3,77 Ω, sHZ0 =1,16+j10,42 Ω; sLZ1 =0,18+j1,55 Ω, 

sLZ0 =0,56+j2,75 Ω. 
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Rys. 5.27. Schemat analizowanego systemu 

Charakterystyka magnesowania rdzenia jest zamieszczona poniżej (tabela 5.4). 

Tabela 5.4. Charakterystyka magnesowania rdzenia transformatora 

0/ µµ ii  0/ψψ  

1,0 1,0 
1,4259 1,2285 
4,0846 1,5015 
74,517 1,7745 
322,0 1,911 

 
Przekładnie uzwojeń określa się na podstawie napięć znamionowych: 

9,21
5,10

230
===

rT

rH
HT U

Uϑ , 92,1
120
230

===
rL

rH
HL U

Uϑ . 

Na podstawie przedstawionych danych można określić impedancje zwarciowe transformatora: 

06,33
160
230

100
10

100

22

===
rH

rHKHL
HL S

UuZ Ω,  76,110
160
230

100
5,33

100

22

===
rH

rHKHT
HT S

UuZ  Ω, 

77,68
160
230

100
8,20

100

22

===
rH

rHKLT
LT S

UuZ  Ω. 

Obliczenia te odnoszą się do napięcia strony H. Impedancje poszczególnych uzwojeń (rys. 
5.26) określa się z zależności (odniesione do strony H): 
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( )LTHTHLH ZZZZ −+= 5,0 = ( ) 52,3777,6876,11006,335,0 =−+  Ω, 

( )HTLTHLL ZZZZ' −+= 5,0 = ( ) 46,476,11077,6806,335,0 −=−+  Ω, 

( )HLLTHTT ZZZZ' −+= 5,0 = ( ) 23,7306,3377,6876,1105,0 =−+  Ω, 

skąd: 21,192,1/46,4/ 22 −=−== HLLL Z'Z ϑ  Ω, 153,09,21/23,73/ 22 === HTTT Z'Z ϑ  Ω. 
Przy znanych wartościach rezystancji uzwojeń, można obliczyć ich reaktancje, na przykład: 

22
HHH RZX −= , 

jednak, łatwo zauważyć, że wartości reaktancji praktycznie nie różnią się od wartości impe-
dancji. 
W celu określenia charakterystyki magnesowania w wielkościach mianowanych załóżmy, że 
jest ona odniesiona do strony H transformatora. Wielkości względne (tabela 5.4) należy po-
mnożyć odpowiednio przez wartości znamionowe: 

77,597
16.314

3/2300002
23

2
0 =

⋅
=

⋅
=

f
UrH

π
ψ  Vs,  

84,2005,0
2303

1600002100/2 00 =⋅
⋅

⋅== iIi rHµ  A, 

w wyniku czego otrzymuje się odpowiednie wartości charakterystyki magnesowania względem 
uzwojenia 3/230  kV (tabela 5.5). Rezystancja obliczona względem uzwojenia strony H: 

132
16025,0

230100100 222

=
⋅

⋅
=

∆
=

∆
=

rH

rHrH

SP
U

P
UR

FeFe
Fe  kΩ. 

Tabela 5.5. Charakterystyka magnesowania rdzenia transformatora  
względem uzwojenia 3/230  kV: )( µψ if=  

µi , A ψ , Vs 

2,84 597,8 
4,05 734,4 
11,6 897,6 

211,6 1060,7 
914,50 1142,3 

 
Impedancję obciążenia w sieci 10 kV można określić według następującej zależności (impe-
dancje połączone w trójkąt): 

47,162,2
1832

5,10 22

j
j

+=
+

==
o

rT
o S

UZ Ω. 

W przypadku transformatora trójuzwojeniowego zazwyczaj reaktancja jednego z uzwojeń jest 
ujemna, co może prowadzić do numerycznej niestabilności modelu. Problem ten można obejść 
przez umieszczenie modelu gałęzi poprzecznej nie w punkcie gwiazdowym schematu zastęp-
czego (rys. 5.20), lecz na jednym z zacisków transformatora (w tym wypadku obliczenia zosta-
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ły wykonane dla strony H) [21]. Schemat modelu rozważanego transformatora jest pokazany 
na rys. 5.28. Gałęzie poprzeczne są reprezentowane za pomocą elementów TYPE-98 (pseudo-
nonlinear reactor). W programie ATPDraw elementy te są oznaczone jako NLININD.  
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Rys. 5.28. Schemat modelu analizowanego transformatora trójuzwojeniowego 

Schemat modelu analizowanego systemu jest pokazany na rys. 5.29. Ponieważ sieć 10 kV pra-
cuje z izolowany punktem neutralnym, więc w celu stabilizacji modelu szyny strony T trans-
formatora w każdej fazie połączono z ziemią poprzez pojemności o wartości 10 nF (odpowiada 
jej susceptancja 10,87 µS). Jest to wartość równoważna pojemności kilkudziesięciu metrów 
kabla, co nie zmienia warunków pracy analizowanego układu.  
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Rys. 5.29. Schemat modelu ATPDraw analizowanego system 

W modelu utworzonym za pomocą programu ATPDraw (rys. 5.29) można zauważyć, że model 
transformatora jest utworzony ze standardowego bloku transformatora trójuzwojeniowego, któ-
ry jest uzupełniony elementami reprezentującymi gałęzie magnesowania. 
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Rys. 5.30. Przebieg prądu na stronie H transformatora  

Łączą się one ze wspólnym punktem gwiazdowym strony H transformatora. Punkt ten jest 
uziemiony przez rezystancję 0,1=NR  Ω.  
W rozpatrywanym modelu zasymulowano zwarcie L1–G na szynach 110 kV transformatora. 
W celu wydzielenia jednej fazy z trójfazowego systemu zastosowano rozdzielacz (ang. split-
ter). Rezystancja zwarcia 5,0=zR  Ω. Przebieg prądu zarejestrowanego na wyłączniku strony 
H transformatora jest pokazany na rys. 5.30.  
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Model transformatora wielouzwojeniowego można także wykorzystać do odwzo-
rowania zwarć wewnętrznych w transformatorze. W takim wypadku w punkcie wy-
stąpienia uszkodzenia wewnątrz uzwojenia można dokonać podziału tego uzwojenia 
na dwie części. W tak utworzonym węźle łączącym obie części uzwojenia można 
umieścić model zwarcia. Aby wykorzystać istniejące modele w programie ATP–
EMTP, podział uzwojenia należy powtórzyć we wszystkich trzech fazach transforma-
tora. W ten sposób do modelowania zwarcia wewnętrznego w transformatorze dwu-
uzwojeniowym należy użyć modelu transformatora trójuzwojeniowego, w którym 
dwa uzwojenia są połączone szeregowo, tworząc jedno z uzwojeń badanego transfor-
matora dwuuzwojeniowego. Struktura modelu jednej fazy takiego transformatora jest 
pokazana na rys. 5.32.  

Rozpatrywana faza transformatora ma początkowo dwa uzwojenia: pierwotne, 
związane z wielkościami z indeksem a, oraz wtórne, związane z indeksem b:  

21 bbb NNN += , 21 bbb RRR += , 21 bbb LLL += . 

Ra La

RFe Lµ

Rb1Lb1

Rb2Lb2

Rz

W

Na : Nb

Nb1

Nb2

 

Rys. 5.31. Struktura jednej fazy modelu transformatora ze zwarciem wewnętrznym 

Zakłada się, że 1bN  zwojów uzwojenia wtórnego zostaje zwarte przez rezystancję 

zR . Czas zwarcia jest kontrolowany przez wyłącznik W. Aby obliczyć parametry po-
dzielonego uzwojenia zakłada się, że rezystancja jest proporcjonalna do liczby uzwo-
jeń:  

 
b

b
b

RR
ϑ+

=
12 , 

b

bb
b

RR
ϑ
ϑ

+
=

11  (5.38) 

gdzie: 
2

1

b

b
b N

N
=ϑ , 

natomiast indukcyjność jest proporcjonalna do kwadratu liczby uzwojeń:  
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 22 1 b
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b
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ϑ+

= , 2
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1 1 b

bb
b

LL
ϑ
ϑ

+
=  (5.39) 

Związki te łatwo sprawdzić przez podstawianie. Założenie prowadzące do (5.39) 
wynika bezpośrednio z zależności (5.11)18.  

Zwykle w takich obliczeniach wygodniej jest posługiwać się pojęciem udziału 
zwartych zwojów w całym uzwojeniu: )1/(1/2 bbbb NNn ϑ+== , w miejsce współ-
czynnika transformacji .bϑ  Należy wówczas podstawić bbb nn /)1( −=ϑ . Można na 
przykład sprawdzić że w zwartej części 10% uzwojenia rezystancja ma udział również 
10%, natomiast indukcyjność – tylko 1,2%.  

Schemat jednej fazy z rys. 5.31 należy odpowiednio rozszerzyć do modelu trans-
formatora trójfazowego. We wszystkich trzech fazach tego modelu należy zapewnić 
szeregowe połączenie dzielonych uzwojeń (środkowy węzeł jest wspólny dla obu 
uzwojeń). Warto zauważyć, że model gałęzi poprzecznej wygodnie jest umieścić 
w tym uzwojeniu, które nie jest dzielone. Przy obliczaniu parametrów schematu za-
stępczego należy postępować tak, jak w przypadku transformatora dwuuzwojeniowe-
go, a następnie rozdzielić uzwojenie strony wtórnej zgodnie z przedstawionym algo-
rytmem (w programie ATP–EMTP model gałęzi poprzecznej jest związany ze stroną 
pierwotną transformatora).  

5.3.3. Transformatory z uzwojeniem Z 

Transformatory WN/ŚN są zazwyczaj połączone jako Yd z odpowiednim przesunię-
ciem fazowym. Do ustalenia sposobu uziemienia punktu neutralnego sieci średnich 
napięć stosuje się w takim wypadku transformatory uziemiające. W celu zmniejszenia 
impedancji składowej zerowej uzwojenie służące do uziemienia jest połączone według 
schematu Z (zygzak – tabela 5.2). Uzwojenie to może być połączone w kierunku do-
datniego lub ujemnego przesunięcia fazowego (rys. 5.32). W ogólnym przypadku 
uzwojenia tworzące schemat Z mogą mieć różną liczbę zwojów, co pozwala uzyskać 
różne relacje napięciowe pomiędzy uzwojeniami. Kształtują się one zgodnie z nastę-
pującymi zależnościami (zakłada się, że we wszystkich trzech fazach uzwojenia są ta-
kie same) [50]:  

– przekładnia zwojowa:  

 ( )α
αϑ

−
===

3/sin
sin
πz

y

z

y
z U

U
N
N

 (5.40) 

 
18 Jest to uproszczenie, gdyż rezystancja jest proporcjonalna do długości przewodu, a in-

dukcyjność rozproszenia zależy także od sposobu rozmieszczenia uzwojenia. Wiarygodne war-
tości można uzyskać jedynie na podstawie dokładnych pomiarów. 
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– zależności pomiędzy wektorami napięć związanymi z uzwojeniem pierwszej 
fazy:  

 3/πj
1

1 e1 p
z

L
z

UU
ϑ+

=  (5.41) 
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ϑ
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+
=  (5.42) 

przy czym p oznacza znak, który dla dodatniego przesunięcia fazowego (rys. 5.32a) 
jest dodatni (p = 1, indeks k = 2), a dla przesunięcia ujemnego (rys. 5.32b) w wykład-
niku należy postawić znak ujemny (p = –1, indeks k = 3).  
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Rys. 5.32. Sposoby połączenia uzwojenia w zygzak 

Obliczając parametry schematu zastępczego można przyjąć, że rezystancja uzwo-
jenia jest proporcjonalna do liczby zwojów, natomiast reaktancja szeregowo połączo-
nych uzwojeń rozkłada się proporcjonalnie do kwadratu liczby zwojów – jak w (5.38) 
i (5.39). Stąd otrzymamy ( yz RRR += , yz XXX += ):  
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, (5.43) 
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=  (5.44) 

Prąd magnesujący jest mierzony przy nieobciążonym transformatorze i może być 
określony w odniesieniu do dowolnego uzwojenia. W przypadku uzwojenia pierwszej 
fazy prąd magnesujący odnosi się do pierwszej kolumny rdzenia transformatora 
i można go określić z zależności µµ XUI L j/1= , przy czym pomija się straty w żela-
zie. Można go także wyrazić za pomocą wielkości związanych z pierwszą częścią 
uzwojenia:  

 
z

z
z X

UII
µ

µµ j
1==  (5.45) 

Drugie uzwojenie na tej samej kolumnie rdzenia odnosi się do fazy L3, a związany 
z nim prąd magnesujący można określić następująco:  

 3/21 πje
j z

y

y
y I

X
U

I µ
µ

µ ==  (5.46) 

Zależności (5.45) i (5.46) odnoszą się do transformatora z dodatnim przesunięciem 
fazowym (rys. 5.32a). Przy przesunięciu ujemnym zmieni się jedynie znak wykładni-
ka w (5.46). Odejmując stronami te równania (po uprzednim pomnożeniu (5.46) przez 

zϑ ) otrzymamy:  

 ( )
y

y
z

z

z
zz X
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µµ

µ ϑϑ
jj

e πj 113/21 −=−  (5.47) 

Podobnie jak w przypadku reaktancji rozproszenia, reaktancja magnesowania jest 
także proporcjonalna do kwadratu liczby uzwojeń: zzy XX µµ ϑ 2= . Po uwzględnieniu 
tej zależności oraz po podstawieniu związków (5.41), (5.42) i (5.44) w (5.47) otrzy-
mamy [50]: 

 21 zz
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= , 2
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1 zz
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y
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X

ϑϑ
ϑµ

µ ++
=  (5.48) 

co pozwala określić reaktancję gałęzi magnesowania poszczególnych uzwojeń na pod-
stawie reaktancji µX  określonej w drodze pomiarów.  

W podobny sposób może być określona reaktancja magnesowania dla składowej 
zerowej tego transformatora. Prądy składowej zerowej w obu uzwojeniach związa-
nych z daną kolumną rdzenia mają ten sam kierunek, lecz przeciwny znak, zatem 
przez analogię do (5.45) i (5.46), zależność (5.47) przyjmie następującą postać:  
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gdzie: 0zU , 0yU  – napięcia składowej zerowej na odpowiednich częściach uzwoje-
niach; 0zX µ , 0yX µ  – reaktancje magnesowania tych uzwojeń dla składowej zerowej.  

Stosując w odniesieniu do (5.49) zależności analogiczne do (5.41), (5.42) i (5.44), 
otrzymamy:  
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gdzie: 0U , 0I  – wartości skuteczne napięcia i prądu składowej zerowej na zaciskach 
uzwojenia Z transformatora.  

Można zauważyć, że dla 1=zϑ  (oba uzwojenia mają tę samą liczbę zwojów) reak-
tancja magnesowania dla składowej zerowej osiąga wartość nieskończoną. Jest to za-
tem przypadek transformatora, w którym nie ma gałęzi poprzecznej (jeśli pominąć 
straty w żelazie rdzenia), a o jego impedancji decyduje jedynie rezystancja uzwojenia 
i reaktancja rozproszenia związana z uzwojeniami. Takie transformatory są używane 
do ustalenia warunków pracy punktu neutralnego sieci średnich napięć. Decyduje 
o tym charakter i wartość impedancji uziemienia włączanego pomiędzy punkt gwiaz-
dowy n transformatora (rys. 5.32) i ziemię.  

W transformatorze uziemiającym kąt przesunięcia fazowego 6/π±=α , co w za-
leżności od sposobu połączenia trzeciego uzwojenia pozwala uzyskać przesunięcie 
godzinowe 0, 6, 5, 11.  

Zmieniając przekładnię zϑ  można łatwo uzyskać kąt α  o niemal dowolnej warto-
ści. Właściwość tę wykorzystuje się do budowy transformatorów trójuzwojeniowych 
Zdy przeznaczonych do zasilania przekształtników energoelektronicznych. Są one za-
silane od strony uzwojenia Z, natomiast kąt przesunięcia napięcia pomiędzy uzwoje-
niami ∆ oraz Y dobiera się z uwagi na minimalizację tętnień prądu stałego 12-
pulsowego przetwornika [50, 51]. Schemat połączeń takiego transformatora i wykres 
wektorowy napięć jest pokazany na rys. 5.33. W edytorze ATPDraw można przygo-
tować model tego transformatora za pomocą bloku SATTRAFO, przy czym dane wej-
ściowe oblicza się zgodnie z przedstawionym powyżej algorytmem.  

Model transformatora uziemiającego jest prostszy, gdyż nie ma potrzeby odwzo-
rowywania reaktancji magnesowania dla składowej zerowej. 
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Rys. 5.33. Transformator ZNd11y: a) schemat połączeń, b) wykresy wektorowe napięć  

Zadania  

5.1. Utworzyć schematy połączeń dla podanych trójfazowych transformatorów dwuuzwoje-
niowych:  
a) Yd5  b) Zy5  c) Zy11  d) Dz6  e) Dd6  f) Yy6  g) Dd0  h) Dy11 

5.2. W Przykładzie 5.3 pokazany jest sposób modelowania transformatora Yy0 z trójkolum-
nowym rdzeniem. Podana tam charakterystyka magnesowania (tabela 5.3) odnosi się do 
uzwojenia strony L (22 kV) transformatora. Określić tę charakterystykę dla uzwojenia 
strony H (115 kV) transformatora. 

5.3. Uzwojenie strony L transformatora Yy0 z przykładu 5.3 zostało tak połączone w trójkąt, 
że powstał transformator Yd1. Jakie należy przyjąć napięcie znamionowe strony L tego 
transformatora, aby zachować właściwości jego obwodu magnetycznego bez potrzeby ska-
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lowania odpowiednich wielkości na charakterystyce magnesowani. Opracować jego mo-
del, korzystając z danych oryginalnego transformatora i wykonać porównawcze testy. 

5.4. Charakterystyka magnesowania rdzenia transformatora może być z dużym przybliżeniem 
określona na drodze pomiaru wartości skutecznych prądu i napięcia, w odpowiednim za-
kresie zmian napięcia zasilającego, przyłożonego do badanego uzwojenia. Podane wyniki 
pomiarów zostały wykonane dla jednego uzwojenia strony L transformatora Yd1 o nastę-
pujących parametrach: 

3,6=rS  MVA,  11/115=rU  kV,  =∆ CuP kW,  =∆ FeP kW,  8,00 =i %. 
Wyniki pomiarów: 

I, A U, kV 
1,53 11,0 
2,86 12,1 
9,55 13,2 
28,6 13,7 
107,9 14,3 

Określić na tej podstawie charakterystykę )( µψ if= , która jest wymagana w programie 

ATP–EMTP (wartości maksymalne). 
Uwaga: w programie ATP–EMTP takie obliczenia można wykonać używając modułu 
SATURA, przy czym w charakterze wielkości wejściowych należy podać zamieszczoną 
wyżej charakterystykę w jednostkach względnych (prąd i napięcie odniesione do wartości 
znamionowych dla danego uzwojenia) – patrz zbiór satur1.dat. 

5.5. Utworzyć i zbadać model transformatora Zy5 20/0,5kV o mocy: rHS =630kV⋅A, 

rLS =100 kV⋅A, ku = 4,5%, CuP∆ =1,5% (odniesione do mocy rLS ). Moc zwarciowa na 
szynach 20 kV zS = 6000 MV⋅A. Punkt gwiazdowy po stronie SN jest uziemiony przez re-
zystor, a po stronie nn – uziemiony bezpośrednio. Tak dobrać eksperymentalnie rezystan-
cję uziemienia punktu gwiazdowego, aby prąd zwarcia jednofazowego na szynach 20 kV 
wynosił 100 A (wartość skuteczna).  



 

6. MODELOWANIE WIRUJĄCYCH MASZYN 
ELEKTRYCZNYCH 

W tym rozdziale analizowane są modele maszyn elektrycznych wirujących. Zakłada-
my, że Czytelnik zna podstawowe pojęcia związane z budową takich maszyn, ich 
przeznaczeniem i opisem podstawowych zjawisk dynamicznych. Pomimo że ze 
względu na sprzężenie magnetyczne pomiędzy cewkami stojana i wirnika maszyny 
takie przypominają transformator, to występowanie wzajemnego przemieszczania się 
tych obwodów sprawia, że ich analiza jest znacznie trudniejsza.  

Spośród wielu rodzajów wspomnianych maszyn, do analizy wybrano maszyny 
synchroniczne oraz indukcyjne (asynchroniczne). Mogą one pracować jako generatory 
lub silniki. Rozważania ograniczymy do maszyn prądu przemiennego.  

6.1. Maszyna synchroniczna 

Poglądowy schemat maszyny synchronicznej jest pokazany na rys. 6.1. Szczegóły bu-
dowy poszczególnych maszyn mogą się znacznie różnić, co zależy przede wszystkim 
od stosowanych prędkości obrotowych wirnika. Prędkość ta jest związana z częstotli-
wością sieci f1 następującą zależnością:  

N
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B C

C

UA

UC

UB

 

Rys. 6.1. Schemat funkcjonalny trójfazowej maszyny wirującej; p = 1 
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 601
npf =  (Hz) (6.1) 

gdzie: n – prędkość obrotowa wirnika, (1/min), p – liczba par biegunów. 
Wielkość n/60 (Hz) w (6.1) jest częstotliwością obracania się wału maszyny. Zwielo-
krotnienie liczby par biegunów powoduje odpowiednie zwiększenie częstotliwości 
wielkości elektrycznych i magnetycznych, które są związane z obracającym się polem 
magnetycznym wirnika. Na przykład kąt wektora pola magnetycznego maszyny γe 
zmienia się p razy szybciej od kąta położenia wirnika γr:  

 re pγγ =  (6.2) 

Można zauważyć, że w przypadku jednolitego cylindrycznego wirnika z pojedyn-
czą parą biegunów (jak w turbogeneratorach) wirnik obraca się z prędkością 
3000 obr/min (w sieci o częstotliwości 50 Hz). Generatory napędzane turbinami wod-
nymi (hydrogeneratory) mają zazwyczaj mniejsze prędkości obrotowe, co pociąga za 
sobą większą liczbę par biegunów wirnika.  

6.1.1. Model w składowych 0dq 

a) Model części elektrycznej maszyny 

Maszyna o strukturze jak na rys. 6.1 może być przedstawiona za pomocą schematu za-
stępczego w postaci czterech oddzielnych obwodów, pokazanych na rys. 6.2. Obwód 
trójfazowy odpowiada uzwojeniom stojana. W przypadku połączenia tych uzwojeń 
w gwiazdę punkt neutralny może być, w ogólnym przypadku, uziemiony (bezpośred-
nio lub poprzez odpowiednią impedancję). Uzwojenie wzbudzenia jest odwzorowane 
przez obwód o parametrach zastępczych fr , fL . Jest ono zasilane z zewnętrznego 
źródła napięcia stałego fu . Pozostałe dwa obwody reprezentują zwarte uzwojenia 
tłumiące umieszczone na wirniku. Mają one za zadanie tłumienie oscylacyjnych wa-
hań wirnika podczas stanów nieustalonych maszyny. Te ekwiwalentne fikcyjne obwo-
dy są umieszczone w modelu maszyny w głównej osi wirnika ( Dr , DL ) oraz w osi do 
niej prostopadłej ( Qr , QL ).  

Uzwojenia stojana mogą być połączone bądź w gwiazdę (jak na zamieszczonych 
rysunkach), bądź w trójkąt. Z wirnikiem maszyny związane są trzy obwody: obwód 
wzbudzenia, który jest zasilany z zewnętrznego źródła w celu wytworzenia odpo-
wiedniego pola magnetycznego, oraz dwa wspomniane obwody zastępcze D i Q. Na 
schemacie pokazanym na rys. 6.2 przyjęto strzałkowanie prądów i napięć odpowied-
nie dla obwodów prądnicowych (uzwojenia stojana) oraz silnikowych (uzwojenie 
wzbudzenia). 
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Rys. 6.2. Obwody zastępcze maszyny synchronicznej 

Wszystkie te obwody są sprzężone magnetycznie i tworzą swego rodzaju transfor-
mator (zastępcze obwody tłumiące są zwarte), dla którego można napisać następujące 
równanie [11, 60, 122]:  

 td
dψRiu −−=  (6.3) 

gdzie: 
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przy czym, zakładając, że układ jest liniowy, poszczególne strumienie są proporcjo-
nalne do wartości prądów:  
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 (6.4) 

Ostatnie równanie można przedstawić w następującej formie: 
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 (6.5) 

w której rozdzielone są wielkości związane ze stojanem i wirnikiem. Należy jednak 
zauważyć, że, ze względu na obracanie się wirnika, wypadkowe drogi magnetyczne 
poszczególnych strumieni zmieniają się, powodując zmianę oporności magnetycznej 
(reluktancji). Zatem wartości indukcyjności w powyższych równaniach są zależne od 
kąta położenia wirnika γ (rys. 6.3):  

 iLψ )(γ=  (6.6) 

przy czym: 

 0
0

γτωγγ +== ∫
t

e d  (6.7) 

gdzie: )(te ωωω ==  – prędkość kątowa elektryczna, γ0 – początkowa wartość kąta γe. 
Warto zauważyć, że prędkość kątowa wirnika zależy od liczby par biegunów ana-

logicznie do (6.2):  

 
p

e
r

ωω =  (6.8) 

Zależność ta jest charakterystyczna dla maszyn synchronicznych, gdzie w stanie usta-
lonym prędkości wirowania pól elektromagnetycznych stojana i wirnika są takie same. 
Synchroniczna prędkość obrotowa wirnika jest pomniejszona p razy. 

Z analizy schematu na rys. 6.3 widać następujące związki, określające wartości 
elementów macierzy indukcyjności stojana (LS):  

γ2cosMSAA LLL += , 





 −+=

3
π22cos γMSBB LLL , 
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π2cos γMSBAAB LMLL , 
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gdzie: LM, LS, MS są odpowiednimi stałymi indukcyjnościami; γ  jest kątem pomiędzy 
osią główną d wirnika, a osią pola magnetycznego fazy A, wybranej w charakterze 
odniesienia.  

Zauważmy, że układ współrzędnych dq został tak wybrany, że oś d wyprzedza 
oś q, co jest zgodne z konwencją przyjętą w przypadku analizowania maszyn syn-
chronicznych jako elementów sieci elektroenergetycznej [4, 37, 76]. 
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Rys. 6.3. Schemat zastępczy maszyny synchronicznej 

Indukcyjność LM ma znaczenie jedynie w przypadku maszyny z wydatnymi biegu-
nami; w maszynach z cylindrycznym wirnikiem przyjmuje się: LM = 0.  

Indukcyjności wzajemne stojana i wirnika można określić podobnie: 
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Indukcyjności własne i wzajemne uzwojeń wirnika nie zależą od jego położenia, 
przy czym indukcyjności wzajemne uzwojeń ułożonych prostopadle są równe zero:  

RDffD MLL == ,  0== QffQ LL , 
0== QDDQ LL . 

Widać zatem, że macierz parametrów w (6.4) i (6.5) jest symetryczna ( T
rssr LL = ). 

Model maszyny określony równaniami (6.3)–(6.7) jest nazywany modelem w skła-
dowych naturalnych (fazowych). Zauważmy, że parametry tego równania są zmienne 
w czasie. Widać to dobrze po podstawieniu (6.6) do (6.3):  

 tt d
d

d
d iLiLRiu )()( γγ

−−−=  (6.9) 

Analiza tego równania, a zwłaszcza jego numeryczne rozwiązywanie, jest kłopo-
tliwe. Szczegóły zastosowanego w tym celu algorytmu decydują często o efektywno-
ści całego programu przeznaczonego do symulacji stanów przejściowych w sieci 
z maszynami wirującymi.  

Uproszczenia poszukuje się przez zamianę współrzędnych związanych z układem 
trójfazowym stojana na współrzędne związane z obracającym się wirnikiem, które są 
wyznaczone przez prostopadłe osie d–q. Transformacja ta jest znana jako przekształ-
cenie Parka. Trzecia współrzędna jest związana ze składową zerową, która w tego ty-
pu modelach ma znaczenie jedynie w przypadku uziemienia punktu neutralnego 
uzwojenia stojana. W ten to sposób prądy i napięcia układu trójfazowego stojana 
transformowane są do układu współrzędnych 0dq:  
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gdzie: 
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Analogiczna relacja występuje także w odniesieniu do strumienia magnetycznego. 
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Macierz )(γP  zawiera współczynniki rzutowania odpowiednich wielkości fazo-
wych stojana na dwie osie: d–q obracającego się wirnika. Składowa zerowa ma tę sa-
mą interpretację, jak w przypadku składowych symetrycznych:  
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Stały współczynnik normalizujący został dobrany w celu zapewnienia ortogonal-
ności macierzy: 
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co upraszcza uzyskanie odwrotnego przekształcenia zmiennych: 
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gdyż w macierzach obu transformacji wykorzystuje się te same współczynniki. 
Podstawienie (6.13) do (6.3), z uwzględnieniem (6.4) i (6.5), prowadzi do następu-

jącego związku:  
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Po przekształceniach, otrzymamy: 
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gdzie macierz: 
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jest nazywana macierzą rotacyjną [39, 60].  
Zauważmy, że macierz rezystancji R nie zmienia się w wyniku tego przekształce-

nia, gdyż jest to macierz diagonalna. Ponadto zazwyczaj można przyjąć, że rezystan-
cje wszystkich faz są jednakowe: sCBA rrrr === . 

Do obliczeń równanie (6.15) wygodniej jest przedstawić w odniesieniu do parame-
trów maszyny, które są reprezentowane w postaci rezystancji R oraz indukcyjności L. 
Po podstawieniu (6.13) do (6.5) otrzymamy:  
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Macierz indukcyjności w powyższym równaniu: 
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jest stała, niezależna od czasu (właściwie od kąta położenia wirnika), przy czym: 

SS MLL 20 −= , MSSd LkMLL 2
1++= , MSSq LkMLL 2

1−+= , 2/31 =k . 
Ponadto, dzięki unormowaniu macierzy przekształceń P(γ), uzyskana macierz in-

dukcyjności jest symetryczna, co prowadzi do uproszczenia odpowiednich procedur 
numerycznych.  

Ostatecznie równanie (6.17) można zapisać w następującej zwartej formie: 

 EEE iLψ =  (6.19) 

gdzie: 
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Zależności pomiędzy wielkościami występującymi w modelu maszyny we współ-
rzędnych 0dq są graficznie przedstawione na rys. 6.4. 
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Rys. 6.4. Struktura modelu maszyny synchronicznej w składowych 0dq 

W podobnej zwartej formie można także zapisać równanie (6.15): 

 ωuuRiψ
+−−= EE
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 (6.20) 

lub:  
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gdzie: 
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QQqqq iMkiL 1+=ψ , ( )DDffddd iMiMkiL ++= 1ψ .  
Równania (6.20) – w wersji strumieniowej lub (6.21) – w wersji napięciowej, wraz 

z przekształceniami (6.10), (6.13), definiują część elektryczną modelu maszyny syn-
chronicznej w składowych 0dq (rys. 6.4). Prędkość kątowa ω  w zależności (6.21) re-
prezentuje prędkość zmian pola magnetycznego (ω = ωe) i łączy się z prędkością ką-
tową wirnika zgodnie z (6.8). Wielkość ta stanowi sprzężenie między częścią 
elektryczną i mechaniczną maszyny.  

Przykład 6.1.  Utworzenie modelu komputerowego na podstawie (6.21) wymaga stoso-
wania dosyć złożonych procedur. Sprawdźmy jednak rozwiązanie dla 
prostego przykładu, gdy generator jest nieobciążony: dqABC 0ii =  

[ ]T000=  i pozostaje w stanie ustalonym przy znamionowej prędkości 
obrotowej ω = ω1N.  

W takim wypadku (rys. 6.3): δωγ ++=
2
π

1 tN . 

W stanie ustalonym synchronicznym także prądy w obwodach tłumiących mają zerowe warto-
ści. Łatwo zauważyć, że wówczas:  

f

f
f r

u
i = . 

Napięcie na zaciskach generatora można określić z równania (6.21). Ponieważ jedyny nieze-
rowy prąd w obwodach generatora (prąd wzbudzenia if) ma stałą wartość, więc napięcie gene-
ratora jest reprezentowane jedynie przez składową w osi q:  
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f
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Ponieważ w praktyce ffN rM >>1ω , więc można przyjąć 
f

ffN
q r

uM
u 1

2
3 ω

= . 

Korzystając z przekształcenia (6.13), obliczymy wartość napięcia fazy A na zaciskach genera-
tora: 

( )δω
ω

γ +== t
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ffN
qA 1

1 cossin
3
2)( . 

Napięcia w pozostałych fazach będą odpowiednio przesunięte o kąt 2π/3. 
Powyżej założono, że generator pracuje w stanie ustalonym. Otrzymany rezultat wskazuje na 
to, że w odniesieniu do sieci napięcie źródłowe generatora (sem) reprezentowane jest przez 
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wektor związany z osią q (rys. 6.3) płaszczyzny wirnika. W wielomaszynowym układzie róż-
nice kątów tych wektorów w różnych generatorach są bardzo ważnymi wskaźnikami, na pod-
stawie których określa się stabilność systemu elektroenergetycznego [4].  

Przedstawiony model może być modyfikowany w celu uproszczenia obliczeń lub 
lepszego odwzorowania występujących w generatorze zjawisk elektromagnetycznych. 
W pierwszym przypadku można tak zmienić współczynniki transformacji pomiędzy 
uzwojeniami związanymi z osią d, aby współczynniki indukcji wzajemnej były jedna-
kowe [30]:  

adRDf LMMM === 2/32/3 . 
Warunkiem prawidłowości tego podstawienia jest przyjęcie odpowiednich relacji 

pomiędzy liczbą zwojów poszczególnych uzwojeń. Spełnienie pierwszej równości 
( Df MM = ) nie pociąga za sobą żadnych konsekwencji, gdyż uzwojenie reprezentują-
ce obwód tłumiący jest hipotetyczne. Spełnienie drugiej z wymienionych równości 
wymaga zmiany liczby zwojów uzwojenia wzbudzenia, co prowadzi do następujących 
zależności:  

 f
m

fm i
kk

i
1

1
= ,  fmfm kk ψψ 1= , fmfm ukku 1=  (6.22) 

gdzie: 
R

f
m M

M
k = . 

Wprowadzona zmiana spowoduje odpowiednie przeskalowanie prądu wzbudzenia, 
co można skorygować na zewnątrz modelu.  

Dzięki temu zabiegowi sprzężone magnetycznie obwody (rys. 6.4) mają ten sam 
ekwiwalentny poziom napięcia, a więc można je połączyć galwanicznie. Uzyskuje się 
w ten sposób ekwiwalentne obwody, jak na rys. 6.5. Rozdzielając równanie (6.21) na 
trzy części związane odpowiednio ze współrzędnymi 0dq otrzymamy:  
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Rys. 6.5. Ekwiwalentne obwody maszyny synchronicznej w składowych 0dq 

gdzie: 
QmQmqqq iMiL +=ψ , ( )Dmfmmddd iiMiL ++=ψ , fmm MkkM 2

1= , fmfm LkkL 22
1= , 

DmDm LkkL 22
1= , QmQm LkkL 22

1= , QmQm MkkM 2
1= , fmfm rkkr 22

1= , DmDm rkkr 22
1= , 

QmQm rkkr 22
1= . 

Współczynnik km w (6.22) można wyznaczyć na podstawie pomiarów w stanie 
ustalonym bez obciążenia maszyny [30]. Wówczas: id = iq = iD = 0 oraz fmmq iMu ω= . 
Uwzględniając (6.22), możemy zatem napisać:  
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gdzie: UG – napięcie znamionowe generatora (wartość skuteczna napięcia międzyfa-
zowego, w przypadku połączenia uzwojeń stojana w trójkąt, lub napięcia fazowego – 
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gdy uzwojenia są połączone w gwiazdę), if 0 – prąd wzbudzenia przy znamionowej 
pracy maszyny bez obciążenia.  

Przyjmuje się, że parametry modelu w osi q są przeliczane zgodnie z tym samym 
współczynnikiem km.  

Bardziej dokładne odwzorowanie stanu przejściowego maszyny po wystąpieniu 
zakłócenia można uzyskać przez wprowadzenie większej liczby zwartych obwodów 
w obu osiach: d i q. Obwody te mają różne parametry, co pozwala odtworzyć zjawiska 
zachodzące w obwodach tłumiących i żelazie wirnika z różnymi stałymi czasowymi 
[4, 10, 77].  

Parametry rfm i Mm w (6.26), a także pozostałe parametry modelu rozpatrywanej 
maszyny synchronicznej, są określane według ustalonych procedur. Zazwyczaj są one 
podawane w nieco innym układzie niż w równaniach (6.19), (6.20). Jest to związane 
z potrzebą uporządkowania wielu parametrów maszyny, sposobem ich pomiaru, a tak-
że nawykami [84]. Pomiary parametrów maszyny mogą być wykonywane zarówno 
w stanie zwarcia, jak i w stanie bez obciążenia. Zazwyczaj te pierwsze uważa się za 
bardziej wiarygodne, gdyż podczas pomiaru w stanie zwarcia nie jest odwzorowany 
wpływ nasycenia się obwodu magnetycznego. Jest jednak możliwość wzajemnego 
przeliczenia obu tych grup parametrów. Zazwyczaj następujące wielkości przyjmuje 
się jako wyjściowe [30, 84]:  

sR  – rezystancja uzwojeń stojana (twornika); 

lX  – reaktancja rozproszenia uzwojeń stojana; 

0X  – reaktancja maszyny dla składowej zerowej; 

dX' , qX'  – reaktancje przejściowe, odpowiednio: wzdłużna i poprzeczna; 

dX'' , qX''  – reaktancje podprzejściowe, odpowiednio: wzdłużna i poprzeczna; 

d'τ , q'τ  – stałe czasowe przejściowe, odpowiednio: wzdłużna i poprzeczna;  

d''τ , q''τ  – stałe czasowe podprzejściowe, odpowiednio: wzdłużna i poprzeczna.  
Reaktancje w powyższym zestawieniu odnoszą się do częstotliwości znamionowej, 

na przykład lNl LX 1ω= , natomiast stałe czasowe określają prędkość zanikania skła-
dowej nieokresowej w odpowiednim obwodzie:  

R
X

R
L

N1ω
τ == . 

Przyjęto, że parametry odnoszące się do przypadku otwartych obwodów generatora 
(stan bez obciążenia) odróżnia się przez dodanie ‘o’ w indeksie, na przykład: do'τ  
oznacza przejściową stałą czasową w osi d, odnoszącą się do biegu jałowego genera-
tora.  
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Powyższe wielkości są związane z parametrami modelu maszyny dosyć złożonymi 
zależnościami. Można je znaleźć w literaturze specjalistycznej, m. in. w [4, 30, 84].  

b) Uwzględnienie nasycenia 

Dokładne odwzorowanie efektu nasycenia obwodu magnetycznego w maszynach wi-
rujących jest zagadnieniem złożonym. Wymaga ono bowiem dokładnego uwzględnie-
nia konstrukcji rdzenia, co jest możliwe przy zastosowaniu zaawansowanych metod 
numerycznych, jak metody elementów skończonych (ang. Finite Element Method – 
FEM) [9]. W rozpatrywanej tu analizie elektromagnetycznych stanów przejściowych 
powszechnie stosuje się uproszczone metody reprezentacji efektu nasycenia obwodu 
magnetycznego [30, 80]. Wprowadza się zazwyczaj następujące założenia upraszcza-
jące [30, 80]:  

– ogólny strumień magnetyczny związany z daną cewką rozkłada się na strumień 
rozproszenia i strumień główny; stopień nasycenia materiału magnetycznego 
zależy od wartości ogólnego strumienia; 

– strumień rozproszenia nie podlega nasyceniu; 
– indukcyjność wzajemna związana z przemieszczaniem się wirnika ma rozkład 

sinusoidalny; 
– pomijane są efekty histerezy i prądów wirowych.  
Uwzględnienie efektu nasycenia wymaga rozpatrzenia charakterystyki magneso-

wania uzyskanej dla biegu jałowego generatora (obwód stojana jest otwarty, podczas 
gdy zmieniany jest prąd wzbudzenia przy znamionowej prędkości obrotowej wirnika) 
(patrz rys. 6.6 [71]). Może być ona reprezentowana za pomocą odpowiedniej ciągłej 
funkcji aproksymującej lub w postaci szeregu odcinków.  

Odwzorowanie nasycenia odbywa się na drodze iteracyjnego przybliżania rozwią-
zania całego obwodu sieci wraz z generatorami, z uwzględnieniem kolejnych punktów 
pracy na charakterystykach ich obwodów magnetycznych. Ilustruje to schemat na rys. 
6.6. Odniesieniem do obliczenia wartości indukcyjności jest liniowa część charaktery-
styki magnesowania, reprezentowana linią o nachyleniu ml = tg(αl). Załóżmy, że 
w poprzednim kroku obliczeniowym ustalony został punkt pracy A1, który wyznacza 
na charakterystyce magnesowania prostą o nachyleniu m2 = tg(α2). Rozwiązanie całe-
go modelu w kolejnym kroku wyznacza punkt A2 na ten prostej i odpowiadający mu 
prąd magnesujący im2. Zachowując wartość tego prądu, strumień jest redukowany do 
wartości odpowiadającej punktowi B2 na charakterystyce magnesowania.  

Korekcja indukcyjności w związku z uwzględnieniem nieliniowości charakterysty-
ki magnesowania następuje w stopniu: χ2 = m2/ml. Zgodnie z założeniami, dotyczy 
ona tylko głównego strumienia magnetycznego, na przykład:  

 fdlnasd MkLL 12_ χ+=  (6.27) 

gdzie: Ldl – indukcyjność rozproszenia w osi d lub:  
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Rys. 6.6. Charakterystyka magnesowania dla biegu jałowego generatora 

 RnasR MM 2_ χ=  (6.28) 

w odniesieniu do indukcyjności wzajemnej f–D (rys. 6.4). 
Algorytm ten może być modyfikowany w zależności od stosowanego sposobu cał-

kowania równań różniczkowych i sposobu rozwiązywania równań sieci [30, 71, 80].  

c) Model części mechanicznej maszyny 

Podstawowe równanie równowagi mechanicznej obracającego się wirnika jest nastę-
pujące:  

 et
rr TT

t
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d
d

d
d γγ

2

2

 (6.29) 

gdzie: J – moment bezwładności obracającego się układu, (kg⋅m2)19; D – współczyn-
nik tłumienia, (N⋅m/(rad/s)); tT , eT  – moment, odpowiednio, turbiny (mechaniczny) 
i generatora (elektromagnetyczny), (N⋅m).  

Bieżąca wartość kąta γr jest związana z prędkością kątową rω zgodnie z zależno-
ścią (6.7). W przypadku pracy generatorowej źródłem energii przekazywanej przez 
maszynę do sieci jest napędzająca turbina, a więc tT > eT . 

 
19 Moment bezwładności jest często podawany w jednostkach: (N⋅m⋅s2); 1 kg⋅m2 = 1 N⋅m⋅s2. 
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Moment elektromagnetyczny maszyny można określić, analizując zależność (6.9). 
Jeśli uwzględnimy, że )(tii = , )(tγγ =  oraz, w ogólnym przypadku, ),( γLiLL = , 
gdzie iL – prąd płynący przez indukcyjność związaną z odpowiednim elementem ma-
cierzy L20, otrzymamy:  
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Po pomnożeniu tego równania przez wektor iT uzyskamy zależność na chwilową moc 
maszyny:  

 eLRG PPPP −−−=  (6.31) 

gdzie: 

uiT
GP =  – moc wymiany z siecią elektryczną (6.32) 

RiiT
RP =  – moc strat w uzwojeniach,    (6.33) 
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1  – moc magnesowania, (6.34) 

EL jest energią pola elektromagnetycznego, 
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d  – moc elektromagnetyczna.  (6.35) 

Moment elektromagnetyczny w szczelinie powietrznej między wirnikiem i stoja-
nem można zatem określić na podstawie następującej zależności:  

 iLi 







=

γd
dT

e
pT
2

 (6.36) 

gdzie i  oznacza wektor fazowych prądów stojana i wirnika, a L  odnosi się do pełnej 
macierzy indukcyjności maszyny (macierz symetryczna), jak w (6.6). 

W modelu maszyny przedstawionej w składowych 0dq zależność ta redukuje się 
do następującej postaci [13]:  

 ( )dqqde iipT ψψ −=  (6.37) 

 
20 Ma to znaczenie w nieliniowych obwodach magnetycznych, gdzie wartość indukcyjności 

zależy od przepływającego przez nią prądu. 
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Do powyższych rozważań można dodać następujące uwagi, które wyjaśniają fi-
zyczny sens uzyskanych zależności:  

• Znaki poszczególnych mocy w (6.31) są konsekwencją przyjętej konwencji 
oznaczania kierunków prądów i napięć w schemacie zastępczym maszyny (rys. 
6.5).  

• Z porównania wyrażeń określających moc związaną ze zmianą energii pola 
elektromagnetycznego (moc magnesowania PL) oraz moc elektromagnetyczną 
w szczelinie (Pe) widać, że ta pierwsza wynika z każdej zmiany pola, podczas 
gdy moc elektromagnetyczna przekazywana w szczelinie między stojanem 
i wirnikiem maszyny jest związana z rotacją wirnika (zmiana kąta γ).  

• Na podstawie (6.37) widać, że składowa zerowa prądu maszyny nie wpływa na 
wartość momentu elektromagnetycznego.  

W odniesieniu do maszyn elektrycznych często stosuje się pojęcie stałej czasowej 
bezwładności H (ang. inertia constant) w miejsce momentu bezwładności J. Stała ta 
jest definiowana następująco:  
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gdzie: 
62 10

2
1 −×= rNN JE ω  (MW⋅s) – energia mas wirujących ze znamionową prędkością21; 

rNω  – znamionowa (synchroniczna) prędkość kątowa wirnika (1/s); 

NS  – znamionowa moc pozorna maszyny (MVA).  
A zatem:  
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gdzie 
π2

60 rN
Nn ω

=  – znamionowa prędkość obrotowa wirnika (obr/min). 

Z równania ruchu (6.29) i definicji (6.38) wynika także, że jeśli maszynę o mo-
mencie bezwładności J (kg⋅m2), napędzać od stanu zatrzymania stałym momentem 
o wartości znamionowej Tt = TtN, (N⋅m), to przy pominięciu tłumienia (D = 0), czas 
rozruchu, po którym prędkość wirowania osiągnie wartość znamionową, jest równy 
τm = 2H (s) (parametr τm jest nazywany mechaniczną stałą czasową [76] lub czasem 
rozbiegu [59]). Widać zatem, że w zależności (6.29), moment bezwładności J może 
być wyrażony za pomocą łatwiejszych do pozyskania parametrów:  

 
21 1 W⋅s = 1 N⋅m = 1 J. 
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gdzie poszczególne wielkości są wyrażone w jednostkach określonych powyżej.  
Równanie ruchu można wówczas zapisać w następującej postaci: 
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gdzie: rNf  – znamionowa częstotliwość wirnika (Hz); tP , gP  – moc, odpowiednio, 
turbiny i generatora (MW).  
W powyższym zapisie przyjmuje się zazwyczaj zmodyfikowany współczynnik tłu-
mienia DrNω →D (N·m). Stała czasowa τm przyjmuje wartości z zakresu 1–20 s, przy 
czym mniejsze wartości odpowiadają jednostkom o stosunkowo dużej mocy i małej 
masie.  

Gdy obracający się układ zawiera kilka wyróżniających się mas, które połączone są 
sprężystymi sprzęgłami (łącznikami), to moment mechaniczny, przekazywany pomię-
dzy nimi, jest proporcjonalny do rozchyłu kątowego między masami (rys. 6.7). W ta-
kim wielosekcyjnym układzie sprzęgło przekazuje moment sprężystości sT  pomiędzy 
sąsiednimi elementami, co należy uwzględnić przez zróżnicowanie znaków momentu 
w sąsiednich elementach. W ogólnym przypadku otrzymamy [30]:  

 ( ) isiiiiis TKT ,1,11, −=−= −−− γγ  (6.42) 

gdzie: iiK ,1−  – współczynnik sprężystości pomiędzy masami i–1, i.  
Również tłumienie w oddzielnych elementach rozpatrywanego wielomasowego 

układu należy rozdzielić na tłumienie ‘własne’, swoiste dla danego elementu, oraz 
straty wynikające ze skrętu sprzęgieł na jego końcach. Można to wyrazić za pomocą 
następującej zależności dla momentu tłumienia:  

 ( ) ( )11,1,1, ++−− −+−+= iiiiiiii
i

iid t
D

t
D

t
DT γγγγγ

d
d

d
d

d
d  (6.43) 

gdzie: iiD ,1− , 1, +iiD  – współczynniki tłumienia w połączeniach pomiędzy odpowied-
nimi masami układu. 

W układzie z rysunku 6.7 sekcje 1–3 generują moment napędowy (kierunek ich 
momentów jest zgodny z kierunkiem wirowania układu), natomiast sekcje 4–5 są ele-
mentami napędzanymi. Rysunek przedstawia układ z trzema stopniami turbiny, gene-
ratorem oraz wzbudnicą.  

Jeśli się uwzględni (6.42) i (6.43), równanie ruchu układu wielomasowego przyj-
mie następującą postać:  
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Rys. 6.7. Schemat wielosekcyjnego układu napędowego 
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gdzie: 
J – diagonalna macierz momentów inercji (J1, J2, ..., Jn) poszczególnych elementów 
układu;  
γ – wektor zawierający wartości kątów (γ1, γ2, ..., γn) poszczególnych elementów; 
K – macierz współczynników sprężystości: 
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D – macierz współczynników tłumienia: 
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Tt – wektor zawierający momenty napędowe turbin (oraz zera na pozycjach odpowia-
dających napędzanym elementom);  
Te – wektor zawierający momenty elementów stanowiących jednostki napędzane (ge-
nerator, wzbudnica) oraz zera na pozycjach odpowiadających turbinom.  

Ponieważ równanie (6.44) odnosi się do generatora, więc należy przyjąć, że kąt po-
łożenia wirnika generatora γ jest kątem tego właśnie elementu w rozpatrywanym 
układzie, na przykład: γ = γ4 na rys. 6.7. Parametry wymagane w równaniu (6.44) są 
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zazwyczaj trudne do osiągnięcia, tak rozbudowany model może być zatem stosowany 
w specjalnych przypadkach, na przykład do analizy momentów skrętnych wału.  

d) Algorytm obliczeniowy 

W modelu złożonej sieci równania generatora powinny być rozwiązywane łącznie 
z równaniami pozostałych jej elementów. Jednak ze względu na odmienną strukturę 
modelu generatora, bezpośredni zapis równań równowagi sieci (na przykład według 
metody potencjałów węzłowych) staje się kłopotliwy. W praktyce modele maszyn 
elektrycznych i modele pozostałej części sieci traktowane są oddzielnie – każdy z tych 
podsystemów jest reprezentowany za pomocą stosownego modelu. W celu zapewnie-
nia równowagi pomiędzy w ten sposób wydzielonymi częściami systemu (prądy i na-
pięcia na granicach łączonych części muszą być sobie równe), należy zastosować od-
powiednią numeryczną procedurę równoczesnego rozwiązywania równań związanych 
z modelami oddziałujących na siebie podsystemów. Stosuje się tu jedną z następują-
cych metod:  
1. Prosta iteracyjna metoda rozwiązywania równań równowagi w każdym kroku sy-

mulacji. W wyniku rozwiązania równań modelu generatora (lub kilku generato-
rów), przy zadanych warunkach początkowych, otrzymuje się nowe wartości prą-
dów na zaciskach maszyny. Z kolei rozwiązując równania sieci z uwzględnieniem 
nowych wymuszeń prądowych od modeli generatorów, otrzymuje się skorygowane 
wartości napięć generatorowych. Proces ten jest powtarzany aż do uzyskania zało-
żonej zbieżności [76].  

2. Reprezentacja sieci elektrycznej za pomocą ekwiwalentnego źródła napięciowego 
(według twierdzenia Thévenina) lub, niekiedy, prądowego (zgodnie z twierdze-
niem Nortona). Ten ekwiwalentny obwód jest dołączany do modelu maszyn 
i wspólnie rozwiązywany. Podejście to przyjęto nazywać metodą kompensacji22 
[16, 30].  

3. Reprezentacja obwodów związanych z maszynami elektrycznymi za pomocą 
ekwiwalentnych źródeł napięcia lub prądu i dołączenie ich do modelu sieci. 
Wspólne rozwiązywanie otrzymanych równań w każdym kroku symulacji zapew-
nia równowagę rozdzielonych podsystemów. Ze względu na konieczność ekstrapo-
lacji niektórych wielkości w modelach maszyn, ten sposób rozwiązywania wspól-
nych równań obu podsystemów przyjęto nazywać metodą predykcji [16, 30, 80].  
Poniżej omówiono pokrótce podstawowe zasady wymienionych metod. 
Zastosowanie prostej metody iteracyjnej pozwala na pełną kontrolę dokładności 

obliczeń, a zatem i stabilności rozwiązania. Niestety, wiąże się to z koniecznością wy-
konania kilku pełnych iteracji (z uwzględnieniem całego modelu sieci i generatorów) 
w każdym kroku symulacji. Zasadniczy schemat obliczeń jest pokazany na rys. 6.8.  

 
22 Porównaj z p. 2.3.2. 
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W wyniku rozwiązania równań sieci uzyskuje się wektor napięć na zaciskach genera-
tora uABC, które są następnie przekształcane do napięć u0dq. Dalej jest rozwiązywany 
układ równań różniczkowych (6.23)–(6.25) (model generatora) względem prądów i0dq, 
które są z kolei przekształcane do wielkości fazowych iABC. 
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Model
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uABC u0dq

i0dqiABC
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Model
wzbudzenia

Model
turbiny

γ ω
Model
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Rys. 6.8. Schemat rozwiązywania równań generatora w procesie iteracyjnym 

W modelu należy też odwzorować układ mechaniczny z turbiną oraz układ wzbu-
dzenia generatora. Układy te współpracują także z ewentualnymi regulatorami turbiny 
i wzbudzenia. W schemacie tym równania napięciowe mogą być zamienione przez 
równania strumieniowe (6.15) [60]. W podobny sposób do modelu sieci można dołą-
czyć większą liczbę modeli generatorów.  

Ogólna zasada metody kompensacji jest przedstawiona w p. 2.3.2. W tym wypadku 
model sieci jest w każdym kroku obliczeniowym reprezentowany za pomocą ekwiwa-
lentnego źródła napięciowego z szeregowo włączoną rezystancją (metoda Thévenina). 
Obwód ten jest dołączany do modelu generatora i jest następnie razem z nim rozwią-
zywany. W programach EMTP ta metoda jest stosowana do reprezentacji elementów 
nieliniowych oraz w modelu maszyny uniwersalnej (UM) [30].  

W przypadku generatora synchronicznego w każdym kroku modelowania algorytm 
ten jest realizowany zgodnie z następującym schematem [16, 17]:  

• Zastąpić całą sieć, z wyjątkiem generatora, za pomocą ekwiwalentnego źródła 
napięcia.  

• Określić prognozę wartości prędkości kątowej wirnika ω oraz kąta położenia 
wirnika γ. Przekształcić ekwiwalentne źródło napięciowe do układu 0dq.  
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• Równania różniczkowe (6.23)–(6.25) uzupełnić o równania sprowadzonego 
ekwiwalentnego źródła napięciowego i rozwiązać.  

• Rozwiązać równania modelu mechanicznego (6.44), przy czym moment elek-
tromagnetyczny określić zgodnie z (6.37). W rezultacie otrzymuje się nowe 
przybliżenie wartości γ oraz ω.  

• Sprawdzić warunek zbieżności dla ω i, ewentualnie, powtórzyć procedurę, 
przechodząc do p. 2.  

Metoda ta charakteryzuje się dużą dokładnością, a przez to także dużą stabilnością. 
Jej główny niedostatek polega na tym, że w podsystemie zawierającym generator nie 
może się znaleźć element nieliniowy, gdyż jego model także wymaga zastosowania 
podobnego schematu obliczeniowego. W programie ATP–EMTP algorytm ten jest re-
alizowany, jeśli do reprezentacji maszyny synchronicznej wybrany zostanie model 
maszyny uniwersalnej (UM) [8, 16].  

Odwrotnie niż w przedstawionym powyżej przypadku, w metodzie predykcji two-
rzony jest ekwiwalentny obwód reprezentujący model generatora. Obwód ten (złożony 
z szeregowo połączonego źródła napięcia i zastępczej rezystancji) jest następnie dołą-
czony do modelu sieci i razem z nią rozwiązywany. Ten sposób rozwiązywania złożo-
nych modeli w programach EMTP jest stosowany głównie do modelowania generato-
rów synchronicznych (Type 59) [30].  

W odniesieniu do modelu sieci z generatorem synchronicznym algorytm związany 
z metodą predykcji sprowadza się do wykonania w każdym kroku modelowania na-
stępujących czynności:  
1. Określić prognozę (predykcja) wartości napięć i prądów w składowych d–q: ud, uq, 

id, iq.  
2. Określić prognozę wartości prędkości kątowej wirnika ω, a następnie obliczyć war-

tość kąta położenia wirnika γ. Wyznaczyć ekwiwalentne źródła napięciowe 
w płaszczyźnie 0dq (schemat Thévenina) i przekształcić je do składowych fazo-
wych. Uformowana zostaje macierz ekwiwalentnych rezystancji generatora. 

3. Ekwiwalentny schemat zastępczy generatora dołączyć do schematu sieci i razem je 
rozwiązać.  

4. Przekształcić uzyskane prądy i napięcia generatora w składowych fazowych do 
składowych d–q. W wyniku rozwiązania równań modelu mechanicznego maszyny 
uzyskuje się nową wartość prędkości kątowej wirnika ω.  

5. Sprawdzić zbieżność rozwiązania względem wielkości ω. W przypadku braku 
zbieżności przejść do p. 4.  
Predykcja zmiennych procesu odbywa się na podstawie jego historii:  

 )2()1(2)( −−−= kkk ωωω  (6.45) 

w odniesieniu do prędkości kątowej wirnika oraz:  
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w przypadku napięć i prądów [17, 30]. 
W celu wyznaczenia ekwiwalentnych źródeł napięciowych i ekwiwalentnych rezy-
stancji generatora w płaszczyźnie d–q należy dokonać odpowiedniej redukcji schema-
tu zastępczego generatora (rys. 6.5) z uwzględnieniem cyfrowych modeli elementów 
RL, których szczegóły zależą od przyjętego sposobu numerycznego całkowania (mo-
dele skojarzone). Ten proces redukcji dla schematu zastępczego generatora w osi q 
jest pokazany na rys. 6.9.  
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Rys. 6.9. Tworzenie ekwiwalentnego obwodu Thévenina dla składowej 
 w osi q generatora 
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Dla większej przejrzystości na rysunku pominięto indeksy odnoszące się do dyskret-
nego czasu, jednak należy pamiętać, że ekwiwalentne źródło napięciowe zawiera skład-
niki odnoszące się do bieżącego i poprzedniego kroku modelowania: eq = eq(k, k–1) 
= eq1(k)+eq2(k–1), przy czym w kolejnych krokach iteracyjnych korygowany jest tylko 
składnik odnoszący się do bieżącego kroku k: eq1(k), natomiast drugi składnik tego na-
pięcia: eq2(k–1) nie zmienia się. Należy to uwzględnić przy wyprowadzaniu odpowied-
nich zależności. W ten sposób model generatora jest reprezentowany w składowych 0dq 
za pomocą trzech zastępczych obwodów o strukturze jak na rys. 6.9d. Końcowy cyfro-
wy model generatora jest określony następującym równaniem:  
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Przekształcenie tego równania do współrzędnych fazowych jest związane z nastę-
pującą transformacją macierzy rezystancji: 

 )()( 1
0 γγ −= PRPR dqABC  (6.48) 

gdzie: R0dq jest diagonalną macierzą rezystancji (6.48), a RABC jest w ogólnym przy-
padku niesymetryczną macierzą ekwiwalentnych rezystancji modelu generatora 
w składowych fazowych.  

Dołączenie takiego modelu generatora do modelu sieci sprawia, że w równaniach 
całego modelu pojawia się niesymetryczna macierz parametrów, co niepotrzebnie 
komplikuje algorytm ich rozwiązania. W celu uzyskania efektywnego algorytmu obli-
czeniowego w programach EMTP wprowadzone zostały kolejne udoskonalenia [30]. 
Aby uniknąć niesymetryczności macierzy RABC, wprowadza się taką korekcję ekwiwa-
lentnych obwodów w osiach dq, aby ich rezystancje były jednakowe. Schematy sko-
rygowanych obwodów są pokazane na rys. 6.10.  
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Rys. 6.10. Skorygowane schematy zastępcze ekwiwalentnych źródeł napięciowych  
modelu generatora w osiach: a) d oraz b) q  

W rezultacie korekcji rezystancje zastępcze obu ekwiwalentnych źródeł są jedna-
kowe, Rde = Rqe = (Rd + Rq)/2, natomiast odpowiednio zostają skorygowane zastępcze 
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napięcia: ede = ed –id(Rd – Rq)/2 oraz eqe = eq – iq(Rq – Rd)/2. Po wprowadzeniu tej mody-
fikacji zastępczych rezystancji, uzyskuje się symetryczną macierz RABC w (6.48).  

6.1.2. Model w składowych fazowych 

Głównym niedostatkiem przedstawionych powyżej modeli maszyny synchronicznej 
reprezentowanych w składowych 0dq jest konieczność stosowania jakiegoś sposobu 
ekstrapolacji wielu zmiennych procesu przy przejściu między dwoma systemami 
współrzędnych (fazowych i 0dq), ponieważ współczynniki transformacji są zależne od 
nieznanego wyniku rozwiązania. Przybliżenie związane z tą ekstrapolacją jest źródłem 
błędów, które mogą prowadzić do niestabilności rozwiązania [16]. 

Model elektryczny generatora w składowych fazowych można zapisać w następu-
jącej postaci:  
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gdzie poszczególne wielkości są takie jak w równaniach (6.3)–(6.7). Najczęściej moż-
na przyjąć, że Lr(γ) = Lr.  

Na podstawie (6.3) tworzone są równania cyfrowego modelu generatora, w których 
występują odpowiednie macierze przewodności (zależne od bieżącej wartości kąta γ) 
i wektory źródeł prądowych, stosownie do wybranej metody całkowania numeryczne-
go. Ten numeryczny model generatora jest dołączany do cyfrowego modelu sieci 
i wspólnie rozwiązywany. Ogólna struktura algorytmu obliczeń jest następująca  
[16, 17]:  
1. Określić prognozę wartości prędkości kątowej wirnika ω oraz kąta położenia wir-

nika γ. Określić wartości ekwiwalentnych parametrów modelu generatora. 
2. Obliczyć prądy w uzwojeniach wirnika i moment elektryczny generatora na pod-

stawie (6.36). Po rozwiązaniu równań modelu mechanicznego otrzymuje się nowe 
wartości prędkości kątowej wirnika ω oraz kąta położenia wirnika γ. 

3. Sprawdzić zbieżność procesu iteracyjnego względem wartości ω. W razie dużej 
odchyłki przejść do p. 2. 
W programach EMTP metoda ta jest stosowana w modelach generatorów o nazwie 

Type-58 [17]. Ponieważ ekstrapolacja (predykcja) jest tu wprowadzana w ograniczo-
nym zakresie, metoda ta jest na ogół bardziej stabilna od innych metod, wymagają-
cych przekształcenia układu współrzędnych. Ponadto metoda ta nie wyklucza obecno-
ści elementów nieliniowych w tym samym podsystemie rozpatrywanego modelu sieci 
[71, 80].  
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6.2. Maszyna indukcyjna 

6.2.1. Uwagi ogólne 

Termin maszyna indukcyjna obejmuje bardzo szeroką rodzinę wirujących maszyn 
elektrycznych, w których siła elektromagnetyczna (sem – w generatorach) lub siła 
elektrodynamiczna (sed – w silnikach) powstaje w wyniku oddziaływania dwóch 
przemieszczających się względem siebie pól magnetycznych stojana i wirnika. Źró-
dłem pola magnetycznego wirnika jest prąd, który jest tam wywoływany w rezultacie 
przemieszczania się jego uzwojeń (lub zwartych klatek) względem pola magnetyczne-
go stojana. W przeciwieństwie do maszyn synchronicznych, pola magnetyczne stojana 
i wirnika mają zatem w tym wypadku różną częstotliwość, co jest niezbędnym warun-
kiem funkcjonowania tych maszyn – dlatego często nazywa się je maszynami asyn-
chronicznymi.  

Ze względu na budowę i sposób zasilania, maszyny indukcyjne dzieli się na nastę-
pujące grupy.  

1. Maszyny klatkowe (ang. squirrel-cage lub cage), w których uzwojenie wirnika 
jest wykonane w postaci prętów miedzianych lub aluminiowych, połączonych na jego 
obu końcach, tworząc zamknięte ‘klatki’ (rys. 6.11). W przypadku silnika klatkowego 
wirujące pole magnetyczne stojana indukuje w uzwojeniu wirnika siłę elektromoto-
ryczną, która generuje w zwartym uzwojeniu prąd. W jego efekcie wytwarzany jest 
strumień magnetyczny wirnika, który, oddziałując na strumień stojana, wytwarza 
moment obrotowy.  

A

B

C

stojan wirnik

pręty
miedziane

wał wirnika
uzwojenie

 fazy A stojana  

Rys. 6.11. Model maszyny indukcyjnej klatkowej 
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Kierunek wirowania obu pól: stojana i wirnika jest taki sam, zatem nieodzownym 
warunkiem indukowania się napięcia w uzwojeniu wirnika jest występowanie różnicy 
prędkości wirowania pola elektromagnetycznego stojana i prędkości obrotowej wirni-
ka. Wielkość ta jest określana przez poślizg:  

 
1

1

1

1

ω
ωω ee

n
nns −

=
−

=  (6.50) 

gdzie: 1n  – prędkość obrotowa synchroniczna (odpowiada jej prędkość kątowa 1ω ), 

en  – prędkość obrotowa pola wirnika (odpowiada jej prędkość kątowa pola elektrycz-
nego wirnika eω ). 

Występowanie poślizgu (o wartości różnej od zera) jest zatem nieodzownym wa-
runkiem pracy maszyny asynchronicznej (indukcyjnej), co odróżnia ją od maszyny 
synchronicznej.  

W przypadku maszyny o liczbie par biegunów p > 1 pulsacja pola wirnika wynika 
z pomnożenia prędkości kątowej wirnika rω  przez liczbę par biegunów:  

 re pωω =  (6.51) 

co pozwala określić prędkość kątową wirowania wirnika: 

 
p

s
r

)1(1 −
=

ωω  (6.52) 

W symetrycznym uzwojeniu wirnika wytwarzany jest prąd o częstotliwości: 

 601
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==  (Hz) (6.53) 

gdzie rn = n  – prędkość obrotowa wirnika maszyny (obr/min). 
Wartość poślizgu zależy od stanu pracy maszyny. W przypadku silnika na początku 
rozruchu s =1, po czym wielkość poślizgu maleje do określonej wartości 0>s , za-
leżnej od obciążenia. W przypadku generatora indukcyjnego 0<s .  

W celu ułatwienia rozruchu (zwiększenia momentu rozruchowego i zmniejszenia 
prądu podczas rozruchu) wprowadza się modyfikacje budowy wirnika. Polegają one 
na stosowaniu wielu klatek (ang. multi cage) lub klatek głębokożłobkowych (ang. de-
ep bars).  

Wykorzystuje się tu zjawisko wypychania prądu na zewnątrz przekroju przewod-
nika przy szybkiej zmianie pola magnetycznym (efekt naskórkowości). W jednolitym 
przewodniku zjawisko to powoduje zwiększenie się jego rezystancji (w mniejszym 
stopniu także spadek indukcyjności) wraz ze wzrostem częstotliwości prądu. W trak-
cie rozruchu silnika indukcyjnego, przy dużej wartości poślizgu, zmieniające się szyb-
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ko pole magnetyczne wirnika wyciska prąd indukowany w żelazie i prętach klatki 
w kierunku jego powierzchni. Jest to wykorzystywane do takiego kształtowania żłob-
ków, w których są umieszczone przewodzące pręty, aby oporność tych części obwodu 
klatki, które są bliżej powierzchni, była większa (rys. 6.12). 

Reaktancja zewnętrznych części pręta jest znacznie mniejsza niż reaktancja części 
wewnętrznych w przekroju pręta. W ten sposób oporność czynna obwodu wirnika 
w czasie rozruchu (kiedy poślizg jest duży) jest większa niż podczas normalnej pracy.  

a) b) c)

 

Rys. 6.12. Przykłady kształtów żłobków wirników: a) normalny, b) głęboki, 
c) wirnika dwuklatkowego  

Zachodzi tu zatem samoczynnie zmiana parametrów wirnika, która w silnikach 
pierścieniowych jest wymuszana przez dołączany z zewnątrz opornik regulacyjny. In-
nym rozwiązaniem, które wykorzystuje omówiony efekt, jest stosowanie w wirniku 
kilku oddzielnych obwodów klatkowych. Pręty klatki umieszczonej bliżej powierzch-
ni wirnika mają większą rezystancję i mniejszą reaktancję niż te, które znajdują się 
w głębi wirnika (rys. 6.12c).  

2. Maszyny pierścieniowe (ang. wound) mają wirniki ze standardowym uzwoje-
niem (połączonym w gwiazdę lub trójkąt), którego końce są dołączone do pierścieni 
ślizgowych (ang. slip rings) (rys. 6.13).  

stojan wirnik

 

Rys. 6.13. Model maszyny indukcyjnej pierścieniowej 
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W przypadku silnika pierścieniowego takie rozwiązanie pozwala przyłączyć do 
uzwojenia wirnika dodatkową oporność, co znakomicie ułatwia jego rozruch: w mo-
mencie rozruchu ta oporność jest duża, by w miarę nabierania przez wirnik prędkości 
obrotowej była zmniejszana do zera [72, 101, 102].  

Uzwojenie wirnika może być, w ogólnym przypadku, przewidziane do zasilania 
z układu wielofazowego.  

3. Maszyny indukcyjne z dwustronnym zasilaniem (ang. doubly-fed) mają bu-
dowę podobną do maszyn pierścieniowych, w tym jednak przypadku pierścienie służą 
do zasilania uzwojeń wirnika z zewnętrznego źródła o określonej częstotliwości, co 
może służyć do regulacji prędkości obrotowej (w silniku) lub częstotliwości genero-
wanego napięcia (w generatorach). W pewnych warunkach właściwości takich ma-
szyn są podobne do właściwości maszyn synchronicznych: oddziaływanie obu pól, 
stojana i wirnika, o częstotliwościach odpowiednio rsf  oraz rf , ustalają ‘synchro-
niczną’ prędkość obrotową wirnika, określoną przez poślizg zgodnie z (6.50).  

6.2.2. Model matematyczny 

Model maszyny indukcyjnej tylko nieznacznie różni się od modelu maszyny synchro-
nicznej. W celu uniknięcia zbyt wielu odwołań do rozważań prowadzonych w odnie-
sieniu do maszyny synchronicznej, podstawowe zależności występujące w obu mode-
lach maszyn zostaną tu powtórzone. Jeśli ograniczyć rozważania do przypadku, gdy 
na wirniku znajdują się pojedyncze uzwojenia trójfazowe, to równania napięciowe 
maszyny przyjmą postać jak w (6.3), przy zachowaniu przyjętych tam kierunków prą-
dów i napięć stojana (s) i wirnika (r):  
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gdzie dodatkowy indeks ‘r’ wskazuje na to, że stosowne wielkości są odniesione do 
napięcia uzwojenia wirnika. 

Jest to równanie modelu maszyny indukcyjnej w składowych fazowych (tylko 
część elektryczna). Napięcie na uzwojeniach wirnika może być różne od zera w ma-
szynach dwustronnie zasilanych. Strumienie związane z uzwojeniami stojana (s) 
i wirnika (r) można określić następująco:  
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gdzie macierz indukcyjności jest utworzona z następujących podmacierzy: 
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slL , rlrL  – indukcyjności rozproszenia, odpowiednio uzwojenia stojana i wirnika, 

srL  – amplituda indukcyjności wzajemnej pomiędzy uzwojeniami stojana i wirnika, 

sN , rN  – liczba zwojów, odpowiednio, uzwojenia stojana i wirnika, 
γ = γe – kąt elektryczny pomiędzy układami współrzędnych stojana i wirnika. 
W celu uproszczenia schematu zastępczego maszyny (a także jej analizy) można 

sprowadzić obwód wirnika do poziomu napięcia stojana. Zasady transformacji odpo-
wiednich wielkości określają następujące związki [14]:  

 
)()()()(

22
2

,1

,,,

rABCrsrrABCrABCr
sr

rABC

sr

rr
r

sr

rlr
rl

Ms

Mr
sr

Ms

sr
sr

k
k

k
RR

k
LL

L
Lk

L
Lk

iiuu ==

====

 (6.56) 

Kolejnym krokiem w kierunku uproszczenia modelu matematycznego maszyny in-
dukcyjnej jest transformacja współrzędnych fazowych stojana i wirnika w modelu 
(6.54) do współrzędnych 0dq, w których układ odniesienia jest związany z obracają-
cym się wirnikiem. Napięcia stojana (s) przeniesione do wirnika oraz napięcia wirnika 
(r) zapisane w układzie 0dq przyjmują podobną postać jak w (6.15):  
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gdzie prędkość kątowa w macierzy Ω (6.16) jest prędkością elektryczną wirnika: 
ω = pωr; )(0 sdqψ , )(0 rdqψ  oznaczają odpowiednio strumienie skojarzone z uzwoje-
niami stojana (s) oraz wirnika (r), zapisane w składowych 0dq – jak w (6.17):  
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przy czym macierz C odzwierciedla relacje między dwoma układami współrzędnych 
wirnika: fazowymi (ABC) i 0dq. 

Wektor napięć u0dq(r) ma różne od zera elementy w maszynach pierścieniowych 
(rys. 6.13); natomiast w maszynach klatkowych obwody wirnika są zwarte. Macierz 
transformacji )(γP  jest określona jak w (6.11), przy czym γ  jest kątem elektrycz-
nym, więc do jego obliczania zgodnie z (6.7) należy przyjąć ω = pωr, tak, że:  

 erp
t

ωωγ
==

d
d  (6.59) 

Macierz C–1 przekształca wielkości trójfazowe uzwojenia wirnika do układu 
współrzędnych 0dq. Ponieważ w tym wypadku oba układy współrzędnych pozostają 
związane z obracającym się wirnikiem, więc nie przemieszczają się względem siebie. 
Macierz ta łączy się z macierzą )(γP  następującą zależnością:  
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Jak widać, macierz C jest znaną macierzą przekształceń między układem trójfazo-
wym i składowymi 0αβ w unormowanej postaci (4.81). Macierz E(γ) odwzorowuje 
kątowe przesunięcie (obrót) układu współrzędnych stojana w odniesieniu do wirnika, 
przy czym, zgodnie z przyjętym założeniem, oś d wyprzedza oś q – jak w modelu ma-
szyny synchronicznej (rys. 6.3). Transformacja wielkości trójfazowych stojana i wir-
nika do składowych 0dq odbywa się zgodnie z następującymi przekształceniami:  
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dla prądów i analogicznie dla innych wielkości.  
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Po uwzględnieniu zależności (6.61) w (6.58), otrzymamy: 
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gdzie: 
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Biorąc pod uwagę zakładaną symetrię uzwojeń stojana i wirnika, można potwier-
dzić równość poszczególnych parametrów modelu: 

 mqsrdsr LLL == , mslsqsds LLLLL +=== , mrlrqrdr LLLLL +===  (6.63) 

gdzie: slL , rlL  – indukcyjności rozproszenia uzwojenia stojana i wirnika, sprowadzo-
ne do jednego poziomu napięć. 

Macierze rezystancji w (6.57) można określić w podobny sposób, jak indukcyjno-
ści: z zastosowaniem macierzy transformacji )(γP  oraz C. Jeśli trójfazowe uzwojenia 
wirnika i stojana są symetryczne (odpowiednie rezystancje będą zatem jednakowe), to 
macierze te mają następujące wartości: 
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gdzie: )(sAR = )(sBR = )(sCR = sR , )(rAR = )(rBR = )(rCR = rR . 
Równania (6.57), (6.58) określają model maszyny indukcyjnej w składowych 0dq, 

związanych z obracającym się wirnikiem. Jak widać, dzięki temu, że współrzędne d 
i q są prostopadłe, równania maszyny dla poszczególnych składowych mają prostą po-
stać (macierze parametrów są diagonalne). Rozpatrzmy bardziej szczegółowo równa-
nia napięć dla ekwiwalentnych obwodów stojana i wirnika odpowiadających składo-
wej d:  
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Odejmując stronami powyższe równania otrzymamy równanie ekwiwalentnego 
obwodu maszyny w osi d:  
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Podobnie można uzyskać równanie dla napięcia w osi q: 
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a także dla składowych zerowych: 
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Schematy zastępcze tych obwodów są pokazane na rys. 6.14, przy czym: 

 drdsdm iii −= , qrqsqm iii −=  (6.69) 
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Rys. 6.14. Schematy zastępcze obwodów maszyny w osiach:  
a) d, b) q i c) dla składowej zerowej 
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Rozważany model określa równania maszyny w składowych 0dq: układ odniesie-
nia jest związany z obracającym się wirnikiem. Składowa zerowa jest często pomijana 
w obliczeniach, gdyż proces w tym obwodzie nie wpływa na wartość momentu elek-
tromagnetycznego. 

Połączenie tego modelu z modelem zewnętrznego systemu wymaga przekształce-
nia, w każdym kroku modelowania, uzyskanych wielkości (zastępczych przewodności 
i źródeł prądowych) do składowych fazowych w odniesieniu do zacisków maszyny.  

W przedstawionym modelu założono, że obwody wirnika są utworzone przez 
uzwojenie trójfazowe. W przypadku maszyny pierścieniowej rezystancję wirnika na-
leży zwiększyć o rezystancję przyłączonych przez pierścienie zewnętrznych oporów. 
Równania te należy także odpowiednio zmodyfikować, jeśli na wirniku znajdują się 
inne uzwojenia, niż założono powyżej. Często spotykane rozwiązania to układy z jed-
nym uzwojeniem (jak w maszynie synchronicznej), dwoma lub większą liczbą uzwo-
jeń [14, 39, 72].  

6.2.3. Model elektromechaniczny 

Podstawowe równanie równowagi mechanicznej obracającego się wirnika jest nastę-
pujące (porównaj z (6.29)): 

 mer
r TTD

t
J −=+ ω

ω
d

d
 (6.70) 

gdzie: J – moment bezwładności obracającego się układu, (kg⋅m2); D – współczynnik 
tłumienia, (N⋅m/(rad/s)); Tm – moment mechaniczny, (N⋅m); ωr – prędkość kątowa 
wirnika, (rad/s); Te – moment elektromagnetyczny, (N⋅m) (w szczelinie powietrznej). 

Moment elektromagnetyczny można określić zgodnie z (6.36), gdzie: i  oznacza 
wektor fazowych prądów stojana i wirnika, natomiast L  odnosi się do pełnej macie-
rzy indukcyjności maszyny, jak w (6.55). Dla modelu w składowych 0dq moment ten 
można obliczyć na podstawie wielkości stojana lub wirnika:  

 ( ) ( )drqrqrdrdsqsqsdse iipiipT ψψψψ −=−=  (6.71) 

Stosując wielkości sprowadzone do układu 0dq, moment elektromagnetyczny 
można także określić na podstawie zależności (6.37). Moc przekazywana ze stojana 
do wirnika silnika (lub w kierunku przeciwnym – w generatorze) jest związana z mo-
mentem elektromagnetycznym następującą zależnością:  
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Jeśli uwzględnić straty mocy P∆  w maszynie (elektryczne i mechaniczne), to moc 
1P  dostarczona do niej może być określona następująco:  
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gdzie η jest sprawnością maszyny. 
Bieżący kąt położenia obracającego się wirnika można określić na podstawie za-

leżności:  
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Podczas pracy prądnicowej zachodzi relacja mT > eT , natomiast jeśli maszyna jest 
silnikiem napędzającym układ mechaniczny, to występuje zależność odwrotna: 

mT < eT . 
Gdy silnik jest połączony z napędzaną maszyną poprzez sprzęgło elastyczne lub je-

śli wał łączący obie jednostki wykazuje pewną elastyczność, to moment Tw przekazy-
wany przez silnik do napędzanej maszyny można określić następująco:  
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gdzie: γr, γm – kąty położenia skupionych mas silnika (wirnika) i maszyny, odpowied-
nio; Kw – współczynnik sprężystości wału łączącego silnik z maszyną; Tw0 = Tw(0).  

Zwarty układ opisany zależnością (6.70) zostaje wówczas podzielony na dwie czę-
ści połączone wałem (rys. 6.15). Ich dynamika jest opisana następującymi zależno-
ściami:  
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przy czym moment Tw jest określony jak w (6.70). 
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Rys. 6.15. Układ mechaniczny z dwoma wirującymi masami 
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W ten sposób model mechaniczny układu napędowego silnik–maszyna z elastycz-
nym połączeniem jest określony przez równania (6.76)–(6.77). Model ten można ła-
two rozszerzyć na większą liczbę połączonych wzajemnie elementów, jak to pokazano 
w modelu generatora synchronicznego (6.44). Pozwala to analizować zjawiska dyna-
miczne (zmienne naprężenia, oscylacje mechaniczne) w wałach napędowych. Przyję-
cie sztywnego połączenia (Kw → ∞) prowadzi do modelu o jednej ekwiwalentnej ma-
sie, której dynamikę określa zależność (6.70), przy czym: D = Dr + Dm, J = Jr + Jm, 
ω = ωr = ωm.  

Ponieważ model części elektrycznej silnika (prądnicy) jest reprezentowany za po-
mocą odpowiedniego obwodu elektrycznego, więc wygodnie jest także w ten sposób 
odwzorować przedstawiony powyżej model części mechanicznej23. Łatwo zauważyć, 
że równania (6.76)–(6.77) mogą być interpretowane jako zależności określające dy-
namikę ekwiwalentnych obwodów elektrycznych:  
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Ekwiwalent elektryczny zależności (6.75) można znaleźć przez zróżniczkowanie tego 
równania:  
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Obowiązuje tu zatem następująca równoważność wielkości mechanicznych i elek-
trycznych: 
moment inercji  J  (kg⋅m2)  ↔  pojemność C  (F); 
współczynnik tłumienia D  (N⋅m/(rad/s)) ↔  przewodność 1/R (1/Ω); 
moment obrotowy T  (N⋅m)  ↔  prąd  i (A); 
prędkość kątowa ω  (rad/s)  ↔  napięcie u (V); 
współcz. sprężystości K  (N⋅m/rad)  ↔ 1/indukcyjność 1/L (1/H); 
przesunięcie kątowe γ   (rad)   ↔ strumień magn. ψ (V⋅s). 
Równaniom (6.78)–(6.80) odpowiada schemat obwodu elektrycznego jak na rys. 6.16. 
Źródło prądowe Te odpowiada momentowi elektrycznemu, który jest określany w mo-
delu silnika zgodnie z (6.37), natomiast Tm przedstawia źródło prądu stałego, którego 
amplituda odpowiada momentowi obciążenia (1 A = 1 N⋅m). Różne charakterystyki 
tego obciążenia można odwzorowywać przez modyfikację bieżącej wartości prądu. 
 

23 Taki sposób jest stosowany w programie ATP–EMTP: użytkownik powinien przygoto-
wać odpowiedni ekwiwalentny obwód. 
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Wartości napięcia w rozpatrywanym obwodzie bezpośrednio odpowiadają prędko-
ściom obrotowym ωr,  ωm,  zgodnie z relacją: 1 V↔1 rad/s.  

1/Dr Tm
Te 1/DmJr Jm

Tw
1/Kw

ωr ωm

 

Rys. 6.16. Ekwiwalentny obwód elektryczny 

Przykład 6.2.  Opracować model silnika indukcyjnego pierścieniowego wraz z ekwiwa-
lentem sieci zasilającej. Zbadać stan przejściowy w uzwojeniach silnika 
po wystąpieniu przerwy w jednej fazie obwodu zasilającego przy zna-
mionowym obciążeniu. Parametry silnika podano poniżej.  

Parametry silnika i napędu: UN = 6 kV, 50 Hz, PN = 420 KM24, n = 1458 obr/min (prędkość 
obrotowa przy znamionowym obciążeniu), cosϕ = 0,84, sN = 2,8%, η = 97% (sprawność); mo-
ment początkowy Tm = 0,95 j.w.; prąd rozruchowy Ir = 6 j.w.;  stała inercji H = 1,1 s.  
Liczbę biegunów silnika można określić na podstawie podanej częstotliwości napięcia sieci 
i znamionowej prędkości obrotowej pola wirnika:  
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W przypadku napędów silnikowych moment obciążenia, współczynnik tłumienia czy też mo-
ment bezwładności mogą być estymowane na podstawie danych znamionowych silnika [42]:  
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=2024 N⋅m, n  – obroty znamionowe (obr/min). 

Do obliczenia szczegółowych parametrów modelu silnika i związanej z nim części mechanicz-
nej wygodnie jest posłużyć się programem Windsyn [42] (patrz przykład C.5). Dla podanych 
parametrów silnika i obciążenia otrzymuje się (według oznaczeń stosowanych w ATPDraw):  
LMUD = LMUQ = 0,913927 H (indukcyjność magnesowania w osiach d i q), 
Lsd = Lsq = Lrd = Lrq = 0,031485 H (indukcyjność stojana oraz wirnika  w osiach d i q), 
Rsd = Rsq = 0,613031 Ω (oporność stojana w osiach d i q), 
Rrd = Rrq = 2,33505 Ω (oporność wirnika w osiach d i q). 
Moment bezwładności J = 30,06 kgm2, współczynnik tłumienia D = 1/2,91 N⋅m/(rad/s). 

 
24 1 KM = 0,73549875 kW dla g = 9,80665 m/s2. 
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Schemat modelu silnika wraz z siecią zasilającą, opracowany za pomocą programu ATPDraw, 
jest pokazany na rys. 6.17. Kondensator w obwodzie modelu części mechanicznej o wartości 
30,06⋅106 µF odzwierciedla moment bezwładności J wirującego układu, a napięcie na nim od-
powiada jego prędkości kątowej. Jeśli się założy, że na początku symulacji silnik obraca się 
z prędkością znamionową, to początkowe napięcie na kondensatorze można określić następująco:  
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Równolegle do omawianego kondensatora włączony jest opornik o wartości 1/D, który od-
zwierciedla tłumienie mechaniczne.  
Ponieważ parametry modelu silnika zostały określone dla warunków znamionowego obciąże-
nia, więc nie potrzeba dołączać dodatkowego źródła prądowego (dla odzwierciedlenia obcią-
żenia). Widoczne na schemacie modelu źródło prądowe o bardzo małej wartości jest umiesz-
czone ze względu na wymagania stosowanej procedury obliczeniowej. 
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Rys. 6.17. Model ATPDraw rozważanego układu 

W celu dokonania pomiaru składowych symetrycznych prądu silnika został umieszczony mo-
del odpowiedniego miernika zrealizowany w postaci modułu MODELS (patrz przykład C.2).  
Przebieg prądu wirnika w fazie A jest pokazany na rys. 6.18. Początkowa forma tego prądu 
odnosi się do stanu ustalonego przy znamionowym obciążeniu (rys. 6.18a). Prąd wirnika ma 
przebieg sinusoidalny o prędkości kątowej wynikającej z poślizgu: ωs–ωrN, co w danym przy-
padku odpowiada częstotliwości 1,4 Hz.  
Przerwanie fazy A w obwodzie zasilania silnika następuje w czasie tp = 3 s. Ze względu na nie-
symetrię napięcia zasilającego pole elektromagnetyczne stojana zostaje zniekształcone – moż-
na w nim wyróżnić dwie składowe o przeciwnych kierunkach wirowania. Jest to znany efekt, 
objawiający się w postaci wzrostu wartości skutecznej prądu w uzwojeniach wirnika (rys. 
6.18a), gdzie oprócz składowej o częstotliwości poślizgu, pojawia się także składowa o po-
dwójnej częstotliwości sieciowej (jeśli pominąć poślizg), co jest dobrze widoczne po zmianie 
skali czasu (rys. 6.18b). Zjawisko to charakteryzuje się dużym wzrostem składowej przeciwnej 
prądu na zaciskach silnika (rys. 6.19b) – w tym przypadku obie składowe: zerowa i przeciwna, 
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są sobie równe. Może to doprowadzić do szybkiego uszkodzenia uzwojeń wirnika w wyniku 
wzrostu ich temperatury, jeśli maszyna nie zostanie w porę wyłączona. Powoduje to także 
zmniejszenie średniego momentu elektromagnetycznego maszyny i ustalenie się równowagi 
elektromechanicznej przy mniejszej prędkości obrotowej (rys. 6.19a). 
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Rys. 6.18. Przebiegi prądu wirnika: a) w pełnym przedziale czasu oraz b) jego fragment 
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Rys. 6.19. Zmiana prędkości kątowej wirnika: (a) oraz przebiegi składowych symetrycznych 
zgodnej I1 oraz przeciwnej I2 prądu stojana: (b)  

6.2.4. Modele cyfrowe 

Tak jak w przypadku maszyn synchronicznych, również modele maszyn indukcyjnych 
mogą być zapisywane względem związanego z wirnikiem układu współrzędnych 0dq: 
(6.57)–(6.58) lub w naturalnym układzie współrzędnych fazowych. Podobnie są także 
traktowane problemy wspólnego rozwiązywania równań maszyny i sieci – stosowana 
jest metoda kompensacji lub predykcji.  
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W programie ATP–EMTP modele maszyn indukcyjnych zapisane względem 
współrzędnych 0dq są realizowane w postaci modelu maszyny uniwersalnej. Model 
maszyny we współrzędnych fazowych jest związany z nazwą: Type-56.  

6.2.5. Model wektorowy 

Model stanu ustalonego maszyny indukcyjnej wirującej jest w naturalny sposób zwią-
zany z reprezentacją wielkości elektrycznych za pomocą odpowiednich funkcji zespo-
lonych. Opis taki można także rozszerzyć na wolnozmienne stany przejściowe, które 
są charakterystyczne dla większości prowadzonych analiz związanych z zastosowa-
niem tych maszyn (napędy, generatory). Taka reprezentacja zwykle nie jest stosowana 
do numerycznej symulacji maszyn wirujących, natomiast jest ona szczególnie dogod-
na do projektowania algorytmów sterowania w napędach elektrycznych [14, 38, 95].  

Koncepcja ta jest dobrze znana w elektrotechnice od końca XIX wieku i polega na 
rozszerzeniu rzeczywistej sinusoidalnie zmiennej funkcji, reprezentującej fizyczną 
wielkość, na ortogonalną do niej funkcję tak, że razem tworzą funkcję zespoloną. 
W rozważaniach prowadzonych w p. 6.2.2 obie składowe w zapisie zespolonym re-
prezentują ortogonalne składowe d–q związane z przekształceniem fazowego układu 
współrzędnych. A zatem, sinusoidalnie zmienne prądy i napięcia z rys. 6.14 można 
reprezentować w postaci zespolonej, zgodnie z następującym przyporządkowaniem 
(bazą odniesienia jest płaszczyzna związana z wirnikiem):  
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 (6.81) 

i podobnie w odniesieniu do pozostałych prądów, napięć i strumieni elektromagne-
tycznych. Ujemne znaki przed składnikami urojonymi w zależności (6.81) wynikają 
z przyjętej konwencji, że rzeczywista oś d wyprzedza oś q, odwzorowującą składowe 
urojone w reprezentacji zespolonej25. W dalszym ciągu rozważań zakłada się, że zwią-
zane z przekształceniami układu trójfazowego płaszczyzny 0dq oraz 0αβ mają dodat-
nie kierunki współrzędnych q oraz β.  

Przekształcenie ABC → 0dq w (6.61) można traktować jako dwa kolejno wykona-
ne przekształcenia: ABC → 0αβ (z macierzą przekształcenia C–1) oraz 0αβ → 0dq (za 
pomocą macierzy E–1(γ)). Ponadto, aby zmienić kierunek osi q w końcowym układzie 
współrzędnych 0dq, wystarczy zmienić znaki w ostatnim wierszu macierzy E–1(γ). 
 

25 W zakresie przekształceń układów trójfazowych sprawa ta nie jest jednoznacznie ustalo-
na. W teorii maszyn elektrycznych na ogół przyjmuje się dodatni kierunek osi q [39, 72, 101]. 
W przypadku maszyn synchronicznych, zwłaszcza w kontekście ich zastosowań w elektro-
energetyce, wielu autorów przyjmuje ujemny zwrot osi q [4, 30, 77]. Na płaszczyźnie 0αβ, 
zwrot osi β także bywa różnie definiowany. W automatyce napędów normą jest założenie, że 
osie q oraz β mają kierunki dodatnie [13, 38, 95]. 
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W tych rozważaniach pomijamy model składowej zerowej, gdyż pozostaje on inwa-
riantny względem obrotu. A zatem, rozpatrywane przekształcenie ABC(s) → αβ → dq 
(w odniesieniu do stojana) oraz ABC(r) → αβ (w odniesieniu do zmiennych wirnika) 
można zapisać następująco (na przykładzie strumienia):  
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Odwrotne przekształcenie ma następującą postać:  
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gdzie: 
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Uzyskane w ten sposób składowe można reprezentować w postaci zespolonej 
zgodnie z następującym przyporządkowaniem:  
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i podobnie dla pozostałych zmiennych. Uzyskane w ten sposób wielkości zespolone są 
w istocie wektorami przestrzennymi, jak w (4.83) [14, 38, 95]. Zauważmy, że rozwa-
żane przekształcenie w odniesieniu do zmiennych wirnika sprowadza się do jednego 
kroku: płaszczyzna 0αβ pokrywa się z płaszczyzną 0dq.  

Taka reprezentacja pozwala w uniwersalny sposób zapisać model maszyny w do-
wolnym układzie współrzędnych, różniącym się prędkością wirowania. Można spraw-
dzić, że w takim przypadku przekształcenia (6.82) przyjmą następującą postać:  
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przy czym: indeks kl określa nowy układ współrzędnych, którego kątową prędkość 
wirowania oznaczymy jako kω . 

Kątowe położenie tego układu jest zatem określone zależnością tkk ωγ = . Kąt ten 
jest uwzględniony w macierzach obrotu, różnych dla stojana i wirnika:  
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Jak widać, kąt obrotu w macierzy Er(γ) jest pomniejszony o wartość kąta związanego 
z obracaniem się wirnika. Gdy układ odniesienia jest umieszczony na wirniku, kąt ob-
rotu układu jest równy bieżącemu kątowi elektrycznemu wirnika: teek ωγγγ === . 
Wówczas macierz E–1(γ)=1, a (6.85) sprowadza się do (6.82).  

W celu transformacji modelu fazowego (6.54) do nowego układu w składowych 
ortogonalnych, należy jeszcze określić sposób transformacji pochodnej strumienia. 
Różniczkując pierwsze równanie w (6.85), otrzymamy: 
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Po uwzględnieniu powyższej zależności w (6.87) i uporządkowaniu, otrzymamy: 
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co można również powtórzyć w odniesieniu do strumienia magnetycznego wirnika: 

 
tt

rABC
rrklek

rkl

d
d

d
d )(

32
1

)(
)( )(

11
10

)(
ψ

CEψ
ψ

⋅⋅=






 −
−− − γωω  (6.90) 

Zastosowanie przekształcenia (6.85) z uwzględnieniem (6.89) i (6.90) w podsta-
wowym modelu maszyny w składowych fazowych (6.54) prowadzi do następujących 
równań modelu wektorowego:  
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 (6.91) 
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przy czym: 
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gdzie wszystkie parametry maszyny są określone jak w (6.62).  
Dla uproszczenia załóżmy, że obwody magnetyczne maszyny są liniowe, a zatem 

indukcyjności w wyrażeniach (6.91) są stałymi parametrami. Spośród różnych ukła-
dów odniesienia związanych z wybraną pulsacją kω , ze względu na praktyczne zasto-
sowanie, wyróżnione są następujące.  
• Układ odniesienia związany ze stojanem: kω = 0 – w stanie ustalonym prąd i na-

pięcie stojana oraz główny strumień maszyny wirują względem tego układu 
z prędkością 1ω ; zmienne związane z wirnikiem przemieszczają się z pulsacją eω . 
Ten układ odniesienia przyjęto oznaczać współrzędnymi α–β.  

• Układ odniesienia związany z wirnikiem: ek ωω =  – w stanie ustalonym uzwojenia 
wirnika przedstawiają obwody prądu stałego, natomiast strumień maszyny oraz 
prądy i napięcia stojana wirują względem tego układu z prędkością eω . Osie ukła-
du odniesienia są oznaczane symbolami d–q.  

• Układ odniesienia związany ze strumieniem głównym maszyny: smk ωω =  (układ 
synchroniczny) – w stanie ustalonym uzwojenia stojana przedstawiają obwody 
prądu stałego ( 1ωωω == smk ), natomiast prądy i napięcia wirnika obracają się 
względem tego układu z prędkością kątową poślizgu: esl ωωω −= 1 . Ten układ od-
niesienia przyjęto oznaczać współrzędnymi x–y.  
Dla każdego z tych układów można odpowiednio zredukować równania (6.91). Na 

przykład dla układu we współrzędnych d–q otrzymamy następujące wartości pochod-
nych względem strumieni magnetycznych:  
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Stosując ten zapis do (6.91), otrzymamy: 
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co po uporządkowaniu przybiera następującą postać:  
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Schemat zastępczy maszyny odpowiadający równaniom (6.95) jest pokazany na 
rys. 6.20. 

W stanie ustalonym niektóre składniki z pochodnymi (które odnoszą się do zaspo-
lonych funkcji prądu przepływającego przez daną indukcyjność) zerują się, jeśli róż-
niczkowany prąd jest stały w danym układzie współrzędnych. Na przykład dla współ-
rzędnych x–y ( 1ωω =k ) prądy stojana w stanie ustalonym są stałe. W takim przypadku 
schemat z rysunku 6.20 uprości się do takiej postaci, jak na rys. 6.21. Poślizg s jest 
określony zgodnie z (6.50), natomiast reaktancje są wyznaczone dla pulsacji sieci ω1.  
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Rys. 6.20. Schemat zastępczy maszyny indukcyjnej dla reprezentacji wektorowej 
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Rys. 6.21. Schemat zastępczy maszyny indukcyjnej dla stanu ustalonego 

Korzystając z tego schematu, można obliczyć parametry maszyny na podstawie jej 
danych znamionowych. W tym celu należy także uwzględnić sprawność układu [101, 
102]. W przypadku maszyny klatkowej, obwód od strony zasilania wirnika należy ze-
wrzeć (Ur = 0).  
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Model wektorowy maszyny indukcyjnej jest powszechnie stosowany w automatyce 
napędu elektrycznego do projektowania algorytmów sterowania maszyną [14, 38, 95]. 
Załóżmy, że w charakterze bazowego układu odniesienia jest wybrana płaszczyzna 
współrzędnych związana z głównym strumieniem maszyny (x–y). Schemat zastępczy 
maszyny jest podany na rys. 6.20, przy czym .1ωω =k  Podobnie jest z równaniami 
modelu (6.91).  

Ponieważ oś 0x płaszczyzny odniesienia pokrywa się ze strumieniem Ψsx, więc 
prawdziwe są następujące równości [116]:  
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gdzie znak wartości bezwzględnej wynika z tego, że równanie jest spełnione zarówno 
dla dodatniej, jak i ujemnej wartości strumienia (prądu). 

Otrzymujemy stąd bardzo pożyteczne związki:  
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Po podstawieniu tych zależności do (6.91) przy smk ωω =  otrzymamy:  
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gdzie: 
s
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rs

m

LL
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1−=σ  – współczynnik indukcyjności rozproszenia, 

esmsl ωωω −=  – pulsacja poślizgu.  
Układ równań (6.98) i (6.99) przedstawia model maszyny indukcyjnej dwustronnie 

zasilanej, który wiąże ze sobą podstawowe wielkości we współrzędnych x–y (rys. 
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6.22). Do celow obliczeniowych wygodnie jest je przedstawić w postaci układu rów-
nań różniczkowych:  
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gdzie resl pωωωωω −=−= 11  – pulsacja poślizgu, .
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Rys. 6.22. Wykres wektorowy maszyny indukcyjnej w odniesieniu do wektora strumienia  

Wykres wektorowy na rys. 6.22 przedstawia schemat wektorowy maszyny 
z uwzględnieniem trzech wymienionych powyżej układów współrzędnych, które są 
najczęściej stosowane jako baza odniesienia w różnych koncepcjach sterowania ma-
szynami wirującymi. Są one związane odpowiednio z układami współrzędnych: α–β 
(stojan maszyny), x–y (główny strumień maszyny) oraz d–q (wirnik). Można zauwa-
żyć, że współrzędne α–β oraz x–y są przesunięte względem siebie o kąt γsm, który wy-



6.2. Maszyna indukcyjna 261 

nika ze spadku napięcia na ekwiwalentnym obwodzie stojana (rys. 6.20). Jest to ob-
wód statyczny, więc prędkości kątowe ω1 oraz ωsm są sobie bliskie i różnią się tylko w 
stanie przejściowym (w ten sposób łatwo można określić warunek początkowy dla 
drugiego równania w (6.100). Inną ważną sprawą jest określenie kąta położenia wirni-
ka γe = pγr, który jest związany ze współrzędną d układu d–q. Kąt γr może być okre-
ślony w odpowiednim czujniku zainstalowanym na wale wirnika maszyny; jest to jed-
nak kłopotliwe. Estymacja kąta γe może być wykonana na podstawie dostępnych 
wielkości elektrycznych. Na podstawie znanych kątów δ1 i δ2 (rys. 6.22) otrzymujemy 
[13]:  
 21 δδγ −=e  (6.102) 

oraz:  
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Składowe prądu wirnika odniesione do stojana, irα oraz irβ, nie są bezpośrednio do-
stępne pomiarowo, ale można je łatwo obliczyć:  
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gdzie wykorzystuje się zależności: 
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Składowe prądu wirnika: Ird oraz Irq mogą być bezpośrednio obliczone na podsta-
wie trójfazowego prądu wirnika z zastosowaniem macierzy przekształceń C32 (6.82). 
Jeśli jednak prąd ten nie jest mierzony, to można je estymować na podstawie prądu 
stojana:  
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Jak widać, w tym wypadku model maszyny jest w pełni określony tylko na podstawie 
pomiarów prądu i napięcia na jej zaciskach (wielkości związane ze stojanem).  
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Moment elektromagnetyczny można określić zgodnie z zależnością [13]:  

 ( ) ( ) ( )sxrysyrxmsxsysysxsse iiiiLpiipIpT −⋅⋅=−⋅=⋅Ψ⋅=
2

3
2

3Im
2

3 * ψψ  (6.106) 

Moc elektryczną czynną i bierną oddawaną do sieci przez uzwojenie stojana można 
określić następująco:  
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Podobnie oblicza się moc przekazywaną z obwodu wirnika:  
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przy czym, ze względu na przyjęty kierunek prądu wirnika, w bilansie mocy oddawa-
nej przez generator do sieci, te ostatnie należy wziąć ze znakiem ujemnym (rys. 6.20).  

Korzystając z tych zależności można utworzyć różne szczegółowe algorytmy ste-
rowania maszyną indukcyjną dwustronnie zasilaną. Na rysunku 6.23 jest pokazana 
struktura przesyłania sygnałów w takim układzie.  

Maszyna indukcyjna

Turbina/obciążenie

Sterowanie

urx, ury

Te ωe

usx, usy

isx, isy

ω1

 

Rys. 6.23. Schemat zastępczy maszyny indukcyjnej w układzie x–y 
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Szczegółowe rozwiązania (wybór wielkości regulowanej, wielkości mierzone) za-
leżą od przeznaczenia układu i jego oczekiwanych charakterystyk [13, 95]. Pokazana 
konfiguracja jest zazwyczaj stosowana w odniesieniu do sterowania dwustronnie zasi-
lanym generatorem indukcyjnym [116].  

6.3. Maszyna uniwersalna 

Pojęcie maszyny uniwersalnej (ang. universal machine – UM) odnosi się do uogólnio-
nego modelu maszyny wirującej. Pomysł tego podejścia polega na tym, że wiele róż-
nych typów elektrycznych maszyn wirujących ma wspólne cechy, które są reprezen-
towane za pomocą modeli matematycznych o zbliżonej lub identycznej strukturze. 
Wykorzystanie tej właściwości pozwala znacznie zredukować objętość bloków pro-
gramowych przeznaczonych do rozwiązywania odpowiednich równań modeli po-
szczególnych typów maszyn. Dołączenie odpowiednich procedur zapewnia także jed-
nolite traktowanie obwodów reprezentujących układy mechaniczne, z którymi 
współpracują maszyny oraz stosowych układów regulacji i sterowania [73]. 

W programie ATP–EMTP moduł UM zawiera modele dwunastu typów maszyn 
[8]: 

• maszyny synchroniczne: 
– 3-fazowe, 
– 2-fazowe, 

• maszyny indukcyjne: 
– 3-fazowe klatkowe, 
– 3-fazowe pierścieniowe (wirnik 3-fazowy), 
– 2-fazowe klatkowe, 

• jednofazowe: 
– z jednofazowym uzwojeniem wirnika, 
– z dwufazowym uzwojeniem wirnika, 

• prądu stałego: 
– obcowzbudne, 
– obcowzbudne z dozwojeniem szeregowym 
– szeregowe, 
– szeregowe z dozwojeniem równoległym, 
– bocznikowe (samowzbudne).  

Pomimo jednolitego modelu matematycznego, poszczególne modele maszyn mogą 
się znacznie różnić w zakresie formatu danych wejściowych, sposobem określania wa-
runków początkowych i tak dalej, z czym użytkownik programu powinien się szcze-
gółowo zapoznać. W programie ATP–EMTP model maszyny uniwersalnej jest dołą-
czany do modelu sieci z wykorzystaniem metody kompensacji lub predykcji – co 
zależy od wyboru użytkownika [8, 30].   
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Zadania  

6.1 Korzystając z modelu maszyny indukcyjnej w stanie ustalonym (rys. 6.21), obliczyć pa-
rametry schematu zastępczego silnika klatkowego o następujących danych:  
Moc znamionowa   1,8 MW 
Napięcie znamionowe  6 kV 
Liczba par biegunów  4 
Współczynnik mocy  0,9 
Poślizg znamionowy  1% 
Pominąć straty maszyny. 

6.2 Moce stojana i wirnika w modelu wektorowym maszyny indukcyjnej są określone równa-
niami (6.107)–(6.108). Korzystając z równań tego modelu oszacować zależność mocy 
czynnej wirnika od mocy czynnej stojana, pomijając straty.  

 



 

UWAGI KOŃCOWE 

Modelowanie jako przejaw intelektualnej aktywności człowieka jest znane od zarania 
ludzkości. W tej perspektywie, modelowanie komputerowe jest nową, bardzo młodą 
dziedziną wiedzy, której błyskawiczny rozwój właśnie zachodzi na naszych oczach. 
Dzięki znacznemu rozszerzeniu możliwości narzędzi związanych z modelowaniem 
komputerowym w zakresie: szybkości przetwarzania danych, elastyczności i plastycz-
ności prezentacji wyników oraz możliwości odtwarzania dowolnych aspektów rozwa-
żanych zagadnień, dziedzina ta weszła do podstawowego zbioru współczesnej filozofii 
nauki. Tradycyjny łańcuch następstw prowadzący do zrozumienia otaczającej nas rze-
czywistości: idea → eksperyment → idea → ... został niemal całkowicie zastąpiony 
przez łańcuch: idea → model → eksperyment → idea → ...26.  

W odniesieniu do elektrotechniki, zaawansowane metody symulacji komputerowej 
zaczęto stosować w pierwszej połowie lat 60. XX wieku. Wówczas to komputery za-
częły nieśmiało wypierać stosowane do analizy dynamiki sieci elektrycznych maszyny 
analogowe. Urządzenia te korzystały z bazy procesowej w postaci zespołu wzmacnia-
czy operacyjnych, która w podstawowym zakresie pozwalała wykonywać trzy opera-
cje matematyczne: dodawanie, mnożenie i całkowanie. Pomimo wielu ograniczeń, 
urządzenie to było jednak zaskakująco sprawne i poręczne w analizie niezbyt złożo-
nych sieci, także nieliniowych.  

W tym właśnie czasie w kilku ośrodkach akademickich, przy wydatnym wsparciu 
przedsiębiorstw energetycznych, pojawiły się propozycje praktycznych komputero-
wych programów do symulacji elektromagnetycznych stanów przejściowych [28, 36, 
62]. Doprowadziło to w krótkim czasie do powstania nowego określenia: EMTP.  

EMTP (ang. ElectroMagnetic Transients Program) jest bodaj najbardziej popular-
nym programem komputerowym przeznaczonym do analizy elektromagnetycznych 
stanów przejściowych w sieciach elektrycznych. Ten akronim zrobił zawrotną karierę 
w ciągu ostatnich czterdziestu lat, stając się właściwie niezależnym słowem, stosowa-
nym do określenia całości zagadnień związanych z komputerową analizą stanów 
przejściowych w zakresie takich problemów, jak: koordynacja izolacji, przepięcia łą-
czeniowe, projektowanie i analiza zabezpieczeń elektroenergetycznych, krótkookre-

 
26 Prof. Michał Kleiber, wykład inauguracyjny roku akademickiego 2008/2009 w Politech-

nice Wrocławskiej. 
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sowa analiza awarii, analiza jakości energii elektrycznej, automatyka elektroenerge-
tyczna, sterowanie układów napędowych, układy FACTS i wiele innych.  

Historia współczesnych wersji programu sięga połowy lat sześćdziesiątych ubie-
głego wieku, kiedy prof. Hermann Dommel, na zlecenie BPA (Bonneville Power Ad-
ministration), zgromadził zespół entuzjastów analizy szybkozmiennych elektromagne-
tycznych stanów przejściowych [30, 31]. Kod programu był przygotowywany 
w języku Fortran, a dane do symulacji oraz sam program źródłowy były zapisywane 
na 80– kolumnowych kartach dziurkowanych. Niektóre z przyjętych wówczas założeń 
odnośnie do formatu danych, zachowały się do dzisiaj. Program był jednak ustawicz-
nie doskonalony, zarówno w zakresie struktury, jak i stosowanych metod numerycz-
nych, stając się z biegiem czasu wzorcem dla wielu podobnych rozwiązań w tej dzie-
dzinie. Istotną cechą całej tej grupy programów jest ich wielokrotna i wszechstronna 
weryfikacja na podstawie danych pomiarowych. To sprawia, że obecnie nie są już wy-
suwane zastrzeżenia co do adekwatności wyników symulacji z zastosowaniem EMTP. 
Nie wyklucza to oczywiście wystąpienia rozmaitych błędów, których źródeł należy 
upatrywać na ogół w niestarannym przygotowaniu modelu (nieadekwatne modele 
elementów, źle dobrany krok symulacji, pominięcie istotnych fragmentów analizowa-
nej sieci itp.).  

Na bazie EMTP powstała cała rodzina programów o podobnym przeznaczeniu. 
Wiele liczących się firm w zakresie produkcji sprzętu i analizy zjawisk dynamicznych 
w systemach elektroenergetycznych stworzyło własne wersje programu [134–145]. Na 
tej bazie powstały również systemy komputerowe do symulacji omawianych zjawisk 
w czasie rzeczywistym [146]. Te specjalizowane, drogie systemy są nieodłącznym na-
rzędziem w testowaniu nowych urządzeń automatyki elektroenergetycznej.  

Ważnym czynnikiem w rozwoju EMTP było powstanie grupy analityków, progra-
mistów i użytkowników, których łączyła idea otwartego dostępu do programu. W ten 
sposób powstała niekomercyjna wersja ATP–EMTP (ang. Alternative Transients Pro-
gram – ATP). Nadzór nad rozwojem tego programu znajduje się w dalszym ciągu 
w BPA [134], natomiast użytkownicy są skupieni w odpowiednich grupach regional-
nych [137]. Uzyskanie licencji programu jest związane z niewielką opłatą (różną dla 
uczelni i innych użytkowników), która jest przeznaczona na finansowanie dystrybucji 
nowych wersji programu oraz realizację przyjętych projektów. Oczywistą zaletą 
wdrożenia tej idei jest szeroki dostęp do programu, co także łączy się z możliwością 
jego wszechstronnej weryfikacji i usprawniania. W porównaniu z programami komer-
cyjnymi, ATP–EMTP może jednak ustępować w zakresie przystosowania do szybko 
rozwijającej się bazy komputerowej, głównie w odniesieniu do przygotowania 
i wprowadzania danych oraz obsługi programu. Podobnie jest także z możliwością 
modelowania złożonych układów energoelektronicznych: występujące tu bardzo 
gwałtowne zmiany prądów i napięć wymagają stosowania dokładnych metod oblicze-
niowych, co nie jest dostępne w standardowym programie EMTP. Jeśli w analizowa-
nej sieci występuje kilka wzajemnie połączonych układów z elektronicznymi łączni-
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kami, obliczenia stają się utrudnione lub wręcz niemożliwe ze względu na niestabil-
ność numeryczną. Dotyczy to jednak wąskiego zakresu analizowanych układów.  

W książce przedstawiono podstawowe aspekty związane z komputerową symulacją 
elektromagnetycznych stanów przejściowych w sieciach elektrycznych – zarówno 
w odniesieniu do tworzenia numerycznych modeli elementów sieci, jak i sposobów 
rozwiązywania związanych z tym równań. W trakcie przygotowywania tej książki wy-
łoniła się potrzeba nieuchronnej redukcji jej zakresu. Pominięto bardzo ważną i szyb-
ko rozwijającą się gałąź modelowania w elektrotechnice, związaną z zastosowaniem 
przekształtników energoelektronicznych. Z praktycznego punktu widzenia ważne jest 
zwłaszcza wykorzystanie takich urządzeń w napędach elektrycznych oraz w elektro-
energetyce (układy FACTS). W takich układach zachodzą bardzo szybkie procesy 
elektromagnetyczne, którym niekiedy towarzyszy przesyłanie wielkich mocy, i pro-
blemy te w dalszym ciągu są wyzwaniem dla projektantów komputerowego oprogra-
mowania do symulacji takich procesów. Pewnym uzupełnieniem w tym zakresie są 
przykłady zamieszczone Dodatku C.  

Na zakończenie tych rozważań można się pokusić o ocenę najbliższych perspektyw 
rozwoju omawianych tu zagadnień. Przede wszystkim łatwo można zauważyć, że pro-
blematyka ta daleka jest od wyczerpania – zarówno w zakresie metodologii modelo-
wania, jak i praktycznych realizacji odpowiednich symulatorów. Rozwojowi tej dzie-
dziny sprzyja w dalszym ciągu burzliwy rozwój techniki komputerowej: zarówno 
w zakresie sprzętu, jak oprogramowania. Z drugiej strony, poszerza się także rynek 
wykorzystania technik symulacyjnych w projektowaniu urządzeń pomiarowych i kon-
trolnych w elektrotechnice. Proces projektowania nowych urządzeń automatyki elek-
troenergetycznej staje się coraz bardziej pracochłonny ze względu na rosnące wyma-
gania w zakresie ich niezawodności i szybkości działania. Koszty te można obniżyć 
przez przeniesienie części badań z rzeczywistych obiektów na odpowiednie symulato-
ry. Dotyczy to zresztą także innych dziedzin techniki. W odpowiedzi rosną także wy-
magania co do głębokości odtwarzania procesów dynamicznych w analizowanych 
obiektach. Odnosi się to zwłaszcza do:  

• Konieczności pełniejszego uwzględniania zjawisk w analizowanych obiektach. 
Pomocne tu może być łączenie metod odpowiednich dla analizy obwodów 
elektrycznych z technikami obliczania zjawisk przestrzennych w materiałach, 
jak na przykład Metoda Elementów Skończonych (MES) (ang. Finite Element 
Method – FEM). Jest to szczególnie ważne w przypadku analizy maszyn elek-
trycznych wirujących i transformatorów.  

• Poszerzenia zakresu wykorzystania wyników symulacji. Łączy się to z ko-
niecznością rozbudowy sprzętowej i programowej omawianych symulatorów 
w kierunku łatwej generacji zbiorów z wynikami symulacji na zasadzie zmiany 
określonych parametrów badanego modelu.  
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• Elastyczności w zakresie przygotowania danych do symulacji oraz tworzenia 
struktury modelu. Podobne wymagania dotyczą także ułatwienia wykorzysta-
nia wyników symulacji.  

Niestety, rynek oferujący omawiane tu urządzenia i programy nie jest zbyt szeroki. 
Odbija się to na dosyć dużych kosztach ich zakupu. Profesjonalne instalacje są drogie 
i mogą z nich korzystać tylko zasobne firmy. Na szczęście producenci oferują po ni-
skich cenach wersje edukacyjne. A poza tym – wersja ATP–EMTP jest powszechnie 
dostępna i w podstawowym zakresie może zaspokoić nawet wygórowane wymagania.  

 



 

DODATEK A.   ATP–EMTP: STRUKTURA PROGRAMU 

A.1. Wprowadzenie 

Poniżej przedstawiono podstawowe właściwości oraz zasady wykorzystania programu 
ATP–EMTP. Ze względu na dużą liczbę różnych modeli elementów systemu elektro-
energetycznego i szeroki zakres zastosowania programu, do jego pełnego wykorzysta-
nia niezbędne jest posługiwanie się szczegółowym podręcznikiem przygotowania da-
nych w postaci tekstowej [13] lub graficznej [104]. Podstawy matematyczne programu 
oraz stosowane metody numeryczne opisane są w pracy [30].  

Przystępując do komputerowej symulacji omawianych tu procesów należy pamię-
tać, że wykonanie obliczeń jest zazwyczaj tylko jednym z etapów analizy zagadnień 
związanych z badaniem elektromagnetycznych stanów przejściowych. Całość proble-
mu można podzielić na następujące zadania.  
• Opracowanie modelu  

– przeznaczenie symulacji: stan ustalony/stan przejściowy, badanie dynami-
ki/charakterystyka częstotliwościowa i inne; 

– wybór modeli poszczególnych elementów analizowanego układu; 
– przygotowanie danych; 
– określenie parametrów symulacji; 
– wybór wielkości wyjściowych. 

• Wykonanie symulacji  
– pojedyncza symulacja; 
– seria symulacji ze zmianą określonych parametrów. 

• Analiza i wykorzystanie wyników 
– prezentacja wyników w postaci przebiegów w czasie; 
– analiza harmoniczna; 
– analiza statystyczna (symulacja w warunkach przypadkowych zmian wybra-

nych parametrów); 
– wykorzystanie wyników w postaci sygnałów wejściowych w modelach ukła-

dów automatyki; 
– stosowanie wyników jako wzorców uczenia sztucznych sieci neuronowych; 
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– wykorzystanie wyników do badania rzeczywistych urządzeń, po przekształce-
niu sygnałów prądu i napięcia do postaci naturalnej.  

Przygotowanie modelu sieci elektrycznej do symulacji komputerowej wymaga zna-
jomości nie tylko elektrotechniki, ale także podstaw obliczeń numerycznych i cyfro-
wego przetwarzania sygnałów. Ważną cechą doświadczonego użytkownika programu 
do symulacji komputerowej jest ostrożność, a nawet krytycyzm w odniesieniu do uzy-
skanych wyników. Źródłem błędów mogą być nie tylko pomyłki we wprowadzanych 
danych, ale także zastosowanie nieadekwatnych modeli poszczególnych elementów, 
czy też nieprawidłowa, z numerycznego punktu widzenia, struktura modelu całej sieci. 
Szczególnie częstym błędem, popełnianym zwłaszcza przez początkujących użytkow-
ników, jest tworzenie modeli o małej spójności, co oznacza, że niektóre fragmenty 
sieci są połączone przez dużą impedancję (lub brak jest takich połączeń). Nie należy 
również zapominać, że model tylko w ograniczonym zakresie odwzorowuje rzeczywi-
stość. Jeśli na przykład w jakimś punkcie rzeczywistej sieci następuje wzrost napięcia, 
to jego górna wartość w fizycznym obiekcie jest zawsze ograniczona przez właściwo-
ści materiałów izolacyjnych (ich modele mogą być uważane za liniowe tylko w wą-
skim przedziale zmian odpowiednich wielkości elektrycznych). W modelu można ła-
two przeoczyć tę, a także podobne, cechy fizycznych układów.  

W opisie programu zachowano oryginalne nazwy odpowiednich procedur i ko-
mend, które wywodzą się z języka angielskiego, co sprawia, że tekst może być mało 
przejrzysty dla początkujących czytelników. Należy wówczas przede wszystkim za-
poznać się z mniej rozbudowanymi przykładami. Zaawansowane przykłady dotyczą 
zwłaszcza samodzielnego budowania modeli, które nie są dostępne w standardowej 
bibliotece programu. Zamieszczony opis powinien ułatwić obsługę programu i analizę 
ewentualnych błędów.  

Omawiany program, jak zresztą każdy inny, ma swoje wymagania co do minimal-
nych parametrów technicznych komputera, na którym jest instalowany, jak również 
maksymalnych rozmiarów analizowanej sieci. W tym ostatnim przypadku ogranicze-
nia mogą dotyczyć liczby gałęzi lub węzłów sieci, a także maksymalnej liczby niektó-
rych elementów analizowanej sieci, jak: generatorów, wyłączników, źródeł prądo-
wych i innych. Ograniczenia te zmieniają się w kolejnych wersjach programu. Dla 
współczesnych komputerów PC nie stanowią one jednak istotnej przeszkody, gdyż 
w praktycznych zastosowaniach, trudno jest zdefiniować realne zagadnienia, dla któ-
rych rozmiar modelu byłby istotnym ograniczeniem realizacji zadania symulacyjnej 
analizy stanów przejściowych w sieci elektrycznej.  

A.2. Struktura pakietu ATP–EMTP 

Zbiór programów komputerowych, które służą do wykonania wymienionych we 
Wprowadzeniu trzech etapów symulacji, często nazywa się pakietem programowym. 
Struktura takiego pakietu jest przedstawiona na rys. A.1. Podano tam również zwycza-
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jowo stosowane rozszerzenia zbiorów odpowiednich danych, przy czym symbol * 
oznacza dowolną nazwę zbioru. Dla uniknięcia nieporozumień, nazwa zbioru jest taka 
sama, natomiast rodzaj danych zawartych w zbiorze jest rozróżniany przez odpowied-
nie rozszerzenie.  

A.2.1. Edytor danych wejściowych 

Przygotowanie zbioru danych zawierających pełną informację o modelowanej sieci 
(jej struktury i parametrów), zakresu i sposobu modelowania, wielkości wyjściowych 
oraz wielu danych sterujących procesem symulacji wymaga przyjęcia odpowiedniego 
kodu do zapisu tych danych. W omawianym przypadku informacje te są zawarte 
w pliku tekstowym, który jest przetwarzany przez główny program pakietu symula-
cyjnego. Ma on postać 80-kolumnowego tekstu w formacie ASCII. Zwyczajowo, 
zbiory tych danych mają rozszerzenie *.atp lub *.dat.  

Struktura i format danych są sztywno zdefiniowane, i przez to mało przejrzyste dla 
początkującego użytkownika. Podstawowe informacje na temat przygotowania danych 
w tym formacie zostaną przedstawione w następnym rozdziale. Do edycji odpowied-
niego zbioru danych można stosować dowolny edytor tekstowy, który pozwala utwo-
rzyć zbiór w kodach ASCII.  

Edytor danych wejściowych

Procesor wyników symulacji

Program ATP–EMTP

MATLAB
MATHCAD

...

OMICRON
...

wykrespamięć

wyniki
*.pl4, *.pch

przebieg obliczeń
*.lis, *.dbg

dane wejściowe
*.dat, *.atp

 

Rys. A.1. Struktura pakietu ATP–EMTP 
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Znaczne ułatwienie w przygotowaniu tych danych stwarza stosowanie edytora gra-
ficznego ATPDraw [104]. Użytkownik ma tu do dyspozycji bibliotekę modeli różnych 
obiektów, reprezentowanych symbolami graficznymi, za pomocą których tworzy 
schemat analizowanego układu i wprowadza jego parametry. Edytor ten pozwala tak-
że programować proces obliczeniowy poprzez ustawienie wymaganych parametrów 
symulacji. Dostępne są również polecenia uruchomienia głównego programu oraz gra-
ficznej prezentacji wyników.  

Program ATPDraw przetwarza graficzną postać modelu do formy danych teksto-
wych (z rozszerzeniem *.atp), które są następnie przetwarzane w głównym programie.  

A.2.2. Struktura programu ATP–EMTP 

Program ATP–EMTP zawiera następujące zbiory dyskowe, niezbędne do jego uru-
chomienia:  

• TPBIGx.EXE – główny moduł programu, x – identyfikuje rodzaj użytego kom-
pilatora: x = G: GNU-Mingw32, x = S: Salford, x = W: Watcom; 

• LISTSIZE.DAT – zbiór tekstowy, dostępny przez użytkownika, z definicją 
rozmiaru tablic przeznaczonych do zapisu niektórych parametrów programu, 
np. maks. liczba węzłów; 

• STARTUP – dostępny przez użytkownika zbiór tekstowy, z definicją niektó-
rych parametrów programu, np. formatu danych wyjściowych, domyślnego 
rozszerzenia zbiorów wejściowych lub wyjściowych itp. Jest on szczegółowo 
opisany w podręczniku użytkownika [8].  

Podczas instalowania i uruchamiania programu na komputerach PC z systemem 
WINDOWS, należy pamiętać, że TPBIGx.EXE nie ma własnego interfejsu graficzne-
go (GUI) i jest uruchamiany w oknie systemu operacyjnego DOS. Wygodną formą je-
go uruchamiania i obsługi jest użycie programu ATPDraw [104].  

Główny program TPBIGx.EXE przeznaczony jest do wykonania obliczeń symula-
cyjnych. Program zawiera ponadto procedury obliczania różnych danych związanych 
z niektórymi bardziej złożonymi modelami obiektów (na przykład, parametry elek-
tryczne linii na podstawie jej konfiguracji i danych materiałowych). Struktura progra-
mu jest pokazana na rys. A.2.  

Blok symulacji tworzą dwa moduły: 
– model sieci elektrycznej, 
– model układów sterowania. 
W pierwszym bloku odwzorowany jest model sieci elektrycznej, w którym nastę-

puje symulacja stanu przejściowego przez rozwiązywanie odpowiednich równań po-
tencjałów węzłowych ze stałym krokiem T. Wyniki symulacji w bieżącym kroku k (co 
odpowiada czasowi tk) są rezultatem wymuszeń w tym kroku oraz historii procesu 
określonego w poprzednim kroku tk – T). Sekwencja takich obliczeń składa się na pro-
ces symulacji stanu przejściowego.  
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Blok Symulacji
obliczenia w funkcji

czasu lub częstotliwości

TACS MODELS

Model sieci elektrycznej

Model układów sterowania

∆t ∆t

P
ro

ce
du

ry
 p

om
oc

ni
cz

e

 

Rys. A.2. Struktura głównego programu ATP–EMTP 

Moduł odwzorowujący układy sterowania służy do reprezentacji elementów two-
rzących obwody regulacji i sterowania, współpracujące z siecią elektryczną. Modele 
matematyczne tych elementów istotnie różnią się od modeli sieci i ich jednolita repre-
zentacja numeryczna prowadziłaby do znacznego skomplikowania algorytmu oblicze-
niowego. W związku z tym, oba te modele nie są rozwiązywane równocześnie: sygna-
ły pochodzące z modelu układów sterowania są przekazywane do modelu sieci 
z opóźnieniem o jeden krok modelowania ∆t = T. Ze względu na małą wartość kroku 
T, w większości zastosowań, to opóźnienie nie ma istotnego wpływu na dokładność 
obliczeń.  

Aktualnie dostępne są dwa rodzaje modułów odwzorowujących układy sterowania:  
– moduł TACS (ang. Transient Analysis of Control Systems), 
– moduł MODELS, który ma strukturę języka programowania.  
Oba te moduły spełniają podobne funkcje. Z ich pomocą można łatwo modelować 

bloki opisane transmitancjami, realizować liczniki, komparatory i inne typowe ele-
menty układów sterowania. Dostępne są także typowe funkcje matematyczne. Do mo-
dułu można wprowadzić sygnały z modelu sieci (prąd, napięcie, stan wyłączników 
i inne) i, w rezultacie ich przetwarzania, uzyskać podobne sygnały sterujące, wprowa-
dzane do modelu sieci. Daje to możliwość pełnego odwzorowania układów sterowania 
i ich współdziałania z analizowaną siecią.  
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Blok symulacji służy również do uruchamiania procedur pomocniczych, które są 
przeznaczone do obliczania parametrów modeli różnych obiektów elektroenergetycz-
nych. W aktualnej wersji programu dostępnych jest wiele takich procedur. Oto niektó-
re z nich.  
1. LINE CONSTANTS – obliczanie parametrów elektrycznych linii na podstawie da-

nych geometrycznych i materiałowych (dla modelu o parametrach skupionych lub 
rozłożonych); wyznaczenie charakterystyki częstotliwościowej linii. 

2. CABLE CONSTANTS – podobnie jak LINE CONSTANTS, z uwzględnieniem 
rozkładu warstw w przekroju poprzecznym kabla dla pojedynczego kabla lub gru-
py kabli. 

3. CABLE PARAMETERS – procedura ma podobne funkcje jak LINE 
CONSTANTS z szeregiem nowych możliwości, dostępny jest na przykład model 
kabla z rozłożonymi parametrami poprzecznymi. 

4. SYMLYEN SETUP – procedura pomocnicza do LINE CONSTANTS lub CABLE 
CONSTANTS, pozwalająca określać parametry linii napowietrznych lub kablo-
wych z większą dokładnością. 

5. JMARTI SETUP – procedura pomocnicza do LINE CONSTANTS lub CABLE 
CONSTANTS, pozwalająca określać parametry linii napowietrznych lub kablo-
wych zgodnie z modelem o parametrach rozłożonych z zależnością parametrów od 
częstotliwości. 

6. NODA SETUP – procedura określająca parametry modelu linii wielofazowej 
z rozłożonymi parametrami, z uwzględnieniem zależności parametrów od często-
tliwości. W odróżnieniu od SYMLYEN SETUP oraz JMARTI SETUP, w tej pro-
cedurze linia jest reprezentowana w naturalnych składowych fazowych. Do obli-
czeń używana jest również pomocnicza procedura ARMAFIT. 

7. NETWORK EQUIVALENT – procedura służąca do określania parametrów ekwi-
walentnego schematu, zastępującego fragment złożonej sieci. 

8. XFORMER – procedura do obliczania parametrów schematu liniowego czwórnika 
Π reprezentującego dwu- lub trójuzwojeniowy transformator jednofazowy na pod-
stawie danych pomiarowych.  

9. BCTRAN – procedura obliczania parametrów schematu liniowego wielowrotnika 
reprezentującego wielouzwojeniowy transformator jedno- lub trójfazowy na pod-
stawie danych pomiarowych. 

10. HYSTERESIS – procedura do generacji krzywej magnesowania z histerezą dla 
określonego materiału 

11. ZNO FITTER – procedura określająca parametry analitycznego modelu warystora 
lub grupy warystorów na podstawie charakterystyki zadanej w kilku punktach. 

12. DATA BASE MODULE – procedura do kompilacji bloku danych dotyczących 
wydzielonego modelu, który dołączany jest do danych głównego modelu za pomo-
cą polecenia $INCLUDE. Uzyskuje się w ten sposób możliwość tworzenia bloków 
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danych określających strukturę fragmentu złożonego modelu, do którego aktualne 
parametry są podstawiane w trakcie uruchamiania symulacji.  
W rezultacie wykonania głównego programu pakietu tworzone są zbiory danych 

wyjściowych:  
– *.pl4 – z rezultatami symulacji – dane wyjściowe w funkcji czasu lub często-

tliwości (zbiór binarny lub tekstowy – istnieje możliwość wyboru), 
– *.pch – z rezultatami obliczeń procedur pomocniczych (zbiór tekstowy), 
– *.lis, *.dbg – z zapisem procesu symulacji (zbiory tekstowy). 

Ostatnie dwa zbiory zawierają informacje o ewentualnych błędach i są pomocne przy 
ich usuwaniu.  

Program rozpoznaje żądany przez użytkownika tryb pracy (rodzaj wykonywanego 
zadania) na podstawie poleceń zawartych w zbiorze danych wejściowych.  

A.2.3. Procesor wyników symulacji 

Rezultaty działania programu mogą mieć różną formę, w zależności od rodzaju zada-
nia i deklaracji użytkownika. Niektóre sposoby wykorzystania rezultatów symulacji są 
symbolicznie pokazane na rys. A.1. Poniżej krótko omówiono ich formę oraz sposoby 
przetwarzania i wykorzystania.  
• Wyniki przetwarzania procedur pomocniczych mają formę pliku tekstowego 

(*.pch) o następującym przeznaczeniu:  
– moduł danych do wykorzystania w postaci niezależnego pliku wywoływanego 

ze zbioru danych wejściowych symulacji (za pomocą polecenia $INCLUDE) – 
powstaje w wyniku stosowania procedury DATA BASE MODULE;  

– parametry modeli określonych elementów sieci, które mogą być dołączane do 
zbioru danych wejściowych symulacji na zasadzie bezpośredniego podstawie-
nia lub za pomocą polecenia $INCLUDE.  

• Rezultaty określania charakterystyki częstotliwościowej badanej sieci w postaci 
tabeli wartości funkcji względem częstotliwości. Uzyskuje się je w wyniku stoso-
wania procedury FREQUENCY SCAN. Rezultaty takich obliczeń najczęściej 
przedstawia się w postaci wykresów w funkcji częstotliwości, które służą do po-
głębionej analizy sieci.  

• Rezultaty symulacji przedstawiające odpowiednie wielkości prądu i napięcia w funk-
cji czasu.  
Ostatnia forma wyników jest chyba najbardziej charakterystyczna dla programu 

EMTP. Plik z danymi wyjściowymi ma zwyczajowo rozszerzenie *.pl4. Istnieje kilka 
formatów tych danych, które mogą być definiowane w pliku konfiguracyjnym 
STARTUP (bez rozszerzenia). W pliku danych wyjściowych zawarta jest informacja 
o konfiguracji analizowanej sieci (nazwy węzłów i połączenia gałęzi) oraz spis wiel-
kości rejestrowanych. W pliku o formacie tekstowym wielkości wyjściowe są zapisa-
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ne w postaci wierszy, w których w pierwszej kolumnie znajduje się czas, a w kolej-
nych – rejestrowane wielkości prądów lub napięć.  

Wykorzystanie uzyskanych wyników symulacji może być bardzo różne:  
– prezentacja w formie graficznej w celu analizy zjawisk; 
– dalsze przetwarzanie danych w innych programach; 
– wykorzystanie sygnałów, jako wielkości wymuszających, w badanych ukła-

dach (po ich zamianie na wielkości fizyczne prądu i napięcia i odpowiednim 
wzmocnieniu).  

Do prezentacji wyników w postaci graficznej dostępnych jest kilka programów, na 
przykład: PLOTXY lub TOP [150]. Ten ostatni program umożliwia przetwarzanie da-
nych zarejestrowanych w różnych formatach, między innymi w formacie 
COMTRADE [56], który jest powszechnie stosowany do zapisu rejestrowanych zbio-
rów w zakresie elektroenergetyki.  

W przypadku badania procedur sterowania lub algorytmów związanych z pomia-
rami, automatyką lub zabezpieczeniami przekaźnikowymi, aplikacje są często tworzo-
ne z użyciem programu MATLAB [152]. W pakiecie dostępne są programy do prze-
noszenia danych z formatu *.pl4 do formatu dostępnego w programie MATLAB: 
PL42MAT, PL4TOMAT.   



 

DODATEK B.   PRZYGOTOWANIE DANYCH 

B.1. Wprowadzenie 

Omawiany program ma długą historię rozwoju, czego konsekwencją jest rozbudowana 
konfiguracja, a także niekiedy obecność kilku modułów, które realizują te same lub 
podobne funkcje. Niektóre z nich nie przystają już do współczesnej platformy sprzę-
towej, a pozostawiono je przede wszystkim ze względu na możliwość uruchamiania 
gromadzonych przez lata bardzo cennych przykładów (można je znaleźć w kartotece 
\BENCHMARK). Z punktu widzenia użytkownika, struktura programu ma konfigura-
cję jak na rys. B.1.  

TPBIGx.EXE

*.adp

ATPDRAW Edytor Tekstowy
(PFE)

*.lis, *dbg

*.dat, *.atp
zbiór wejściowy

*.pl4
zbiór wyjściowy

*.pch
moduł danych

PLOTXY
TOP

Przygotowanie
danych

 

Rys. B.1. Struktura użytkowa programu ATP–EMTP 
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Przygotowanie danych do symulacji w postaci tekstowego zbioru wejściowego 
*.dat lub *.atp jest związane z edycją tego zbioru zgodnie z wymaganym formatem. 
Ze względu na bardzo dużą różnorodność modeli elementów dostępnych w programie, 
format danych wejściowych jest w dużym stopniu zróżnicowany. 

Podstawowym narzędziem do edycji zbioru wejściowego jest edytor tekstowy. 
Może to być dowolny program zapisujący tekst w kodach ASCII, jednak ze względów 
praktycznych, powinien być w nim dostępny wskaźnik numeru wiersza i kolumny. 
W pakiecie instalacyjnym rolę tę pełni edytor PFE [134]. 

Program ATPDraw daje możliwość edycji danych w trybie graficznym, co znacz-
nie ułatwia ich przygotowanie. Po przygotowaniu schematu modelu i wprowadzeniu 
danych, program pozwala utworzyć odpowiedni zbiór tekstowy (*.atp), który zawiera 
dane wejściowe do symulacji. Program ten umożliwia ponadto sterowanie procesem 
symulacji i przeglądania jej wyników.  

Poniżej podano podstawowe zasady przygotowania danych w formie pliku teksto-
wego oraz użytkowania programu ATPDraw. Korzystając z edytora graficznego, 
użytkownik wprawdzie nie musi znać szczegółów kodowania poszczególnych elemen-
tów sieci i ich parametrów, jednak w przypadku bardziej złożonych modeli, mogą po-
jawić się błędy, których analiza wymaga sięgnięcia do ‘źródłowego kodu’ danych tek-
stowych. Nawet pobieżna znajomość struktury tekstowych danych wejściowych 
podnosi komfort pracy z programem.   

B.2. Edytor tekstowy 

B.2.1. Struktura pliku danych wejściowych 

Ogólna struktura pliku tekstowego z danymi wejściowymi do symulacji jest pokazana 
na rys. B.2. Wszystkie informacje przekazywane do programu muszą się mieścić 
w kolejnych wierszach o maksymalnej długości 80 kolumn. W odniesieniu do po-
szczególnych wierszy, stosowane jest określenie ‘karta’, co ma związek ze starym 
sposobem przygotowania danych na 80 znakowych kartach perforowanych. Komenta-
rze w tekście danych są sygnalizowane znakami: ‘C ’ zaczynającymi wiersz, gdzie  
oznacza spację, na przykład:  
 
C Dane transformatora blokowego 15/220 kV 
 

Cały wiersz jest tu pomijany przez procesor danych wejściowych. Komentarze 
mogą być także umieszczane w końcowej części karty z danymi, przez ich ujęcie 
w nawias klamrowy: {komentarz}. Procesor danych wejściowych przyjmuje, że ewen-
tualne dane w przedziale komentarz – koniec karty mają zerową wartość.  
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W dalszym opisie znak oznaczający spację będzie używany jedynie wówczas, gdy 
jest to niezbędne dla uniknięcia niejednoznaczności.  

Sekwencję wierszy można także wyłączyć z przetwarzania przez ujęcie ich pomię-
dzy polecenia $DISABLE (pomiń) oraz $ENABLE (uaktywnij), na przykład:  
 
C  
$DISABLE 
00 
  Transformer 
... 
$ENABLE 
  GENER1WEZEL1            12.5  
 

Nagłówek zbioru

Dane o modelach układów sterowania
(TACS, MODELS)

Dane o gałęziach modelu sieci

Dane o wyłącznikach

Dane o źródłach

Informacja o danych wyjściowych

Rysowanie przebiegów w trybie obliczeń

Zamknięcie danych

 

Rys. B.2. Struktura pliku tekstowego z danymi wejściowymi 

Plik danych o strukturze jak na rys. B.2 można nazwać standardowym. Występuje 
w nim ściśle określona kolejność bloków danych. Zakończenie danego bloku i jedno-
cześnie rozpoczęcie kolejnego jest sygnalizowane przez wiersz:  
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BLANK <komentarz> 

gdzie tekst ujęty w ukośnych nawiasach: < > ma charakter opcjonalny, na przykład 
poniższe dwie karty mają dla programu to samo znaczenie:  
 
BLANK 
BLANK Koniec danych o źródłach 
 

Kolejność poszczególnych elementów zbioru (z wyjątkiem nagłówka), jak i ich 
powtarzanie, można wymusić, stosując polecenia sortujące, które mają następujący 
format: ‘/nazwa’. Oto niektóre karty tego typu:  

/TACS – dane dla modelu sterowania w formacie TACS, 
/MODELS – dane dla modelu sterowania w formacie MODELS, 
/BRANCH – dane o gałęziach sieci, 
/SWITCH – dane o wyłącznikach, 
/SOURCE – dane o źródłach, 
/OUTPUT – zbiór nazw węzłów, z których napięcia będą gromadzone w zbiorze  

     wyjściowym,  
/PLOT  – blok danych o wykresach sporządzanych w trakcie obliczeń.  
Polecenia te należy wpisywać, poczynając od pierwszej kolumny, na początku blo-

ku z odpowiednimi danymi. Każde pojawienie się takiego wiersza sygnalizuje zakoń-
czenie poprzedniego bloku i otwarcie nowego. Struktura takiego zbioru bez sortowa-
nia jest następująca:  
 
BEGIN NEW DATA CASE 
{Nagłówek zbioru} 
< Dane o modelach układu sterowania> 
< Dane o gałęziach sieci> 
BLANK Koniec danych o gałęziach 
< Dane o wyłącznikach> 
BLANK Koniec danych o wyłącznikach 
< Dane o źródłach> 
BLANK Koniec danych o źródłach 
< Dane określające wielkości wyjściowe> 
BLANK Koniec danych o wyjściach 
< Dane sterujące grafiką w trybie obliczeń> 
BLANK Koniec danych o grafice 
BEGIN NEW DATA CASE 
< Zbiór danych innego modelu> 
BEGIN NEW DATA CASE 
BLANK Koniec zbioru danych 
EOF 
< Dane pomijane przez program> 
 

Zbiór danych modelu jest zawarty pomiędzy kolejnymi wierszami ograniczającymi 
(BEGIN NEW DATA CASE). W pliku może być kilka takich zbiorów, następujących 
kolejno po sobie. Po ostatnim z nich następują jeszcze dwie karty (BEGIN NEW 
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DATA CASE oraz BLANK). Karta EOF musi wystąpić jedynie wówczas, gdy na koń-
cu pliku umieszczone są dane, które nie są związane z modelem (np. komentarz). 
Warto zauważyć, że blok, w którym są definiowane parametry graficznej prezentacji 
wyników (<Dane sterujące grafiką w trybie obliczeń>), jest używany tylko do specjal-
nych zastosowań. W większości przypadków wygodniej jest analizować wyniki symu-
lacji z zastosowaniem zewnętrznych edytorów graficznych.  

Porządek zbioru można zmienić (z wyjątkiem nagłówka) przez wprowadzenie kart 
sortujących. Wówczas wygodnie jest ‘zamknąć’ wszystkie bloki danych dopiero na 
końcu całego zbioru, przez wstawienie stosownej liczby kart typu BLANK. Poniżej 
podany jest przykład takiej struktury danych:  
BEGIN NEW DATA CASE 
{Nagłówek zbioru} 
/SOURCE dane o źródłach 
< Dane o źródłach 1> 
/BRANCH dane o gałęziach 
< Dane o gałęziach sieci 1> 
/SWITCH dane o wyłącznikach 
< Dane o wyłącznikach> 
/SOURCE dane o źródłach 
< Dane o źródłach 2> 
/PLOT dane o grafice 
< Dane sterujące grafiką w trybie obliczeń> 
/BRANCH dane o gałęziach 
< Dane o gałęziach sieci 2> 
/TACS dane o modelu sterowania 
< Dane o modelu sterowania> 
BLANK Koniec danych o gałęziach 
BLANK Koniec danych o wyłącznikach 
BLANK Koniec danych o źródłach 
BLANK Koniec danych o wyjściach 
BLANK Koniec danych o grafice 
BEGIN NEW DATA CASE 
BLANK Koniec zbioru danych 

W wejściowym pliku danych mogą się znajdować również karty z różnymi polece-
niami zawierającymi informacje dla programu czytającego dane oraz o przeznaczeniu 
i sposobie przetwarzania danych modelu. Niektóre z tych kart będą prezentowane 
w dalszej części opisu. Szczegółowe informacje można znaleźć w podręczniku użyt-
kownika [13].  

B.2.2. Nagłówek zbioru danych 

W nagłówku pliku danych wejściowych znajduje się ogólna informacja o przeznacze-
niu danych, opcjach modelowania oraz podstawowe dane o parametrach modelu. 
Ogólnie, występują tu dwie kategorie informacji:  

– polecenia sterujące, 
– parametry modelowania. 
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W pierwszej kolejności należy umieścić specjalne karty sterujące (ang. special-
request cards), za pomocą których wywoływane są odpowiednie procedury pomocni-
cze, jak CABLE CONSTANTS, DATA BASE MODULE i inne (patrz s. 274). 
W niektórych kartach sterujących występują także parametry liczbowe przekazywane 
do procedury.  

Stosując ręczną edycję, wygodnie jest wprowadzać komentarze, które opisują za-
równo znaczenie poszczególnych danych, jak i miejsce ich położenia w wierszu. Do-
tyczy to zwłaszcza drugiej części nagłówka, gdzie należy wprowadzić parametry mo-
delowania. Poniżej podany jest format podstawowych kart tej części danych.  
 
C DELTAT    TMAX    XOPT    COPT  EPSILN  TOLMAT  TSTART 
C -----><------><------><------><------><------><------> 
2.439E-5     .20    50.0    50.0 
C   IOUT   IPLOT  IDOUBL  KSSOUT  MAXOUT    IPUN  MEMSAV    ICAT  NENERG  IPRSUP 
C -----><------><------><------><------><------><------><------><------><------> 
     200      41                                               1 
 

Pierwsze dwie karty zawierają komentarz do danych zawartych w trzeciej karcie. 
Są to dane liczbowe w formacie zmiennopozycyjnym. Wszystkie te dane muszą być 
zapisane w polach o długości 8 znaków w miejscach zaznaczonych w komentarzu. 
Dla uniknięcia niejednoznaczności, liczby zmiennopozycyjne powinny być w całym 
zbiorze danych pisane z użyciem kropki dziesiętnej. Obowiązuje przy tym format sto-
sowany w języku FORTRAN, na przykład: 

225.0=0.225E3=.225E3, 
0.0054=.0054=.54E-2. 

Puste pole jest równoważne wartości zerowej lub, niekiedy, wartości domyślnej, okre-
ślonej w pliku STARTUP.  

Znaczenie danych określonych liczbami zmiennopozycyjnymi w podanych polach 
jest następujące.  
DELTAT wielkość kroku modelowania T, (s). 
TMAX końcowy czas symulacji, (s). 
XOPT  wielkość określająca jednostki liniowej indukcyjności L w danych we-

dług następującego przyporządkowania: 
1. XOPT=0 indukcyjność jest podawana w (mH),  
2. XOPT>0 dane odnoszące się do indukcyjności reprezentują reaktancję 
indukcyjną (Ω), której wartość jest określana: fLX π2= , gdzie: 
f = XOPT. 

COPT wielkość określająca jednostki liniowej pojemności C w danych według 
następującego przyporządkowania: 
1. COPT = 0  – pojemność jest podawana w (µF),  
2. COPT > 0  – dane odnoszące się do pojemności reprezentują suscep-
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tancję pojemnościową [µS], której wartość jest określana: fCB π2= , 
gdzie f = COPT. 

EPSILN bardzo mała wartość, według której określa się warunek osobliwości rze-
czywistej macierzy przewodności  w stosowanej w każdym kroku symu-
lacji metodzie potencjałów węzłowych. 

TOLMAT podobnie jak EPSILN, lecz w odniesieniu do macierzy zespolonych 
podczas obliczania stanu ustalonego. 

TSTART czas początkowy symulacji. Zazwyczaj jest on równy zeru, a odstępstwo 
od tego założenia ma miejsce wówczas, gdy kontynuowane są obliczenia 
z innego modelu.  

Następna karta przedstawia również parametry symulacji, przy czym są one okre-
ślone przez liczby całkowite (format INTEGER, 8 znaków). Znaczenie tych parame-
trów jest następujące:  
IOUT określa częstotliwość wyprowadzania wyników obliczeń do systemowe-

go urządzenia wyjściowego, którym najczęściej jest monitor. Na przykład 
IOUT = 5 oznacza, że co piąty zbiór (wiersz) wyników symulacji (które 
są zdefiniowane w zbiorze danych) jest wyprowadzany na monitor ekra-
nowy oraz do zbioru wyjściowego *.lis. Funkcja ta ma właściwie jedynie 
znaczenie kontrolne, zatem w celu oszczędzenia czasu obliczeń, parametr 
IOUT powinien być dostatecznie duży. 

IPLOT podobnie, jak IOUT, z tym że określenie odnosi się do pliku wyjściowe-
go wyników obliczeń. Wielkość IPLOT określa zatem ‘gęstość’ zbioru 
wynikowego. Wartość IPLOT = 1 (lub puste pole) oznacza, że w zbio-
rze *.pl4 będą zapisane wyniki z tą samą częstotliwością, z którą odbywa 
się modelowanie: z każdego kroku symulacji. Zawsze jest przyjmowana 
parzysta wartość IPLOT (w przypadku wartości parzystej dodawana jest 
wartość 1). 

IDOUBL zmienna sterująca tworzeniem informacji o połączeniach sieci. Wartość 
zerowa (lub puste pole) oznacza brak takiej informacji. Gdy IDOUBL = 1, 
w pliku *.lis zamieszczony zostanie zbiór połączeń sieci. 

KSSOUT steruje wyprowadzaniem informacji (do pliku *.lis) o stanie ustalonym 
sieci przed rozpoczęciem symulacji: 

0 – pominięcie informacji, 
1 – pełna informacja: prądy w gałęziach i wyłącznikach, prądy źródeł, 
2 – prądy w źródłach oraz wyłącznikach, 
3 – jak dla 2, ponadto te prądy, które są wyprowadzane podczas sy-
mulacji.  

MAXOUT wartość 1 oznacza, że do pliku *.lis będzie wyprowadzana informacja 
o maksymalnych wartościach chwilowych przebiegów, będących wyni-
kami symulacji. 
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IPUN umożliwia zmianę częstotliwości wyprowadzania wyników symulacji do 
zbioru *.pl4. Wartość ‘–1’ oznacza, że w następnym wierszu podana jest 
informacja o sposobie tej zmiany. Puste pole lub wartość zerowa pomija 
tę opcję. 

MEMSAV umożliwia przechowywanie wyników symulacji w pamięci operacyjnej 
komputera w celu ich użycia w kolejnej symulacji (wartość 1). Puste pole 
lub 0 oznacza pominięcie tej opcji. 

ICAT steruje wyprowadzaniem wyników symulacji: 
0 – nie jest tworzony zbiór wyjściowy, 
1 – tworzony jest zbiór wyjściowy, natomiast nieaktywne są polecenia 
rysowania przebiegów w bloku ‘sterowanie grafiką w trybie obli-
czeń’, 
2 – tworzony jest zbiór wyjściowy, ponadto aktywne są polecenia ry-
sowania przebiegów w bloku ‘sterowanie grafiką w trybie obliczeń’.  

NENERG parametr ten powinien mieć wartość zerową (albo puste pole) w przypad-
ku standardowej symulacji. Inne wartości są stosowane w specjalnych 
przypadkach. 

IPRSUP jak wyżej. 

B.2.3. Dane o modelach układu sterowania 

Ten blok pozwala dołączyć do modelu sieci procedury, które reprezentują różne funk-
cje sterujące w modelowanym systemie, zwłaszcza: transmitancje elementów automa-
tyki (ciągłych lub dyskretnych), funkcje różniczkowania lub całkowania sygnałów, 
liczniki i inne. Procedury te mogą być zapisane w kodach TACS lub MODELS. Opis 
zasad tworzenia tych bloków wykracza poza zakres niniejszego materiału. Można je 
znaleźć w podręczniku użytkownika [13]. Granice tych bloków są określone następu-
jąco: 

Dla bloku typu TACS możliwe są dwie konfiguracje. 
1. Cały model jest ograniczony tylko do bloku TACS.  
... 
TACS STAND ALONE 
< Blok modelu> 
BLANK karta zamykająca blok TACS 
... 

2. Oprócz bloku TACS występuje również model sieci. 
... 
TACS HYBRID 
< Blok modelu> 
BLANK karta zamykająca blok TACS 
<model sieci> 
... 
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Ten drugi przypadek ma miejsce wówczas, gdy pomiędzy blokiem sterowania 
(TACS) i modelem sieci następuje przekazywanie informacji.  

Blok typu MODELS jest napisany w kodach języka o strukturze zbliżonej do zna-
nych języków programowania. Granice bloku są wyznaczone przez karty: MODELS 
(początek) oraz ENDMODELS (koniec), jak poniżej.  
 
... 
MODELS 
< Blok modelu> 
ENDMODELS 
<model sieci> 
... 

B.2.4. Dane o gałęziach modelu sieci 

Gałęzie są podstawowymi elementami sieci i wraz ze źródłami i wyłącznikami defi-
niują ją. Ze względu na strukturę danych oraz stosowane metody numeryczne, gałęzie 
można podzielić na następujące kategorie:  

– liniowe o parametrach skupionych, 
– liniowe o parametrach rozłożonych, 
– liniowe o parametrach zależnych od częstotliwości, 
– nieliniowe, ze zmianą parametrów w czasie (niestacjonarne), 
– nieliniowe o uproszczonej charakterystyce przedstawionej odcinkami (pseudo-

nieliniowe), 
– nieliniowe, z pełną reprezentacją charakterystyki (prawdziwie nieliniowe). 
Elementy te mogą być ponadto jedno- lub wielofazowe, a w tym ostatnim przy-

padku odpowiedni model może uwzględniać symetryzację faz (transpozycja) lub nie. 
Kolejnym wyróżnikiem jest liczba zaczepów (biegunów): dwu- i wielobiegunowe. Do 
gałęzi należą również modele transformatorów.  

Formatowanie danych dla takiej różnorodności modeli stwarza wiele kłopotów, 
a ich opis zajmuje podstawową część podręcznika. Poniżej podane są jedynie ogólne 
zasady reprezentacji tych danych. W strukturze danych programu ATP–EMTP rodzaj 
gałęzi jest określany numerem dwucyfrowym, umieszczonym w dwóch pierwszych 
kolumnach zbioru. Rozpatrzmy kilka przykładowych rodzajów gałęzi.  

Gałąź zawierającą szeregowe połączenie elementów RLC jest przedstawiona za 
pomocą jednego modelu. Układ wielofazowy może być reprezentowany za pomocą 
modelu bez sprzężeń międzyfazowych lub z wzajemnymi sprzężeniami. W obu przy-
padkach obowiązują różne formaty danych. Oto krótki opis formatów danych o tych 
gałęziach.  
• Dane jednofazowej gałęzi RLC o parametrach skupionych mają następujący for-

mat: 
 



286 Dodatek B. Przygotowanie danych 

C   WEZ1  WEZ2 WEZ01 WEZ02     R     L     C                                   O 
C <    ><    ><    ><    ><    ><    ><    >                                   < 
  GEN1  GEN2                0.25  3.75   29.                                   1 
 

Dwie pierwsze kolumny są puste lub zawierają numer 00 (jest to równoważne). 
W kolejnych dwóch polach 6-znakowych, znajduje się miejsce na podanie nazw wę-
złów na końcach gałęzi. Dla uniknięcia niejednoznaczności, krótsze nazwy powinny 
być wyrównane w polach do lewej strony. Puste pole oznacza ziemię. Kolejne dwa 
pola 6-znakowe są przeznaczone do podania nazw pary węzłów odniesienia. Jest to 
stosowane jedynie wówczas, gdy w modelu sieci występuje duża liczba jednakowych 
gałęzi. Parametry są podane wówczas tylko dla pierwszej z nich, a w kolejnych wier-
szach można je opuścić, podając w tych właśnie polach nazwy węzłów gałęzi odnie-
sienia, z której program pobiera parametry.  

W kolejnych trzech polach podawane są liczbowe wartości parametrów RLC. 
Normalnie te pola mają również szerokość 6 znaków. Jednostki tych parametrów są 
następujące:  

R: (Ω), 
L: (mH) jeśli XOPT=0 (lub pusty), inaczej: 2πfL (Ω), f=XOPT, 
C: (µF) jeśli COPT=0 (lub pusty), inaczej: 2πfC (µS), f=COPT. 

Szerokość pól dla liczbowych wartości parametrów (precyzja danych) można zmienić 
z 6 na 16 przełącznikiem $VINTAGE z parametrem 1: 
 
C   WEZ1  WEZ2 WEZ01 WEZ02     R     L     C                                   O 
$VINTAGE,1 
C <    ><    ><    ><    ><              ><              ><              >     < 
  GEN1  GEN2                          0.25            3.75                     2 
$VINTAGE,0 
C <    ><    ><    ><    ><    ><    ><    >                                   < 
  GEN3  GEN4                0.25  3.75   29.                                   1 
 

Zauważmy, że przełącznik $VINTAGE,1 ustanawia dużą precyzję danych, nato-
miast $VINTAGE,0 przywraca normalną precyzję. 

Jeśli któryś z parametrów RLC nie występuje w gałęzi, to należy w odpowiednim 
miejscu wstawić 0 lub pozostawić puste pole. 

W ostatniej, 80 kolumnie, można wstawić liczbę z zakresu 1–4 w celu wyprowa-
dzenia do zbioru wynikowego informacji, o wynikach symulacji związanych z daną 
gałęzią. Rodzaj tych danych zależy od wstawionej liczby: 

1 – prąd płynący w gałęzi, 
2 – napięcie na zaciskach gałęzi, 
3 – prąd oraz napięcie, 
4 – straty mocy i energii w gałęzi. 

• Dane gałęzi RLC w postaci czwórnika Π (rys. B.3). 
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Model matematyczny modelu takiego elementu jest określony przez następujące rów-
nania:  

kllk t
iLuu

d
d

=− , 

klkk t
iuCi +=

d
d

2
1 , klll t

iuCi −=
d
d

2
1 , 
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Ponieważ macierze te są symetryczne, więc wystarczy podać parametry tylko dolnej 
trójkątnej podmacierzy. Format danych jest następujący.  
 
C   WEZA  WEZA               R11   L11   C11 
C <    ><    >            <    ><    ><    > 
 1GEN1A GEN2A               1.42  8.37  .158 
C WEZB  WEZB                 R12   L12   C12   R22   L22   C22 
 2GEN1B GEN2B              0.968  .837 -.078  1.38  .142  .165 
C WEZC  WEZC                 R13   L13   C13   R23   L23   C23   R33   L33   C33 
 3GEN1 GEN2C               0.955  .842 -.079  .968  .837 -.078  1.38  .142  .165 
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Rys. B.3. Schemat modelu elementu trójfazowego reprezentowanego za pomocą czwórnika Π  

W pierwszych dwóch kolumnach znajduje się numer wiersza macierzy: 1, 2, ... Nazwy 
węzłów są podawane jak poprzednio, z tym że nie stosuje się węzłów odniesienia. 
W analogiczny sposób można podawać parametry dla czwórnika wielofazowego 
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(maksymalny rozmiar macierzy wynosi 40). Przy większej liczbie danych zapis moż-
na kontynuować w kolejnym wierszu, pozostawiając kolumny 1–26 puste. 
Można także stosować format zwiększonej dokładności, jak wyżej.  
• Dane wielofazowej gałęzi RL ze sprzężeniami.  
Tego typu model reprezentuje gałąź wielofazową bez pojemności, a jedynie z parame-
trami podłużnymi. Dla linii trójfazowej transponowanej macierz parametrów zawiera 
tylko dwie różne wielkości, leżące na przekątnej oraz poza nią. Wygodnie jest wów-
czas podawać parametry w składowych symetrycznych. Zachodzi przy tym następują-
ca odpowiedniość:  
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
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
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mmm
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, 

gdzie:  

ms ZZZ 20 += , ms ZZZZ −== 21 , 
3

10 ZZZs
−

= , 
3

2 10 ZZZm
+

= . 

W miejsce Z można podstawić R, L lub C. 
Stosowanych jest kilka formatów danych. W przypadku linii transponowanej, format 
danych jest następujący:  
C Linia 3-fazowa reprezentowana za pomoca modelu 51..53 
C   WEZ1  WEZ2 WEZ01 WEZ02     R     L                                           
C <    ><    ><    ><    ><    ><    >                                           
C   WEZ1  WEZ2 WEZ01 WEZ02    R0    L0                                           
51GEN1A GEN2A               12.5  3.85                                           
C   WEZ1  WEZ2 WEZ01 WEZ02    R1    L1                                           
52GEN1B GEN2B                2.5  1.75                                           
53GEN1C GEN2C                                                                    

W pierwszych dwóch kolumnach umieszczone są numery faz, poczynając od 51. War-
tości parametrów podane są dla składowej zerowej i zgodnej. W trzecim wierszu da-
nych nie są podawane żadne parametry liczbowe.  
• Dane modelu linii o parametrach rozłożonych  
Dostępnych jest wiele modeli linii o parametrach rozłożonych. Każdy z tych modeli 
ma swój format danych. Poniżej podany zostanie jedynie format danych dla modelu 3-
fazowej linii długiej transponowanej (tzw. model Clarke).  
$UNITS, 0., 0. 
C <BUS1><BUS2><REF1><REF2><-R'-><-L'-><-C'-><Leng><><><> 
-1LINA1RLINA2R             .275 3.2675 .0085  50. 0 0 0    {zero-sequence} 
-2LINA1SLINA2S            .0276 1.0031 .013   50. 0 0 0    {pos.-sequence} 
-3LINA1TLINA2T 
$UNITS, -1., -1. 
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W zapisie tym, parametry elektryczne linii są podawane w podstawowych jednost-
kach (R (Ω), L (mH), C (µF)), niezależnie od ogólnej deklaracji tych jednostek w na-
główku zbioru danych (XOPT, COPT). W celu uniezależnienia się od tej deklaracji, 
karty danych linii są ujęte w dwie karty sterujące $UNITS z parametrami: 0., 0., oraz: 
–1., –1. Pierwsza z nich jest równoważna deklaracji: XOPT = 0, COPT = 0, natomiast 
druga - przywraca zadeklarowane w nagłówku jednostki.  

Rodzaj linii (model o parametrach rozłożonych) jest oznaczony w dwóch pierw-
szych kolumnach: ‘–numer fazy’. Jak widać, parametry linii są podane dla składo-
wych symetrycznych: zerowej i zgodnej, w jednostkach na kilometr długości. Rozwa-
żana linia ma długość 50 km i następujące parametry:  

R0 = 0,275 Ω/km, L0 = 3,2675 mH/km, C0 = 0,0085 µF/km,  
R1 = 0,0276 Ω/km, L1 = 1,0031 mH/km, C1 = 0,013 µF/km. 
Trzy pozycje z zerowymi wartościami w każdej karcie danych są przeznaczone do 

deklaracji odpowiednich przełączników ustawiających szczegóły modelu: linia trans-
ponowana/nietransponowana, użyte jednostki parametrów linii: R, L, C (jak w przy-
kładzie) lub inne, np.: impedancja falowa Zf, szybkość rozprzestrzeniania się fali v 
i inne [13]. Ten ostatni format danych jest zastosowany w modelu linii z przykładu 
C.1.2.  

B.2.5. Dane o wyłącznikach 

W najprostszym przypadku, wyłącznik jest reprezentowany za pomocą dwupołoże-
niowego łącznika, sterowanego w funkcji czasu. Format danych jest następujący:  
 
C <BUS1><BUS2><T_CLOSE >< T_OPEN ><C_LIM   ><V_FLESH ><SPECIAL > 
    WEZ1  WEZ2      -1.0      0.02      1.E5                                    
 

gdzie:  
BUS1, BUS2 – nazwy węzłów pomiędzy którymi znajduje się wyłącznik;  
T_CLOSE – czas załączenia wyłącznika; ujemna wartość oznacza, że wyłącznik 
będzie rozpatrywany jako załączony przy obliczaniu warunków początkowych;  
T_OPEN – czas wyłączenia wyłącznika; zakłada się, że T_CLOSE<T_OPEN; 
C_LIM – maksymalna wartość prądu, przy której możliwe jest otwarcie wyłączni-
ka; wyłącznik otwiera się, gdy t ≥ T_OPEN oraz prąd przepływający przez niego 
(wartość chwilowa): i < C_LIM; 
V_FLESH – minimalna wartość napięcia, przy którym wyłącznik zamyka się, jeże-
li t > T_CLOSE; 
SPECIAL – jeśli w tym polu znajduje się słowo: MEASURING, to pozostałe pa-
rametry są pomijane, wyłącznik jest stale zamknięty i pełni rolę miernika przepły-
wającego przez niego prądu (próbki są rejestrowane w zbiorze wyjściowym).  
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B.2.6. Dane o źródłach 

W programie dostępne są różne rodzaje źródeł prądowych i napięciowych, które są 
identyfikowane za pomocą numeru w pierwszych dwóch kolumnach. Najczęściej sto-
suje się źródło nr 14, które reprezentuje falę kosinusoidalną o określonej amplitudzie, 
fazie i częstotliwości. Ogólny format danych o źródłach jest następujący:  
C NODE->i?<-Amplit-><--Freq--><-Phase -><---A1---><---T1---><-Tstart-><-Tstop--> 
  GENER1        100.       50.      –45. 

gdzie: 
NODE – nazwa węzła, do którego jest dołączone źródło (źródła są włączone po-
między wybrany węzeł i ziemię);  
i? – 0 (lub puste pole) – źródło napięciowe, –1 – źródło prądowe; 
Amplit – amplituda; 
Freq – częstotliwość fali (Hz); 
Phase – faza początkowa kosinusoidy; 
A1 – 0 – faza jest podawana w stopniach, A1 > 0 – faza (s); 
T1 – wykorzystywane w przypadku generacji złożonych sygnałów; 
Tstart – czas uruchomienia źródła; 
Tstop – czas zatrzymania źródła. 
Tylko jeden typ źródła może być włączony pomiędzy dwa różne węzły sieci: typ 

18, w którym znajduje się idealny transformator. W takim przypadku jedna strona tego 
transformatora powinna być uziemiona (oba zaciski), a w szereg z drugim uzwojeniem 
włączone jest wybrane źródło. Drugi zacisk źródła i wolny zacisk transformatora mo-
gą być połączone z dowolnymi węzłami sieci [13].  

B.3. Edytor graficzny ATPDraw 

Opis edytora graficznego (instalacja, sposób posługiwania się oraz przykłady) można 
znaleźć w podręczniku [104]. Wiele informacji na temat obsługi programu oraz szcze-
gółów dotyczących jego nowych wersji można znaleźć na stonie internetowej twór-
ców programu [139]. Poniżej podano jedynie niezbędne dane, które mogą ułatwić po-
sługiwanie się tym programem.  

Przykład na rysunku B.4 pokazuje główne okno programu, do którego załadowany 
jest model z przykładu C.6. W głównym oknie dostępne są wymienione dalej opcje 
programu. Podstawowe operacje na plikach (otwieranie/zapisywanie, otwieranie pli-
ków nowych modeli, drukowanie), odbywa się za pośrednictwem opcji File.  

• Opcja Edit służy do wykonywania operacji na całym modelu lub jego fragmen-
tach: kopiowanie, wycinanie, tworzenie i edycja grupy (służy do tworzenia 
fragmentu modelu, reprezentowanego za pomocą pojedynczej ikony, z kilku 
modeli podstawowych).  
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Rys. B.4. Główne okno edytora graficznego ATPDraw 

• Z opcją View związane są narzędzia do edycji wyglądu głównego okna pro-
gramu: powiększanie/zmniejszanie, zmiana czcionki itp.  

• Opcja ATP zawiera podstawowe narzędzia do konwersji postaci graficznej mo-
delu na plik tekstowy, edycji parametrów symulacji, uruchomienia symulacji  
i prezentacji jej wyników. Rozwinięte menu jest pokazane na rys. B.5a. Po wy-
braniu opcji ATP/Settings uzyskuje się dostęp do menu związanego z edycją 
różnych parametrów modelowania. W oknie pokazanym na rys. B.5b należy 
ustawić: krok modelowania (delta_T), czas symulacji (Tmax), jednostki, w któ-
rych wprowadzana będzie indukcyjność (Xopt) oraz (Copt) (patrz p. B.2.2). 

• Po wybraniu opcji Library dostępne są narzędzia do tworzenia modułów pro-
gramowych, modeli utworzonych za pomocą języka MODELS oraz edycji 
związanych z nimi graficznych symboli (ikon).  

• Opcja Tools umożliwia edycję środowiska związanego z tworzonymi modela-
mi: ustawianie wartości domyślnych parametrów, kartotek, w których prze-
chowywane są poszczególne pliki, ścieżki dostępu do modułów programowych 
(np. programów do edycji zbiorów tekstowych, edytora do graficznej prezenta-
cji wyników i inne). 

• Opcje Windows oraz Help zawierają typowe narzędzia systemu WINDOWS. 
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a) b)

 

Rys. B.5. Rozwinięte menu: a) opcja ATP  oraz b) menu opcji ATP/Settings  

Edycja samego modelu odbywa się na zasadzie umieszczania odpowiednich mode-
li reprezentowanych przez znaki graficzne (ikony) i ich łączeniu zgodnie z ogólnymi 
zasadami. Zbiór wszystkich modeli jest dostępny po kliknięciu prawym przyciskiem 
myszy na głównym ekranie modelu (rys. B.6). Po dwukrotnym kliknięciu na ikonę 
modelu uzyskuje się dostęp do jego menu w celu edycji parametrów.  

 

Rys. B.6. Menu dostępu do modeli elementów 

Bliższy opis wybranych narzędzi programu ATPDraw oraz sposób tworzenia za-
awansowanych modeli jest pokazany na przykładach w dalszym ciągu niniejszego 
opisu. Należy zaznaczyć, że program ATPDraw jest ciągle rozwijany. Dalsze przykła-
dy zostały wykonane z użyciem wersji v.5.5 tego programu.  



 

DODATEK C.   PRZYKŁADY 

C.1. Tworzenie modułów danych 

C.1.1. Struktura modułu 

Dane wejściowe w programie ATP–EMTP mogą być organizowane w postaci modu-
łów (ang. module) na podobnej zasadzie, jak tworzy się podprogramy w językach pro-
gramowania. Umożliwia to włączanie do zbioru danych do symulacji, wcześniej przy-
gotowanych fragmentów danych (modułów), które mogą być wielokrotnie 
wykorzystane w tym samym zbiorze danych wejściowych, z odpowiednimi parame-
trami.  

Moduł może zawierać wszystkie elementy zbioru danych wejściowych, z wyjąt-
kiem Nagłówka. Zbiór danych modułu przygotowuje się według tych samych zasad, 
jakie obowiązują w odniesieniu do głównego zbioru danych, z tym że w nagłówku 
modułu należy umieścić informację o przekazywanych danych i parametrach (jeśli 
one występują). Zbiór dyskowy z danymi modułu powinien być poddany przetwarza-
niu za pomocą programu ATP–EMTP (przetwarzanie wsadowe), w wyniku którego 
uzyskuje się zbiór wynikowy, nazywany dalej modułem. Przetwarzanie to jest swego 
rodzaju ‘kompilacją’ i polega na tworzeniu zbioru wynikowego modułu, który oprócz 
samego tekstu danych, zawiera także informacje o względnym położeniu poszczegól-
nych danych w tym zbiorze. Taki zbiór wynikowy (moduł) stanowi źródło danych, 
które może być wywoływane w głównym zbiorze danych, z ewentualnym podstawia-
niem aktualnych parametrów wywołania. Stosuje się tutaj zasadę wzorowaną na wy-
woływaniu podprogramów w typowych językach programowania.  

Moduł jest wywoływany w głównym zbiorze danych, za pomocą polecenia 
$INCLUDE o następującej strukturze:  
 
$INCLUDE,<nazwa zbioru modułu>,<przekazywane parametry> 
 

<nazwa zbioru modułu> jest nazwą zbioru dyskowego (wraz ze ścieżką dostępu), 
w którym zapisany został tekst przetworzonego (‘skompilowanego’) zbioru. Zwycza-
jowo, w odniesieniu do tych zbiorów stosuje się rozszerzenie *.lib, chociaż można 
stosować także inne rozszerzenia. W nazwie zbioru można pominąć rozszerzenie (suf-
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fix) oraz ścieżkę dostępu (prefix), jeśli dane te zostaną poprzedzone odpowiednimi 
deklaracjami $SUFFIX oraz $PREFIX. Na przykład treść wywołania: 
 
$INCLUDE, c:\emtp\modul\falownik.pch, WEZEL1, WEZEL2, 35.4 
 

może być skrócona przez deklarację: 
 
$SUFFIX, .pch 
$PREFIX, c:\emtp\modul\ 
… 
$INCLUDE, falownik, WEZEL1, WEZEL2, 35.4 
 
Deklaracja: 
 
$PREFIX, [] 
 

która odnosi się do kartoteki, w której znajduje się przetwarzany zbiór danych. Dekla-
racje $SUFFIX i $PREFIX wygodnie jest umieszczać na samym początku zbioru da-
nych. Wówczas wszystkie stosowane moduły można zgromadzić w jednej kartotece.  

Jeśli treść wywołania nie mieści się w jednym wierszu (do osiemdziesiątej kolum-
ny), to listę danych można kontynuować w następnym wierszu. Na końcu wiersza na-
leży wówczas wstawić znaki: $$, po czym kontynuować dane w nowym wierszu, za-
czynając od trzeciej kolumny:  
 
$INCLUDE,<nazwa zbioru modułu>,<parametry 1>, <parametry 2> $$ 
  <parametry 3> 
 

Przygotowanie modułu sprowadza się do następujących kroków (w nawiasach 
podano przykładowe nazwy zbiorów, które są związane z poszczególnymi krokami):  
1. Przygotowanie tekstowego zbioru danych, dotyczących fragmentu modelu, który 

ma być reprezentowany w postaci modułu (ala.dat). Zbiór ten ma następującą 
strukturę:  

 
BEGIN NEW DATA CASE --NOSORT-- 
DATA BASE MODULE 
$ERASE 
<Dane modułu poprzedzone nagłówkiem, który zawiera informacje o przekazywanych 
parametrach 
...> 
BEGIN NEW DATA CASE 
$PUNCH 
BEGIN NEW DATA CASE 
BLANK 
 

2. W zbiorze tym podane są informacje dla głównego programu ATP o tym, że doty-
czy on modułu danych (DATA BASE MODULE) oraz inne polecenia sterujące. 
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Przy tworzeniu tego zbioru wskazane jest umieszczenie odpowiednich komentarzy, 
które ułatwią późniejsze jego wykorzystanie.  

3. W nagłówku modułu podane są informacje o przekazywanych parametrach (dekla-
racja argumentów). Struktura deklarowanych argumentów modułu opisana jest 
w dalszych przykładach.  

4. Przetwarzanie zbioru danych modułu. Odbywa się to według tych samych zasad, 
co uruchomienie symulacji z podanym zbiorem danych (ala.dat). W rezultacie 
otrzymuje się zbiór wynikowy, który stanowi tekst modułu (ala.pch). 

5. Zwyczajowo, tekst modułu wywoływany w głównym zbiorze danych ma rozsze-
rzenie *lib. Należy więc zmienić nazwę zbioru: ala.pch → ala.lib. Nazwę zbioru 
wynikowego można także określić w poleceniu $PUNCH, na przykład:  

 
$PUNCH, ala.lib. 
 

6. Należy zadbać także o odpowiedni porządek w przechowywaniu gotowych modu-
łów (zachować w odpowiednio nazwanej kartotece).  

7. Nagłówek modułu zawiera deklaracje argumentów o następującej strukturze: 
ARG, <lista nazw węzłów lub/i nazw zmiennych liczbowych, 
      oddzielonych przecinkami> 
NUM, <lista zmiennych liczbowych, oddzielonych przecinkami> 
DEP, <lista zmiennych, których wartości będą obliczane> 
     <formuła obliczania zgodnie z zasadami języka FORTRAN > 
     <oddzielnie dla każdej zmiennej z listy DEP > 
DUM, <lista nazw węzłów, którym będą przydzielone nazwy fikcyjne> 

8. Wszystkie zadeklarowane argumenty muszą wystąpić w dalszej części modułu. 
W pierwszym wierszu, po słowie ARG, wymieniane są wszystkie zmienne (nazwy 
węzłów oraz zmienne liczbowe), których aktualne wartości, w tej samej kolejności, 
wystąpią w wywołaniu $INCLUDE.  

9. Zmienne, które odnoszą się do wielkości numerycznych, muszą być następnie po-
wtórzone w deklaracji NUM – w wywołaniu $INCLUDE będą im odpowiadały 
konkretne wartości liczbowe. Pozostałe zmienne z deklaracji ARG odnoszą się do 
nazw węzłów – odpowiadają im w wywołaniu $INCLUDE aktualne nazwy wę-
złów. W przypadku sieci trójfazowej wygodnie jest stosować pięciopozycyjne na-
zwy węzłów z pozostawieniem szóstej pozycji  na nazwę fazy: A, B lub C. Nazwa 
węzła w deklaracji ARG ogranicza się wówczas do pierwszych pięciu znaków.  

10. Deklaracja DEP pozwala obliczać wartości wybranych argumentów liczbowych na 
podstawie przekazywanych danych, umieszczonych w zbiorze ARG i NUM. Bez-
pośrednio po tej deklaracji należy umieścić odpowiednie formuły matematyczne 
(zgodnie z regułami FORTRANu), które określają sposób obliczania zmiennych 
zadeklarowanych w zbiorze DEP. Zmienne te muszą następnie wystąpić jako pa-
rametry w danych modułu.  
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11. W deklaracji DUM należy wymienić te węzły (przez ich nazwy lokalne), których 
nazwy są określane automatycznie podczas uruchamiania programu. Zasada ta za-
pobiega użyciu tej samej nazwy dla różnych węzłów.  
W module mogą się znaleźć dowolne fragmenty modelu, dotyczące różnych kate-

gorii danych (gałęzi, źródeł, wyłączników, bloku sterowania i innych). W takim wy-
padku należy wybrać strukturę zbioru o dowolnym porządku (z kartami sortującymi). 
Karty sortujące należy wówczas stosować także w zbiorze danych modułu.  

C.1.2. Tworzenie modułów w trybie wsadowym 

Przygotowany tekst modułu w zbiorze dyskowym powinien być przetworzony za po-
mocą programu ATP–EMTP przed jego użyciem w procesie symulacji. Przetwarzanie 
to należy przeprowadzić w trybie wsadowym (ang. batch), korzystając z programu 
runtpwd.bat. Poniższy przykład ilustruje podstawowe zasady tworzenia i wykorzysta-
nia modułów. Wszystkie zbiory znajdują się w kartotece27: przykład_C1_1.  

Przykład C.1.1.  Przygotować model fragmentu sieci trójfazowej 110kV z linią reprezen-
towaną za pomocą dwóch odcinków RL z wzajemnym sprzężeniem (mo-
del 51). Schemat sieci jest pokazany na rys. C.1. Zbadać przebieg prądów 
podczas zwarcia doziemnego fazy L2 w węźle LINB_. Model zwarcia 
w postaci szeregowo połączonej rezystancji z wyłącznikiem przedstawić 
w oddzielnym module danych. Opracować także moduł reprezentujący 
model źródła zasilania z impedancją. 

ZS S1 S2
US

ZL1 ZL2

ZS LINA_ LINB_ LINC_

 

Rys. C.1. Schemat rozpatrywanej sieci 

Parametry sieci: 
115=SU  kV o90∠ , 0,453,40 j+=SZ  Ω, 0,285,21 j+=SZ  Ω, 0,20,41 j+=S  MV⋅A 

0,40,72 j+=S  MV⋅A (oba obciążenia są reprezentowane w postaci schematu RL połączonego 
w gwiazdę z uziemieniami punktów neutralnych: 5,21 =NR  Ω oraz 5,12 =NR  Ω; odcinki linii: 
LINA_–LINB_: 90,345,010 j+=LZ Ω, 80,231,011 j+=LZ Ω, 
LINB_–LINC_: 50,463,020 j+=LZ Ω, 40,348,021 j+=LZ Ω. 

 
27 Dostępna na stronie internetowej: http://www.rose.pwr.wroc.pl/przyklady_D/.  
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Zwarcie jest reprezentowane za pomocą wyłącznika z szeregowo połączoną rezystancją o war-
tości Rz = 0,1 Ω. Moment zwarcia: tz = 0,04 s, licząc od początku symulacji. 
Impedancje reprezentujące obciążenia (połączenie w gwiazdę) obliczane są według zależności: 

S
UZ r

2

= , 

co daje: 118624321 j+=Z  Ω, 71913442 j+=Z  Ω. 
Zaczniemy od utworzenia modułu reprezentującego model zwarcia (rys. C.2a). Przyjęto, że 
nazwa węzła wewnętrznego pomiędzy opornikiem a wyłącznikiem jest nieistotna (nie będzie 
dalej używana) i dlatego jest ona wskazana w deklaracji DUM.  

Rz

ZSα∠SU

o120−∠α
o240−∠α

DUMMY

WEZELA

WEZELB

WEZELC

a) b)WEZEL1

WEZEL2

DUMMY

 

Rys. C.2. Schematy zastępcze: a) modelu zwarcia oraz b) źródła napięcia trójfazowego 

Tekst modułu jest zapisany w zbiorze zwarcie1.dat. Jest on następujący.  
 
BEGIN NEW DATA CASE             -- NOSORT --- 
C     Moduł reprezentujący obwód zwarciowy: opornik + wyłącznik 
DATA BASE MODULE 
$ERASE 
C 
ARG, WEZEL1, WEZEL2, RZWARC,          {wykaz wszystkich argumentów 
ARG,__TZWARCIA, ___TWYLACZ, K         {oprócz fikcyjnych 
NUM,RZWARC, __TZWARCIA, ___TWYLACZ,K  {argumenty numeryczne 
DUM, __WWYL                           {fikcyjne argumenty - muszą być po ARG 
C model zwarcia 
/BRANCH 
C <BUSF><BUST>            <  R ><  L ><  C > 
  WEZEL1__WWYL            RZWARC 
/SWITCH 
C <BUSF><BUST>< TCLOSE >< TOPEN  ><CURR. M.><OV.SL.SP>< SPES.K.><BUS5><BUS6><> 
C wyłącznik zwarcia 
  __WWYLWEZEL2__TZWARCIA___TWYLACZ                                             K 
C  
BEGIN NEW DATA CASE 
C 
$PUNCH, zwarcie1.lib 
BEGIN NEW DATA CASE 
BLANK 
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Do modułu jest przekazywanych siedem argumentów, przy czym dwa pierwsze związane są 
z nazwami węzłów zewnętrznych modelu zwarcia (WEZEL1 oraz WEZEL2), a pozostałe są 
argumentami liczbowymi, odnoszącymi się do: rezystancji zwarcia (RZWARC), momentu wy-
stąpienia zwarcia (__TZWARCIA) i jego wyłączenia (___TWYLACZ). Wskaźnik K może 
przyjmować wartości całkowite z zakresu (0–4), które służą do określenia parametru mierzo-
nego na wyłączniku (K = 0 – bez pomiaru, K = 1 – pomiar prądu itd.). W deklaracji DUM 
wymieniona jest nazwa węzła __WWYL (na rys. C.2a odpowiada mu DUMMY), która zostaje 
automatycznie zdefiniowana przed uruchomieniem symulacji.  
W poleceniu $PUNCH została określona nazwa zbioru wyjściowego, który zostaje określony 
w rezultacie przetwarzania tego zbioru w programie ATP–EMTP.  
Moduł przedstawiający model trójfazowego źródła z impedancją wewnętrzną został opracowa-
ny na postawie schematu zastępczego z rys. C.2b. Tekst zapisany w zbiorze dyskowym zrod-
lo3.dat jest następujący:  
 
BEGIN NEW DATA CASE             -- NOSORT --- 
C     Moduł reprezentujący źródło 3-fazowe (typ 14) + impedancja (typ 51) 
DATA BASE MODULE 
$ERASE 
C 
ARG, WEZEL, NAPSKUTECZ, __CZESTOTL, ____FAZA_A, ___TZSTART, 
ARG, __RS_0, __XS_0, __RS_1, __XS_1 
NUM, NAPSKUTECZ, __CZESTOTL, ____FAZA_A, ___TZSTART, 
NUM, __RS_0, __XS_0, __RS_1, __XS_1 
DEP, _AMPLITUDA, ____FAZA_B, ____FAZA_C 
C                = 
      _AMPLITUDA =  NAPSKUTECZ*SQRT(2.0/3.0) 
      ____FAZA_B =  ____FAZA_A - 120. {przesuniecie o 120 stopni 
      ____FAZA_C =  ____FAZA_A - 240. {przesuniecie o 240 stopni 
DUM, NZRODA, NZRODB, NZRODC           {DUM musi byc na koncu 
/BRANCH 
C <BUSF><BUST>            <  R ><  L ><  C > 
C ------------ Impedancja ekwiwalentnego źródła 110kV ------------- 
51NZRODAWEZELA            __RS_0__XS_0       { Ro, Lo [ohm] } 
52NZRODBWEZELB            __RS_1__XS_1       { R1, L1 [ohm] } 
53NZRODCWEZELC 
C  
/SOURCE 
C --------------------- 3-fazowe źródło ---------------------- 
C <NODE><><AMPLITUD><FREKVENS><T0/I0/BE><   A1   ><   T1   >< START  >< STOP   > 
C  
14NZRODA  _AMPLITUDA__CZESTOTL____FAZA_A                    ___TZSTART           
14NZRODB  _AMPLITUDA__CZESTOTL____FAZA_B                    ___TZSTART           
14NZRODC  _AMPLITUDA__CZESTOTL____FAZA_C                    ___TZSTART           
C 
BEGIN NEW DATA CASE 
C 
$PUNCH 
BEGIN NEW DATA CASE 
BLANK 
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W zbiorze argumentów podana jest nazwa węzła trójfazowego (WEZEL), która dotyczy trzech 
faz: WEZELA, WEZELB oraz WEZELC. Te nazwy są rozszerzane przed rozpoczęciem symu-
lacji (przybierają one znaczenie aktualnej nazwy z wywołania $INCLUDE). Pozostałe parame-
try odnoszą się do wielkości liczbowych. Warto zauważyć, że długości ich nazw odpowiadają 
długościom odpowiednich pól liczbowych w formacie danych.  
Trzy zmienne liczbowe: _AMPLITUDA, ____FAZA_B, ____FAZA_C są wymienione w de-
klaracji DEP, co oznacza, że należy je określić za pomocą wyrażeń w języku FORTRAN, bez-
pośrednio po tej deklaracji. Widać, że wielkości te odnoszą się do amplitudy źródła kosinuso-
idalnego (typ 14) – wartość ta jest obliczana na podstawie przekazywanej wartości skutecznej 
napięcia międzyfazowego oraz początkowych kątów sygnałów w fazach B oraz C.  
W deklaracji DUM określane są także węzły, których nazwy są przyporządkowywane automa-
tycznie – deklaracja dotyczy węzłów w trzech fazach.  
Przetwarzanie obu wymienionych zbiorów z tekstami modułów można przeprowadzić za po-
mocą trybu wsadowego określonego przez zbiór runtpwd.bat jako jego parametr, na przykład:  
Runtpwd.bat  zrodlo3.dat 
Uzyskany zbiór wynikowy przedstawia moduł, który można wykorzystać w głównym zbiorze 
danych do symulacji. W rozpatrywanym przykładzie zbiór ten nazywa się: modul1.dat.  
 
BEGIN NEW DATA CASE 
C *************************************************************************** 
C * Przykład wykorzystania modułu                                           * 
C * Sieć 110kV                                                              * 
C *************************************************************************** 
C 
C  DT  >< TMAX >< XOPT >< COPT > 
 2.0E-05 1.2E-01     50.      0. 
C IOUT >< IPLOT><IDOUBL><KSSOUT><MAXOUT>< IPUN ><MEMSAV>< ICAT ><NENERG><IPRSUP> 
     500       5       0       0       0       0       0       1 
C ----------------------------------------------------------------------------- 
$INCLUDE, zrodlo3.lib, ZS___, 115000., 50., 90., -1., 4.3, 45., 2.5, 28. 
/SWITCH 
C ---------------------   wyłączniki linii   ---------------------- 
C <BUSF><BUST>< TCLOSE >< TOPEN  ><CURR. M.><OV.SL.SP>< SPES.K.><BUS5><BUS6><> 
  ZS___ALINA_A        -1      99.0                                             1 
  ZS___BLINA_B        -1      99.0                                             1 
  ZS___CLINA_C        -1      99.0                                             1 
/BRANCH 
C 
C <BUSF><BUST>            <  R ><  L ><  C > 
C ------------ pierwszy odcinek linii ------------- 
51LINA_ALINB_A              0.45   3.9       { Ro, Lo [ohm] } 
52LINA_BLINB_B              0.31   2.8       { R1, L1 [ohm] } 
53LINA_CLINB_C 
C obciążenie w LINB_: połączenie Y z rezystancją w punkcie neutralnym 
  LINB_ALINB_N             2432. 1186. 
  LINB_BLINB_N             2432. 1186. 
  LINB_CLINB_N             2432. 1186. 
  LINB_N                     2.5 
C ------------- drugi odcinek linii --------------- 
51LINB_ALINC_A              0.63   4.5       { Ro, Lo [ohm] } 
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52LINB_BLINC_B              0.48   3.4       { R1, L1 [ohm] } 
53LINB_CLINC_C 
C obciążenie w LINC_: połączenie Y z rezystancją w punkcie neutralnym 
  LINC_ALINC_N             1344.  719. 
  LINC_BLINC_N             1344.  719. 
  LINC_CLINC_N             1344.  719. 
  LINC_N                     1.5 
C 
$INCLUDE, zwarcie1.lib, LINB_B, ######, 0.1, 0.04, 1.0,1 
/OUTPUT 
C REQUEST FOR OUTPUT OF NODE VOTAGES 
C <BUSN><BUSO><BUSP><BUSQ><BUSR><BUSS><BUST><BUSU><BUSV><BUSW><BUSX><BUSY><BUSZ> 
  ZS___AZS___BZS___C 
C 
BLANK BRANCH 
BLANK SWITCH 
BLANK SOURCE 
BLANK OUTPUT 
BEGIN NEW DATA CASE 
BLANK 
 

W zbiorze danych umieszczone są dwa odwołania $INCLUDE z odpowiednimi parametrami. 
Zamieszczone komentarze wyjaśniają poszczególne elementy danych.  

Warto zauważyć, że przekazywanie argumentów z głównego zbioru danych do 
modułu odbywa się na zasadzie podstawiania zmiennych ze zbioru wywołującego 
(głównego) pod zmienne lokalne, wewnątrz modułu. W celu uniknięcia niejedno-
znaczności co do nazwy węzłów oraz wartości zmiennych numerycznych, pracując 
z modułami danych należy przestrzegać następujących zasad:  
1. Unikać nazw krótszych, niż przewiduje to długość odpowiedniego pola danych (na 

przykład, nazwy węzłów mają sześć znaków). Jeśli stosuje się krótszą nazwę, to 
można ją uzupełnić do wymaganej długości znakami ‘_’. W deklaracji wywołania 
$INCLUDE krótsze nazwy można uzupełnić znakami ‘#’, które w momencie pod-
stawiania zamieniane są na spacje (węzeł odpowiadający ziemi – jako pusta nazwa 
– jest deklarowany podczas wywołania w postaci ciągu sześciu takich znaków: 
‘######’). Wygodnie jest przyjąć zasadę wyrównywania nazw do lewej strony (do 
początku pola), gdyż taka zasada jest stosowana w programie ATPDraw (patrz po-
niżej).  

2. Dane liczbowe zmiennoprzecinkowe należy zaopatrywać w kropkę dziesiętną, na 
przykład: 1.2E-3, .897, 0.012.   

3. Przestrzegać podanej powyżej kolejności deklaracji argumentów. Informacje 
o błędach związanych z używaniem modułów są bardzo oszczędne i trudno na ich 
podstawie zidentyfikować ich źródło.  

4. W zbiorach danych z modułami należy stosować strukturę danych z kartami sortu-
jącymi (/BRANCH, /SWITCH, itp.).  
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5. Nie należy redagować zbiorów danych z gotowymi (skompilowanymi) modułami, 
gdyż podczas ich czytania procedura interpretująca odwołuje się do ustalonych 
miejsc położenia poszczególnych wierszy i kolumn tekstu, a każda edycja zmienia 
ich rozmieszczenie.  

6. Moduły mogą być zagnieżdżane, to znaczy, że z modułu może być wywoływany 
inny moduł.  

C.1.3. Tworzenie modułów w edytorze graficznym ATPDraw 

Modele elementów w postaci modułów mogą być także tworzone za pomocą odpo-
wiednich funkcji edytora graficznego ATPDraw. Samodzielne opracowanie takich 
bloków wymaga zaawansowanej znajomości tego edytora, co będzie pokazane w dal-
szej części opisu. W kolejnym przykładzie pokazano natomiast wykorzystanie stan-
dardowego bloku LCC. Wszystkie zbiory znajdują się w kartotece przykład_C1_2.  

Przykład C.1.2.  Za pomocą edytora graficznego ATPDraw opracować model fragmentu 
układu przesyłowego 400 kV z linią o długości 180 km, której parametry 
elektryczne są obliczane na podstawie wymiarów geometrycznych i fi-
zycznych parametrów użytych materiałów. Parametry linii są takie same 
jak w przykładzie 4.1. Przeprowadzić analizę stanu przejściowego zwią-
zanego z ładowaniem nieobciążonej linii po podaniu napięcia.  

Schemat modelu ATPDraw tej sieci jest pokazany na rys. C.3. Impedancja zasilającego źródła 
jest reprezentowana za pomocą modelu sprzężonej linii z elementami RL (RL_Coupled_51) 
o następujących parametrach:  

0,347,20 j+=SZ  Ω, 0,258,11 j+=SZ  Ω. 

I

LIN_1 LIN_2

LCC VV

 

Rys. C.3. Schemat graficzny modelu rozważanej sieci 

Linia jest reprezentowana za pomocą bloku LCC, w którym samoczynnie jest tworzony moduł 
z parametrami elektrycznymi linii długiej na podstawie jej wymiarów geometrycznych. W me-
nu bloku LCC należy podać dane ogólne (rys. C.4) oraz szczegółowe dane geometryczne i ma-
teriałowe (rys. C.5). Podobnie jak w przykładzie 4.1, wybrano model Bergerona, przy założe-
niu, że jest to linia transponowana (model Clarke). Oprócz przewodów fazowych występują 
również dwa przewody odgromowe.  
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Rys. C.4. Menu bloku LCC: ustawienie ogólnych parametrów 

Po zamknięciu menu bloku (przycisk OK) generowane są zbiory z wynikami obliczeń dotyczą-
cych modułu rozpatrywanej linii. Zbiór LCC_1.pch (LCC_1 – nazwa modułu) zawiera 
następujący tekst:  
 
C  <++++++>  Cards punched by support routine on  18-Jun-08  16.02.08  <++++++> 
C    **** TRANSPOSED  Line calculated at   5.000E+01 HZ. **** 
C LINE CONSTANTS 
C $ERASE 
C BRANCH  IN___AOUT__AIN___BOUT__BIN___COUT__C 
C METRIC 
C   10.231  0.0564 4            3.15   -10.3    24.5     12.     40.   0.0 
C   20.231  0.0564 4            3.15     0.0    24.5     12.     40.   0.0 
C   30.231  0.0564 4            3.15    10.3    24.5     12.     40.   0.0 
C   0  0.5  0.2388 4           1.565   -6.87     31.    23.5     0.0   0.0 
C   0  0.5  0.2388 4           1.565    6.87     31.    23.5     0.0   0.0 
C BLANK CARD ENDING CONDUCTOR CARDS 
C     100.       50.                              180.     1 
$VINTAGE, 1 
-1IN___AOUT__A             1.71108E-01 6.84052E+02 1.89142E+05 1.80000E+02 1 
-2IN___BOUT__B             2.84227E-02 3.03458E+02 2.93450E+05 1.80000E+02 1 
-3IN___COUT__C 
$VINTAGE, -1, 
 

W ostatnich czterech wierszach podane są parametry modelu linii.  
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Rys. C.5. Menu bloku LCC: dane szczegółowe 

Zbiór LCC_1.lib zawiera dane modułu reprezentującego model linii. Zbiór ten jest następnie 
dołączany do modelu rozpatrywanej sieci za pomocą dyrektywy $INCLUDE. Zawartość tego 
zbioru jest w tym przypadku następująca:  
 
KARD  3  3  4  4  5  5 
KARG  1  4  2  5  3  6 
KBEG  3  9  3  9  3  9 
KEND  8 14  8 14  8 14 
KTEX  1  1  1  1  1  1 
/BRANCH 
$VINTAGE, 1                                                                       
-1IN___AOUT__A             1.71108E-01 6.84052E+02 1.89142E+05 1.80000E+02 1    
-2IN___BOUT__B             2.84227E-02 3.03458E+02 2.93450E+05 1.80000E+02 1    
-3IN___COUT__C                                                                  
$VINTAGE, -1,                                                                     
$EOF 
ARG, IN___A, IN___B, IN___C, OUT__A, OUT__B, OUT__C 
 

Parametrami wejściowymi są nazwy trójfazowych węzłów na początku i na końcu linii (ostatni 
wiersz w powyższym zbiorze).  
Przebiegi prądu i napięcia w fazie A, towarzyszące załączeniu nieobciążonej linii, są pokazane 
na rys. C.6. Widoczne są charakterystyczne oscylacje, które z czasem zanikają, co prowadzi do 
ustalenia się sinusoidalnych przebiegów o częstotliwości zasilającego napięcia.  
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Rys. C.6. Przebiegi towarzyszące załączeniu linii: a) napięcia (linia ciągła – na początku,  
przerywana – na końcu linii), oraz b) prąd ładowania linii  

C.1.4. Zastosowanie modułów w edytorze graficznym ATPDraw 

Aby zastosować moduł w edytorze graficznym ATPDraw, należy utworzyć odpo-
wiedni element graficzny i skojarzyć z nim zbiór dyskowy z danymi reprezentującymi 
moduł (sposób tworzenia takiego zbioru w trybie wsadowym został przedstawiony 
w przykładzie C.1.2). W pierwszym kroku należy zatem utworzyć odpowiedni moduł 
danych.  

Element graficzny, odpowiadający przygotowywanemu modułowi, tworzy się, ko-
rzystając z polecenia:  

Objects – User Specified – New sup-file 
Utworzony już element można poprawiać za pomocą polecenia: 

Objects – User Specified – Edit sup-file 
Po wybraniu pierwszego z tych poleceń ukazuje się okno dialogowe, jak na rys. C.7.  
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Rys. C.7. Okno wyboru: New sup file  

Korzystając z poleceń związanych z tym oknem należy utworzyć znak graficzny 
elementu (edytor graficzny jest dostępny po wybraniu przycisku z pędzlem), zdefi-
niować przekazywane argumenty liczbowe (polecenie Data) oraz określić nazwy wę-
złów (polecenie Nodes). Liczba i nazwy tych argumentów powinny pokrywać się 
z odpowiednimi danymi wyszczególnionymi w polach ARG oraz NUM nagłówka 
modułu. Liczbę argumentów numerycznych i węzłów ustala się w polu Num.data oraz 
Num.nodes, odpowiednio. Utworzony zbiór dyskowy, ze zdefiniowaną ikoną i odpo-
wiednimi argumentami, należy zapisać w wybranej kartotece na dysku. Domyślnie, 
zbiór ten ma rozszerzenie *.sup (support file) i jest zachowywany w kartotece 
\ATPDraw\Usp\. Przydzielana nazwa zbioru, a także odpowiedni znak graficzny, po-
winny ułatwić identyfikację tworzonego modułu.  

Utworzona w ten sposób ikona reprezentuje moduł danych, który może być wyko-
rzystany podczas tworzenia schematu analizowanego modelu. Należy go wprowadzić 
na pulpit edytora tworzonego modelu w podobny sposób, jak inne elementy:  
<prawy przycisk myszy –User Specified–Files – wybór odpowiedniego zbioru *.sup>.  

Związane z ikoną wyprowadzenia (nóżki) można połączyć na pulpicie z innymi 
elementami modelu. Parametry modułu można wprowadzić również w sposób stan-
dardowy: po dwukrotnym kliknięciu na nim myszą otworzy się okno parametrów, któ-
re należy zredagować (rys. C.8). W przypadku modułu ważne są następujące dane:  
1. W polu $Include należy wpisać nazwę (wraz ze ścieżką dostępu) zbioru dyskowe-

go, w którym znajduje się wcześniej utworzony moduł (domyślne rozszerzenie 
*.lib). 

2. Gdy do modułu są przekazywane parametry liczbowe, należy zaznaczyć pole wy-
boru Send parameters. Jeśli ponadto w module znajdują się węzły trójfazowe, 
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w których nazwy faz są automatycznie rozszerzane na podstawie nazwy węzła 
(przez dodanie na końcu nazwy liter A, B, C), to także należy zaznaczyć pole In-
ternal phase seq.  

Szczegóły tworzenia odpowiednich elementów graficznych są podane w przykładzie 
C.1.3. Wszystkie składowe zbiory znajdują się w kartotece przykład_C1_3.  

 

Rys. C.8. Okno parametrów tworzonego modułu 

Przykład C.1.3.  Model przedstawiony w przykładzie C.1.1 przetworzyć za pomocą edyto-
ra graficznego ATPDraw do współpracy z innymi obiektami modelu sie-
ci. Opracowane moduły skojarzyć z odpowiednimi elementami graficz-
nymi. 

Element graficzny modułu zwarcie1.lib może być redagowany za pomocą polecenia (rys. C.9): 
Objects – User Specified – New sup-file  
Zgodnie z deklaracjami parametrów w czołówce modułu (przykład C.1.1), w poleceniu Data 
określone zostały cztery zmienne liczbowe: RZWARC, __TZWARCIA oraz ___TWYLACZ, 
K, a w poleceniu Nodes – węzły WEZEL1 oraz WEZEL2.  
Znak graficzny (ikona), reprezentujący tworzony moduł, może mieć 12 wyprowadzeń (nóżek), 
służących do połączenia z innymi elementami modelu (rys. C.9). Edycja ikony odbywa się po 
wybraniu jednej z opcji: Bitmap lub Vector, w zależności od przyjętego formatu rysunku: ra-
strowy lub wektorowy. Utworzony znak graficzny jest pokazany na rys. C.10. Węzły zostały 
przyporządkowane odpowiednio do zacisków: 2 oraz 8.  
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Rys. C.9. Okno tworzonego elementu zwarc_AB.sup: przekazywane parametry liczbowe  
i nazwy węzłów są przyporządkowane do zacisków elementu graficznego 

 

Rys. C.10. Okno edytora graficznego 
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W podobny sposób tworzony jest element graficzny odpowiadający modułowi zrodlo3.lib. 
Okno dialogowe związane z tworzeniem tego modułu jest pokazane na rys. C.11. Tym razem 
do modułu jest przekazywanych osiem parametrów liczbowych oraz jedna nazwa węzła (jest to 
węzeł trójfazowy). Na rysunku widoczny jest także zaproponowany znak graficzny.  

 

Rys. C.11. Okno tworzonego modułu zrodlo3 

Mając przygotowane elementy graficzne związane z modułami odpowiadającymi zwarciu 
(zbiór zwarc_AB.sup) oraz 3-fazowemu źródłu (zbiór zrodlo3.sup), można przystąpić do two-
rzenia modelu sieci z przykładu C.1.1. Jej schemat jest pokazany na rys. C.12. 

V I

 

Rys. C.12. Schemat analizowanego modelu w edytorze ATPDraw 
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Utworzone elementy graficzne są połączone z odpowiednimi węzłami sieci. W trakcie zada-
wania parametrów dla tych elementów należy wprowadzić także dane wskazujące na użyty 
zbiór *.sup oraz sposób przekazywania parametrów.  
W przypadku elementu zwarc_AB, w polu $Include należy wpisać nazwę zbioru z modułem 
(zwarc_AB.lib) wraz z odpowiednią ścieżką dostępu oraz zaznaczyć pole Send parameters 
(rys. C.8). W przypadku elementu zwarcie3 należy także zaznaczyć pole Internal phase seq., 
gdyż przekazywana jest pięciopozycyjna nazwa węzła 3-fazowego, która wewnątrz modułu 
jest rozszerzana na nazwy poszczególnych faz, przez dodanie liter A, B, C.  
Przed uruchomieniem symulacji należy jeszcze określić jej parametry: krok symulacji del-
ta_T=2.E-5, czas symulacji Tmax=.12 oraz parametry: Xopt=50., Copt=0. Odbywa się to za 
pomocą polecenia:  
ATP – Settings 
Ostatecznie symulację można uruchomić, wybierając polecenie: ATP – Run ATP.  

C.2. Transformator trójfazowy do symulacji zwarć wewnętrznych  

Następny przykład przedstawia sposób tworzenia uniwersalnego modelu dwuuzwoje-
niowego, trójfazowego transformatora, który pozwala analizować zwarcia wewnętrz-
ne. Uniwersalność modelu polega na tym, że sposób połączenia uzwojeń nie jest zde-
finiowany i może być określony przez użytkownika na zewnątrz utworzonego 
modułu. Wszystkie składowe zbiory znajdują się w kartotece przykład_C2.  

Przykład C.2.  Utworzyć model dwuuzwojeniowego, trójfazowego transformatora. Mo-
del powinien zapewnić symulację zwarć wewnętrznych oraz zadawanie 
wartości początkowych indukcji w poszczególnych fazach. Użytkownik 
powinien mieć ponadto możliwość określenia sposobu połączenia uzwo-
jeń transformatora. 

Do tworzenia modelu wykorzystano sposób symulacji zwarć wewnętrznych w transformatorze, 
przedstawiony w p. 5.3.7 (rys. 5.31). Modele gałęzi poprzecznych umieszczono wewnątrz 
uzwojeń odpowiednich faz (rys. C.13), przy czym model gałęzi magnesowania jest dołączony 
oddzielnie, poza modelem transformatora. Oznaczenia na rysunku C.13 odpowiadają nazwom 
zmiennych w tekście zbioru dyskowego traf3_12.dat, definiującego następujący moduł.  
 
BEGIN NEW DATA CASE         ----- NOSORT ----- 
C  
C *************************************************************************** 
C * Moduł: 
C *   Transformator 3_fazowy dwuuzwojeniowy z dzielonym uzwojeniem wtórnym  * 
C *                                                                         * 
C *************************************************************************** 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C 
DATA BASE MODULE 
$ERASE 
ARG, __P1_, __P2_, __S1_, __S2_, __SD_, _TOP_, 
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ARG, __Rmag, ____Rp, ____Lp, ___Vrp, ____Rs, ____Ls, ___Vrs, K_proc 
NUM, __Rmag, ____Rp, ____Lp, ___Vrp, ____Rs, ____Ls, ___Vrs, K_proc 
DEP, VWIN2A, VWIN2B, RWIN2A, RWIN2B, LWIN2A, LWIN2B 
C  
      VWIN2A =  K_proc*___Vrs/100.0 
      VWIN2B =  ___Vrs-VWIN2A  
      RWIN2A =  K_proc*____Rs/100.0 
      RWIN2B =  ____Rs-RWIN2A 
      LWIN2A =  ____Ls*VWIN2A**2/(___Vrs**2-2*VWIN2A**2) 
      LWIN2B =  ____Ls-LWIN2A 
DUM, RTop_A, RTop_B, RTop_C 
C K_proc jest procentowym udziałem napięcia VWIN2A w napięciu wtórnym Vrs, [%] 
/BRANCH 
C                         <-I--><Flux><Name><Rmag> 
  TRANSFORMER                         RTop_A__Rmag 
            9999 
C                         RRRRRRLLLLLLUUUUUU 
 1__P1_A__P2_A            ____Rp____Lp___Vrp 
 2__S1_A__SD_A            RWIN2ALWIN2AVWIN2A 
 3__SD_A__S2_A            RWIN2BLWIN2BVWIN2B 
  TRANSFORMER RTop_A                  RTop_B 
 1__P1_B__P2_B 
 2__S1_B__SD_B 
 3__SD_B__S2_B 
  TRANSFORMER RTop_A                  RTop_C 
 1__P1_C__P2_C 
 2__S1_C__SD_C 
 3__SD_C__S2_C 
C 
  RTop_A__P2_A            1.E10 
  RTop_A_TOP_A            1.E-5 
  RTop_B__P2_BRTop_A__P2_A 
  RTop_B_TOP_BRTop_A_TOP_A 
  RTop_C__P2_CRTop_A__P2_A 
  RTop_C_TOP_CRTop_A_TOP_A 
C  
BEGIN NEW DATA CASE 
$PUNCH, traf3_12.lib 
BEGIN NEW DATA CASE 
BLANK    
BEGIN NEW DATA CASE        
 

W bloku DEP obliczane są parametry dzielonego uzwojenia wtórnego (S) na podstawie danych 
dla całego uzwojenia. Danymi wejściowymi są: napięcie uzwojenia (Vrs), rezystancja (Rs), in-
dukcyjność (Ls) oraz współczynnik podziału (K_proc), który określa stosunek napięcia (liczby 
zwojów) w górnej części uzwojenia do napięcia (liczby zwojów) całego uzwojenia. Rezystan-
cja jest dzielona proporcjonalnie do liczby zwojów, natomiast indukcyjność – proporcjonalnie 
do kwadratu liczby zwojów.  
Gałęzie poprzeczne są umieszczane po stronie pierwotnej (P) każdego uzwojenia na zewnątrz 
modułu. Wewnątrz modułu umieszczono dodatkowe rezystancje o wartościach 1,0E10 Ω oraz 
1,0E–5 Ω. Gałęzie te należy umieścić pomiędzy węzłami _TOP_A – __P2_A, podobnie w in-
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nych fazach. Wszystkie węzły zewnętrzne modułu są trójfazowe: wyszczególnienie faz nastę-
puje automatycznie przez dodanie do pięcioliterowej nazwy węzła litery A, B lub C.  
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Rys. C.13. Schemat modelu transformatora 

Gałęzie poprzeczne w modelu transformatora są reprezentowane za pomocą trzech elementów 
NLIN98_I (pseudonieliniowa indukcyjność TYP98 z możliwością zadawania wartości począt-
kowej indukcji), które tworzą grupę trójfazową, rys. C.14, o symbolu przedstawionym z prawej 
strony rysunku.  

 

Rys. C.14. Schemat grupy elementów NLIN98_I 
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Sposób wykorzystania omawianego modelu transformatora jest pokazany na rys. C.15. Główna 
część modelu transformatora jest reprezentowana za pomocą elementu z sześcioma nóżkami 
trójfazowymi: dwie związane z uzwojeniem strony pierwotnej, jedna do przyłączenia gałęzi 
poprzecznej (drugi zacisk tej gałęzi jest połączony z końcem uzwojenia pierwotnego) oraz trzy 
wyprowadzenia związane z uzwojeniem strony wtórnej (patrz rys. C.13). W modelu został za-
stosowany transformator Yd11 15,75/250 kV o mocy 240 MVA. Uzwojenie połączone w trój-
kąt (strona pierwotna modelu) jest związane z systemem niskiego napięcia, natomiast uzwoje-
nie Y – z systemem wysokiego napięcia.  
Dane transformatora:  

rS = 240 MVA, rU = 250/15,75 kV, rI = 554/8800 A, CuP∆ = 804,9 kW, FeP∆ = 175,6 kW, 

0i = 0,5 %. 

 

Rys. C.15. Schemat modelu rozpatrywanej sieci 

Okno dialogowe do wprowadzania parametrów transformatora jest pokazane na rys. C.16. Od-
powiada mu zbiór dyskowy traf3_12.sup, który powstał podczas tworzenia nowego elementu 
programu ATPDraw. Wprowadzane tam parametry są przekazywane następnie do modułu 
traf3_12.dat.  
Punkt neutralny strony Y transformatora (rys. C.15) jest uziemiony poprzez rezystancję 0,5 Ω. 
Na schemacie widoczny jest w tym obwodzie także trójfazowy element RLC, w którym ak-
tywna jest tylko rezystancja o bardzo małej wartości. Jest to niezbędne w celu połączenia 
trzech uzwojeń fazowych w jeden punkt neutralny.  
Podobną rolę pełnią także rezystancje łączące uzwojenia pierwotne transformatora w trójkąt. 
Po obu stronach transformatora znajdują się również elementy RLC, za pomocą których od-
wzorowane są pojemności doziemne sieci. W przypadku testów z otwartym wyłącznikiem po 
niskiej stronie transformatora pojemności te zapewniają także połączenie izolowanej sieci 
z ziemią. Jest to niezbędne dla stabilizacji numerycznej modelu (w przypadku pominięcia tych 
elementów program doda je automatycznie, przed rozpoczęciem symulacji).  
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Rys. C.16. Okno edycyjne parametrów transformatora 

Równolegle z obu wyłącznikami trójfazowymi umieszczono trójfazowe elementy LINE RL, 
w których zadane zostały duże wartości parametrów (1,0E5 Ω). One także pełnią funkcję stabili-
zacji numerycznej w razie otwarcia wyłączników: zachowana zostaje spójność całego modelu, 
a prądy płynące przez te elementy są pomijalnie małe. Warto zauważyć, że duża impedancja 
umieszczona równolegle z wyłącznikiem w przybliżeniu odwzorowuje fakt, że w rzeczywistych 
wyłącznikach prąd nie jest przerywany natychmiast, lecz zanika wraz z gaśnięciem powstałego 
łuku elektrycznego (przy założeniu, że obwód ma charakter indukcyjny). Zjawisko to nie jest tu 
jednak przedmiotem analizy.  
W modelu umieszczono także jednofazowy miernik mocy (P, Q, S), którego wskazania (w po-
staci danych w zbiorze wyjściowym *.PL4) ułatwiają zmianę warunków początkowych (kieru-
nek przepływu i wartość mocy) sieci. Moduł został napisany w postaci programu w języku 
MODELS. Z tym elementem związane są dwa zbiory dyskowe: PQ_1.sup oraz PQ_1.mod.  
Na rysunku C.17 pokazane są prądy fazowe po niskiej stronie transformatora, po jego załącze-
niu, przy braku obciążenia. Test ten odpowiada sytuacji, gdy wyłącznik od strony źródła U2 
jest wyłączony, natomiast wyłącznik od strony źródła U1, zostaje załączony w czasie t = 0. In-
dukcje początkowe w rdzeniach: ψA = 25 Vs, ψB = 25 Vs, ψC = –50 Vs. Widać charakterystycz-
ne przebiegi prądów magnesujących. Należy zauważyć, że efekt indukcji początkowej widocz-
ny jest w prądach odpowiednich uzwojeń, natomiast na rysunku pokazane są przebiegi prądów 
fazowych. W przypadku strony ∆ transformatora wartości prądów fazowych wynikają z sumy 
odpowiednich prądów związanych z uzwojeniami. 
Zwarcie, obejmujące 5% uzwojenia strony Y w fazie C, przeprowadzono w stanie pracy zna-
mionowej transformatora. Przebiegi prądów zmierzonych na wyłączniku strony wysokiego na-
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pięcia są przedstawione na rys. C.18. Pokazany jest tam także prąd w miejscu zwarcia (dziesię-
ciokrotnie zmniejszony).  
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Rys. C.17. Prądy po stronie ∆, po załączeniu nieobciążonego transformatora 
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Rys. C.18. Prądy fazowe na stronie H oraz prąd w miejscu zwarcia (iz) 
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Widać, że prąd zwarcia, obejmujący niewielką liczbę zwojów, jest lokalnie bardzo duży, nato-
miast w tym czasie prąd obserwowany na zewnątrz transformatora uległ nawet zmniejszeniu. 
Nieco inny obraz przebiegu zdarzenia może być obserwowany z drugiej strony transformatora. 
Tym niemniej groźne w skutkach zwarcie wewnętrzne jest trudne do identyfikacji, co jest wa-
runkiem szybkiego wyłączenia uszkodzonego obiektu. 
Przedstawione testy pokazują, że omawiany model transformatora można łatwo wykorzystać 
do badania zjawisk zwarciowych w samym transformatorze oraz w otaczającej sieci. Może być 
on z powodzeniem użyty do badania zabezpieczeń transformatora. Dzięki uniwersalnej struktu-
rze, można łatwo tworzyć modele o różnej konfiguracji połączeń uzwojeń transformatora. Na-
leży jednak pamiętać, że uzwojenie jest dzielone po stronie przeciwnej modelu do miejsca 
umieszczenia gałęzi poprzecznej.  

Szczegółowe parametry przedstawionego modelu sieci wraz z transformatorem 
można znaleźć w zbiorach dyskowych dostępnych na stronie internetowej: 
http://www.rose.pwr.wroc.pl/przyklady_D/.  

C.3. Model analogowego filtru odcinającego 

Pomiar w układzie cyfrowym odbywa się na zasadzie przetwarzania sygnałów wej-
ściowych, które mają postać ciągłą w czasie (sygnały analogowe) i zostały poddane 
próbkowaniu z określoną częstotliwością fp. Zgodnie z twierdzeniem o próbkowaniu 
widmo obserwowanego sygnału ciągłego powinno być ograniczone do częstotliwości 
nieprzekraczającej połowy częstotliwości próbkowania. W przeciwnym razie sygnał 
cyfrowy będzie zakłócony składowymi pochodzącymi z zakresu częstotliwości wyż-
szej niż częstotliwość próbkowania. Składowe te nie będą mogły być usunięte na dro-
dze przetwarzania cyfrowego. Zjawisko to nazywa się nakładaniem się widm [105]. 

W układach wejść analogowych, w celu ograniczenia widma sygnału wejściowego, 
przed układem próbkującym umieszczane są dolnoprzepustowe filtry odcinające. Cha-
rakteryzują się one określoną częstotliwością odcięcia fp (częstotliwość Nyquista) oraz 
stromością charakterystyki w paśmie zaporowym, o czym głównie decyduje rząd 
transmitancji filtru (rys. C.19). Dla częstotliwości odcięcia filtru moc sygnału zmniej-
sza się dwukrotnie (co jest równoważne kwadratowi wzmocnienia filtru). 

Projektowanie filtru odcinającego sprowadza się zatem do określenia częstotliwo-
ści (pulsacji) odcięcia oraz rzędu filtru. Sposób jego wykonania ma dla rozważanych 
tu zastosowań znaczenie drugorzędne (filtry pasywne – aktywne). Należy zauważyć, 
że zwiększenie rzędu filtru (właściwie: rzędu jego transmitancji) pozwala przesunąć 
pulsację ωc bliżej w stronę krytycznego punktu ωp/2 (a więc, pasmo użytkowe 0–ωc 
jest wówczas szersze), jednak łączy się to z większą złożonością filtru, a ponadto czas 
jego odpowiedzi ulega także zwiększeniu. W zastosowaniach do automatyki elektro-
energetycznej zwykle wybiera się rząd filtru nie większy niż 3–5 [105]. 
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Rys. C.19. Charakterystyka filtru odcinającego 

Częstotliwość odcięcia fc można dosyć dobrze oszacować, stosując następującą relację: 
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Przykład C.3 pokazuje sposób przygotowania modelu filtru analogowego w postaci 
modułu w programie ATPDraw. Wybrano prosty filtr drugiego rzędu, który może być 
z powodzeniem stosowany w modelach układów pomiarowych automatyki elektro-
energetycznej. Wszystkie składowe zbiory znajdują się w kartotece przykład_C3. 

Przykład C.3.  Zaprojektować filtr odcinający 2 rzędu w postaci dwóch ogniw RC (rys. 
C.20). Dobrać częstotliwość odcięcia i związane z nią parametry filtru, je-
śli częstotliwość próbkowania w torze wejść analogowych fc = 1 kHz. 

Zgodnie z podaną powyżej zależnością przyjmujemy: 375375,0 == pc ff
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układu z rys. C.20 ma następującą postać: 
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Wartość współczynników a  i b , a zatem i parametrów filtru, można określić, wychodząc 
z warunku, że kwadrat jego charakterystyki widmowej dla pulsacji odcięcia jest równy ½. 
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Rys. C.20. Schemat zastępczy filtra analogowego 

Na tej podstawie łatwo można utworzyć relacje pomiędzy parametrami RC filtru. Widać, że 
część z tych parametrów musi być wstępnie założona. W celu ograniczenia liczby tych zakła-
danych parametrów można przyjąć: 21 RR = , 21 CC = . Po nietrudnych przekształceniach 
otrzymujemy: 

1
1

0,59562
Cf

R
c

=  (Ω), 

gdzie: cf  – częstotliwość odcięcia filtru (Hz), 1C  – założona wartość pojemności (µF). 
Jeśli przyjmiemy 1C  = 0,1 µF, otrzymamy: 

 3,1558
0,1375
0,59562

1 =
⋅

=R  Ω. 

Charakterystyka częstotliwościowa otrzymanego filtra jest pokazana na rys. C.21. Zgodnie 
z oczekiwaniami filtr ma dosyć płaską charakterystykę w paśmie zaporowym i niezbyt szerokie 
pasmo przepustowe. Sprawia to, że wzmocnienie filtru dla częstotliwości Nyquista jest dosyć 
duże i wynosi aż 0,6046 (tłumienie 4,37 dB). 

0,5

0,6

0,7

0,8

0,9

|H(jω)|

0 100 200 300 400 500 f, Hz  

Rys. C.21. Charakterystyka rozpatrywanego filtra analogowego 
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Przy wyborze parametrów filtru (w tym przypadku jednej z wartości: 1C  lub 1R ) należy pa-
miętać o tym, że powinien on mieć maksymalnie dużą impedancję wewnętrzną (na wejściu 
i wyjściu są sygnały napięciowe). Inne właściwości rozpatrywanego filtru w zakresie tłumienia 
wysokich częstotliwości zostaną pokazane w dalszej części tego przykładu. 
Model filtru powinien spełniać wymienione wymagania, a także powinien być wygodny do 
stosowania. Poniżej zamieszczono tekst modułu programowego z modelem rozpatrywanego 
filtru. Numerycznymi wielkościami wejściowymi są: pojemność C1 (µF) oraz częstotliwość 
odcięcia cf  (Hz). W bloku DEP obliczana jest wartość rezystancji 1R . 
 
BEGIN NEW DATA CASE             -- NOSORT --- 
C     Moduł reprezentujący filtr odcinający RC 2 rzędu 
DATA BASE MODULE 
$ERASE 
C 
ARG, WEZIN1, WEZIN2, WEZOU1,WEZOU2, ________C1, __CZESTOTL 
NUM, ________C1, __CZESTOTL 
DEP, ________R1 
C                = 
      ________R1 =  59562.0/(__CZESTOTL*________C1) 
DUM, WEZELP            {DUM musi być na końcu 
/BRANCH 
$UNITS, 0., 0. 
C 
$VINTAGE, 1 
C <BUSF><BUST><BUSF><BUST><     R        ><        L     ><       C      > 
C ------------ Dwa segmenty RC ------------- 
  WEZIN1WEZELP                  ________R1 
  WEZELPWEZIN2                                                  ________C1 
  WEZELPWEZOU1WEZIN1WEZELP 
  WEZOU1WEZOU2WEZELPWEZIN2 
C 
$VINTAGE, 0 
C  
$UNITS, -1., -1. 
C 
BEGIN NEW DATA CASE 
C 
$PUNCH, fanalog1.lib 
BEGIN NEW DATA CASE 
BLANK 
 

Tekst modułu jest zapisany w zbiorze fanalog1.dat. Warto tu zwrócić uwagę na kilka specy-
ficznych komend i formatów użytych zmiennych: 

• Format danych RLC został rozszerzony z sześciu do szesnastu pozycji. Służy 
do tego celu komenda $VINTAGE, 1. Powrót do zwykłego formatu z sześcio-
ma pozycjami danych następuje za pomocą komendy $VINTAGE, 0. W bloku 
DEP dozwolona długość zmiennych wynosi dziesięć pozycji, więc tylko taka 
jest końcowa reprezentacja zmiennych. 
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• Pojemność wewnątrz modułu jest podawana w (µF). Zapewnia to komenda 
$UNITS, 0., 0.,  niezależnie od deklaracji użytkownika w głównym modelu. 
Powrót do nich następuje na podstawie komendy $UNITS, -1., -1. 

Zbiór uzyskany w wyniku kompilacji przyjmuje nazwę fanalog1.lib. Odpowiadający mu mo-
del ATPDraw jest zapisany w zbiorze fanalog1.sup. 
Omawiany filtr został zastosowany w modelu sieci z przykładu C.1.1. Model tej sieci wraz 
z filtrem w obwodzie pomiarowym, przygotowany w programie ATPDraw jest pokazany na 
rys. C.22. 
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Rys. C.22. Schemat modelu ATPDraw rozpatrywanej sieci elektrycznej 

Podobnie jak w przykładzie C.1.2, symulacja ma na celu badanie ładowania się linii po jej za-
łączeniu, przy zerowych warunkach początkowych. Prąd jest mierzony za pomocą przekładni-
ka prądowego, który jest tu reprezentowany za pomocą transformatora liniowego. Na jego za-
ciskach wtórnych umieszczony jest dzielnik rezystancyjny (całkowita impedancja obciążenia 
wynosi ok. 2,1 Ω). Napięcie na oporniku R jest proporcjonalne do prądu płynącego w linii. 
Przebiegi napięć na wejściu (u1) i wyjściu (u2) filtru są pokazane na rys. C.23. 
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Rys. C.23. Przebiegi na wejściu (u1) oraz na wyjściu (u2) filtru 

Widać, że po filtracji przebieg jest wygładzony, bez szumu wysokiej częstotliwości.  
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C.4. Model zabezpieczenia różnicowego transformatora 

C.4.1. Wprowadzenie 

Symulacyjne badanie układów automatyki elektroenergetycznej stało się możliwe na 
szerszą skalę z chwilą pojawienia się analogowych symulatorów stanu przejściowego 
w postaci uniwersalnych maszyn analogowych lub specjalizowanych urządzeń. Jest to 
szczególnie ważne w odniesieniu do badania zabezpieczeń, ze względu na rolę, jaką 
pełnią te układy w zapewnieniu niezawodnej dostawy energii elektrycznej. Przedmio-
tem analizy były wówczas oddzielne elementy przekaźników lub przekładniki pomia-
rowe. Komputerowe programy symulacyjne umożliwiają szczegółowe odwzorowanie 
układu zabezpieczenia, łącznie z zabezpieczanym obiektem.  

Zarówno modele przekaźników zabezpieczeniowych, jak i całych układów zabez-
pieczeń są opracowywane z różnym przeznaczeniem. Można tu wyróżnić następujące 
cele takiego modelowania [107, 132]:  

– badanie charakterystyk nowych algorytmów funkcjonowania automatyki; 
– testowanie algorytmów stosowanych w istniejących układach w zadanych wa-

runkach; 
– sprawdzanie współdziałania różnych układów automatyki i zabezpieczeń; 
– trening i edukacja.  
Do realizacji każdego z wymienionych zadań należy zwykle stosować inny rodzaj 

modelu, w związku z czym można je podzielić na następujące kategorie:  
1. Modele fizyczne, odzwierciedlające rzeczywiste procesy zachodzące w realnym 

obiekcie. 
2. Modele komputerowe (programowe), które odwzorowują jedynie relacje algoryt-

miczne pomiędzy przetwarzanymi sygnałami. 
W przypadku cyfrowych układów automatyki i zabezpieczeń ten podział jest waż-

ny głównie w odniesieniu do obwodów wejściowych i wyjściowych. Podstawowe 
funkcje algorytmiczne są wykonywane w modelu komputerowym i w rzeczywistym 
obiekcie, w bardzo zbliżonych warunkach.  

W badaniach zabezpieczeń ważny jest sposób uzyskiwania wejściowych sygnałów 
testujących. Można tu wydzielić następujące sposoby współdziałania modelu zabez-
pieczenia ze źródłem sygnałów:  

– autonomiczny model zabezpieczenia i zewnętrzne źródło sygnału; 
– sygnał wejściowy do modelu przekaźnika jest dostarczany z modelu systemu 

pierwotnego, a oba modele stanowią fragmenty jednego wspólnego modelu. 
W pierwszym przypadku sygnały wejściowe mogą pochodzić z innego modelu za-

bezpieczanego obiektu lub z rejestratora zapisującego stany przejściowe towarzyszące 
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zwarciom w rzeczywistym systemie. W praktycznych zastosowaniach model systemu 
pierwotnego wraz z przekładnikami jest realizowany w programie EMTP, natomiast 
odpowiednie algorytmy badanych zabezpieczeń są realizowane w innych programach, 
które są łatwe w obsłudze i mają wygodne narzędzia do przetwarzania wyników sy-
mulacji, na przykład Matlab [152]. W drugiej z przedstawionych konfiguracji modelu 
zarówno system pierwotny, jak i badany przekaźnik są odwzorowane w tym samym 
programie. W przypadku programu ATP–EMTP wymaga to znajomości programowa-
nia modułu MODELS lub TACS.  

Inny podział uwzględnia możliwość odwzorowania w modelu efektów działania 
zabezpieczenia i jego wpływu na inne elementy sieci [20, 109, 132]:  
1. Modele pracujące w układzie otwartym względem zabezpieczanego obiektu. 
2. Modele ze sprzężeniem zwrotnym. 

W modelu ze sprzężeniem zwrotnym jest odwzorowany obwód wyjściowy prze-
kaźnika oraz wyłącznik umieszczony w obwodzie pierwotnym. Działanie zabezpie-
czenia objawia się w postaci wyłączenia zwartego obwodu, co umożliwia symulację 
funkcjonowania także innych układów automatyki elektroenergetycznej.  

Poniżej przedstawiono szczegółowy przykład zastosowania programu ATP–EMTP 
do analizy działania zabezpieczenia różnicowego transformatora.  

C.4.2. Zabezpieczenie różnicowe transformatora 

Kryterium różnicowoprądowe jest podstawą realizacji jednych z najbardziej czułych 
i skutecznych zabezpieczeń zwarciowych. Istota tego kryterium jest pokazana na rys. 
C.24. Strefa działania zabezpieczenia jest ograniczona przez przekładniki prądowe 
PP1 i PP2. Wielkością kryterialną jest wartość prądu różnicowego (wartość skuteczna 
lub amplituda wybranej harmonicznej), który w odniesieniu do wielkości chwilowych 
można zdefiniować następująco (rys. C.24):  

Obiekt

Przekaźnik

ip1

is1

ip2

is2

id

PP1 PP2F2 F1

 

Rys. C.24. Ilustracja zasady działania zabezpieczenia różnicowoprądowego 
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 21 ssd iii −=  (C.2) 

Podczas normalnej pracy układu lub podczas zwarcia na zewnątrz strefy (zwarcie 
F1 na rys. C.24) prądy 1pi  oraz 2pi  (a zatem i prądy w obwodzie wtórnym: 1si , 2si ) 
są sobie równe. Wielkość kryterialna jest wtedy równa zero. Inny obraz występuje 
podczas zwarcia wewnątrz zabezpieczanej strefy (zwarcie F2). Wówczas oba prądy są 
skierowane do miejsca zwarcia, a prąd różnicowy przybiera duże wartości. Można za-
uważyć, że warunki rozróżnienia miejsca zwarcia są spełnione również w sytuacji, 
gdy układ jest zasilany tylko z jednej strony.  

Zabezpieczenie różnicowe działa według kryterium nadprądowego, jednak wiel-
kość kryterialna jest tu definiowana inaczej. Ze względu na wysoką selektywność sto-
sowanego kryterium wartość rozruchowa może przyjmować małe wartości, co jedno-
cześnie zwiększa czułość zabezpieczenia. Należy jednak zwrócić uwagę na zakłócenia 
w pracy rozpatrywanego zabezpieczenia.  

Zasadnicze przyczyny, zakłócające opisaną powyżej zasadę działania zabezpiecze-
nia różnicowego, są wynikiem błędów transformacji przekładników prądowych 
(głównie w rezultacie nasycenia rdzenia lub niedopasowania przekładni) oraz poja-
wieniem się prądu poprzecznego w zabezpieczanym obiekcie (upływność przez izola-
cję, prąd pojemnościowy, prądy wirowe lub prąd magnesujący). Czynniki te znacznie 
pogarszają przedstawione cechy kryterium różnicowoprądowego.  

Podstawowym środkiem zaradczym jest stabilizacja zabezpieczenia, która polega 
na uzależnieniu prądu różnicowego, który jest w tym przypadku także prądem rozru-
chowym ir przekaźnika, od wartości prądu odniesienia, zwanego prądem stabilizują-
cym. Prąd ten może być różnie definiowany, w zależności od charakteru obiektu, na 
przykład:  

– z dwoma odejściami (linia, transformator dwuuzwojeniowy): 

 21 ssst iii +=  (C.3) 

– z L odejściami (transformator wielouzwojeniowy, szyny stacji): 

 
∑

=

=
L

j
sjst ii

1
 (C.4) 

gdzie isj jest wartością chwilową prądu wtórnego w j-tym przekładniku. Należy za-
uważyć, że najczęściej kryterium to odnosi się do wartości skutecznej prądu różnico-
wego.  

Do określenia wartości prądu rozruchowego stosuje się, w tym przypadku, charak-
terystykę określoną przez funkcję )( stIf  ( stI  – wartość skuteczna prądu stabilizują-
cego sti ) o postaci jak na rys. C.25, która rozdziela płaszczyznę decyzyjną przekaźni-
ka na obszary działania i niedziałania ( 0rpI  jest początkowym prądem rozruchowym). 
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Przebieg tej charakterystyki zależy od charakteru obiektu i wymaganych właściwości 
zabezpieczenia. Należy zauważyć, że prądy: różnicowy (rozruchowy) i stabilizujący 
są reprezentowane przez odpowiednie wartości skuteczne. Związane z tym kryterium 
różnicowoprądowe stabilizowane przyjmuje następującą formę  
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 (C.5) 

gdzie str  jest sygnałem decyzyjnym przekaźnika. 
Zabezpieczenia różnicowoprądowe są stosowane w charakterze podstawowych za-

bezpieczeń takich obiektów, jak: generatory, transformatory, szyny zbiorcze rozdziel-
ni, krótkie linie.  

W przypadku transformatora przedstawiona ogólna zasada zabezpieczenia różni-
cowego musi ulec pewnej modyfikacji, gdyż jest to obiekt z natury nieliniowy, a po-
nadto występują różne układy połączeń uzwojeń transformatora, co sprawia, że za-
równo przekładnie zwojowe przekładników po obu stronach obiektu, jak i fazy 
mierzonych prądów mogą być różne. Schemat takiego zabezpieczenia w odniesieniu 
do dwuuzwojeniowego transformatora o grupie połączeń Yd jest pokazany na rys. 
C.26. Układ połączeń przekładników po obu stronach transformatora (PP1 oraz PP2) 
odpowiada założeniu, że kompensacja przesunięcia fazowego prądów, wynikająca z 
określonej grupy połączeń transformatora, odbywa się wewnątrz przekaźnika, co jest 
powszechnie stosowane w zabezpieczeniach cyfrowych (dotyczy to także wyrównania 
przekładni transformatora). 
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Rys. C.25. Charakterystyka rozruchowa przekaźnika różnicowego stabilizowanego 



324 Dodatek C. Przykłady 

Pokazany schemat odnosi się do zabezpieczenia różnicowego wzdłużnego, co 
oznacza, że nie uwzględnia on zwarć doziemnych (chociaż w większości przypadków 
transformator również wówczas będzie chroniony).  
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PP2PP1
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Rys. C.26. Struktura zabezpieczenia różnicowego transformatora 

Prąd różnicowy jest określany jako różnica prądów po obu stronach transformato-
ra, z uwzględnieniem przekładni przekładników i transformatora oraz odpowiedniego 
przesunięcia fazowego. Prąd różnicowy jest z założenia bardzo mały w normalnych 
warunkach pracy układu oraz przy zwarciach zewnętrznych ( 1F  i 5F  na rys. C.26), 
natomiast gwałtownie rośnie w przypadku zwarcia wewnątrz zabezpieczanej strefy 
( 2F , 3F  i 4F ). Niestety, obraz ten ulega zakłóceniu z powodu różnych zjawisk, które 
mają miejsce w samym transformatorze, jak i w obwodzie pomiarowym, w różnych 
stanach pracy układu. Powstają wówczas uchybowe prądy różnicowe, których głów-
nymi źródłami są [105, 129]:  

– udarowe prądy magnesowania rdzenia transformatora; występują one głównie 
podczas załączania transformatora;  

– błędy przekładników prądowych, głównie spowodowane przez nasycenie się 
ich rdzeni przy bliskich zwarciach zewnętrznych;  

– duży prąd magnesowania wywołany wzrostem strumienia w rdzeniu transfor-
matora (przy wzroście napięcia);  

– zmiana przekładni transformatora w związku z regulacją napięcia przez zmianę 
położenia zaczepów.  
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W celu odstrojenia przekaźnika od tych zakłóceń stosuje się różne środki zaradcze, 
spośród których najważniejsze to [129]:  
1. Stosowanie stabilizacji procentowej przekaźnika. Czynnikiem stabilizującym jest 

prąd hamujący wzdłużny stI , określony jako średnia wartość prądów po obu stro-
nach transformatora. Stabilizacja procentowa w dużej mierze eliminuje wpływ 
uchybów pochodzących od przekładni przekładników oraz ich błędów dynamicz-
nych.  

2. Stabilizacja drugą harmoniczną prądu różnicowego. Duży udział drugiej harmo-
nicznej (powyżej 20%) w prądzie różnicowym wskazuje na to, że źródłem prądu 
różnicowego jest udarowy prąd magnesowania.  

3. Stabilizacja piątą harmoniczną prądu różnicowego. Duży udział piątej harmonicz-
nej (powyżej 30%) w prądzie różnicowym występuje podczas stacjonarnego wzro-
stu strumienia rdzenia transformatora. Ten uchyb jest niekiedy stabilizowany przez 
dodatkowe kryterium opierające się na estymacji strumienia w rdzeniu transforma-
tora (niezbędny jest wówczas pomiar napięcia).  
Jednak, ze względu na wzajemne powiązanie zjawisk, ich pełna separacja na pod-

stawie pomiaru prądów (a niekiedy także napięć) podczas stosowania tradycyjnych 
technik pomiarowych i decyzyjnych nie jest możliwa. Skonstruowanie dobrego za-
bezpieczenia transformatora jest nadal dużym wyzwaniem, stojącym nawet przed do-
świadczonym zespołem projektowym. Przedstawiony poniżej przykład odnosi się do 
klasycznego zabezpieczenia różnicowego ze stabilizacją drugą i piątą harmoniczną 
prądu różnicowego.  

C.4.3. Model przekaźnika różnicowego 

Model fragmentu sieci elektrycznej wraz z zabezpieczeniem różnicowym transforma-
tora jest pokazany na rys. C.27. Rozpatrywana sieć z transformatorem jest taka, jak 
w przykładzie C.2 (rys. C.15). Obwody pomiarowe po obu stronach transformatora 
składają się z przekładników prądowych oraz analogowych filtrów odcinających. Dla 
uproszczenia schematu wszystkie te bloki są przedstawione w postaci elementów trój-
fazowych. Dyskowe zbiory związane z modelem znajdują się w kartotece przy-
kład_C4.  

Modele przekładników prądowych wykonano w postaci niestandardowych modu-
łów, które reprezentują trzy przekładniki umieszczone w poszczególnych fazach. Mo-
duł przekładnika tworzą następujące zbiory dyskowe (CT – ang. Current Transfor-
mer):  

CT_3.dat – zbiór źródłowy, 
CT_3.lib – zbiór skompilowany, 
CT_3.sup – zbiór z modułem graficznym.  
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Rys. C.27. Schemat modelu ATPDraw z zabezpieczeniem różnicowym transformatora 

Schemat elektryczny modułu przekładników jest pokazany na rys. C.28. Do pomia-
ru prądów wtórnych utworzono dzielniki rezystancyjne: spadek napięcia na oporniku 
RES jest proporcjonalny do tego prądu. Taki układ stanowi jednocześnie przetwornik 
prąd/napięcie i ułatwia przyłączenie filtru odcinającego. W rzeczywistych warunkach 
rolę tę spełnia dodatkowy transformator, który wprowadza także niezbędną separację 
galwaniczną pomiędzy obwodem wejściowym i układem wewnętrznym przekaźnika.  

Strona związana z wysokim napięciem przekładników jest w modelu reprezento-
wana przez stronę wtórną transformatorów (s – ang. secondary), natomiast obwód 
pomiarowy jest skojarzony ze stroną pierwotną modelu transformatora (p – ang. pri-
mary). Obciążenie przekładnika stanowią elementy: LA, RA oraz RES w pierwszej fazie 
i podobnie w pozostałych fazach. Wartość opornika RES (jednakowy we wszystkich 
fazach) można przyjąć bardzo małą, na przykład 0,1 Ω. Wówczas wartość i charakter 
obciążenia będą praktycznie zależały od pozostałych dwóch elementów. Wyjścia na-
pięciowe z tego modelu są związane z zaciskami: CT_OUA, CT_OUB, CT_OUC. Są 
one podłączone do jednej nóżki elementu graficznego modelu.  

Charakterystyka magnesowania rdzenia jest reprezentowana podobnie jak w kla-
sycznym modelu transformatora, za pomocą elementu nieliniowego: Typ 98 (bez hi-
sterezy). Użytkownik nie ma dostępu bezpośrednio z edytora ATPDraw do zmiany tej 
charakterystyki. W razie potrzeby należy odpowiednio edytować zbiór CT_3.dat i na-
stępnie poddać go kompilacji. Użytkownik ma poza tym możliwość zmiany pozosta-
łych parametrów każdego z przekładników fazowych.  

Prąd znamionowy wtórny przekładników prądowych ma wartość 1 A (wartość sku-
teczna), natomiast prądy pierwotne: PP1: 10000 A, PP2: 600 A. 
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Rys. C.28. Schemat przekładników prądowych tworzących moduł CT_3 

Model filtru odcinającego również wykonano w postaci trójfazowej: w każdej fazie 
umieszczono filtr RC drugiego rzędu zgodnie z opisem przedstawionym w poprzed-
nim punkcie. Dla częstotliwości próbkowania 1000 Hz przyjęto częstotliwość odcięcia 
filtru: 375 Hz.  

Model przekaźnika jest reprezentowany przez blok Diff_Tr (rys. C.27). Jest to ele-
ment 8-zaciskowy, do którego nóżek doprowadzono po trzy napięcia z każdego filtru 
odcinającego oraz wartość składowej urojonej napięcia fazy A dla początkowego sta-
nu ustalonego sieci. Wielkość ta ma oznaczenie imssv, jako wielkość wejściowa do 
bloku MODELS. Jej zastosowanie w modelu ma znaczenie drugorzędne: aby pominąć 
stan przejściowy użytych w algorytmie filtrów cyfrowych, można ich ‘pamięci’ 
wstępnie zapełnić, korzystając z obliczanego przez program ATP stanu ustalonego, 
odpowiadającego momentowi startu programu (t = 0). Normalnie dostępne są składo-
we rzeczywiste prądów i napięć. Do pełnej znajomości położenia wektora napięcia na-
leży wczytać także wartość składowej urojonej.  
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Do odwzorowania przekaźnika różnicowego należy określić prądy: różnicowy 
i wzdłużny w każdej fazie transformatora. Odpowiednie związki zależą od sposobu 
połączenia uzwojeń transformatora, przekładni zwojowych: transformatora oraz prze-
kładników prądowych oraz efektów skalowania w torze pomiarowym. Prąd różnicowy 
powinien być odniesiony do uzwojenia kolumny strony pierwotnej lub wtórnej trans-
formatora. Jeśli wybierzemy uzwojenie strony Y, to odpowiednie związki przyjmą na-
stępującą formę [63]:  

Prądy różnicowe w poszczególnych fazach:  

 ( ) ( ) 3/)()()()()( 0 kikikkikikki DCDADYYAYdA −−−=  

 ( ) ( ) 3/)()()()()( 0 kikikkikikki DADBDYYBYdB −−−=  (C.6) 

 ( ) ( ) 3/)()()()()( 0 kikikkikikki DCDADYYAYdA −−−=  

gdzie: ( ))()()(
3
1)(0 kikikiki YCYBYAY ++= , indeks D oznacza prąd fazowy od strony 

trójkąta, indeks Y – od strony gwiazdy. 
Prądy stabilizujące (hamujące): 

 ( ) ( ) 3/)()()()()( 0 kikikkikikki DCDADYYAYsA −+−=  

 ( ) ( ) 3/)()()()()( 0 kikikkikikki DADBDYYBYsB −+−=  (C.7) 

 ( ) ( ) 3/)()()()()( 0 kikikkikikki DCDADYYAYsA −+−=  

W równaniach (C.6) i (C.7) Yk  jest współczynnikiem, przez który należy pomno-
żyć prąd Yi  (w modelu jest to napięcie) na wejściu przekaźnika, aby otrzymać prąd 
w obwodzie pierwotnym (na wejściu przekładnika prądowego) po stronie gwiazdy. 
Podobnie, współczynnik Dk  odnosi się do prądu po stronie uzwojenia połączonego 
w trójkąt. Dzięki temu, prądy obliczone zgodnie z (C.6), (C.7) są odniesione do strony 
gwiazdy transformatora.  

Można zauważyć, że w tych wyrażeniach od prądu fazowego strony Y odejmowana 
jest składowa zerowa. Wynika to stąd, że w prądach fazowych strony ∆ taka składowa 
nie występuje. Prądy: różnicowy i stabilizujący mogą być także obliczane względem 
strony ∆ [63].  

W bloku pomiarowym obliczane są następujące wielkości:  
– amplituda pierwszej, drugiej i piątej harmonicznej prądu różnicowego, 
– amplituda składowej podstawowej prądu stabilizującego. 
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Składowe ortogonalne m-tej harmonicznej obliczane są według następujących za-
leżności rekursywnych:  

 

( )

( ))()()(2)1()(

)()()(2)1()(

Nkykykh
N

kXkX

Nkykykh
N

kXkX

smsmsm

cmcmcm

−−+−=

−−+−=
 (C.8) 

gdzie: N – liczba próbek w okresie (wszystkie składowe są obliczanie w oknie o dłu-
gości N próbek); )(khcm , )(khsm  – funkcje impulsowe filtrów kosinusowego i sinuso-
wego, odpowiednio.  

Funkcje impulsowe filtrów są określane według zależności (a = 2π/N): 
( )

( ))5,0(sin)(
)5,0(cos)(

−−=
−=
kakh

kakh

sm

cm  – dla składowej podstawowej, 

( )
( ))5,0(2sin)(

)5,0(2cos)(
−−=

−=
kakh

kakh

sm

cm  – dla drugiej harmonicznej, 

( )
( ))5,0(5sin)(

)5,0(5cos)(
−=

−−=
kakh

kakh

sm

cm  – dla piątej harmonicznej. 

Amplitudy tych składowych obliczane są według zależności: 

 )()()( 22 kXkXkX smcm +=  (C.9) 

Szczegółowy algorytm członu decyzyjnego zabezpieczenia różnicowego w postaci 
blokowej dla jednej fazy transformatora jest pokazany na rys. C.29.  

W celu ułatwienia śledzenia głównej procedury modelu przekaźnika, oznaczenia 
zmiennych na schemacie pozostawiono takie same, jak w programie T_Diff.mod, któ-
ry tworzy moduł ATPDraw. Zapis algorytmu jest nadmiarowy (niektóre zmienne i wa-
runki można usunąć bez wpływu na wynik działania procedury), jednak dokładnie 
odwzorowuje on procedurę w języku MODELS, zapisaną w zbiorze T_Diff.mod.  

W bloku pomiarowym, w każdym kroku próbkowania, obliczane są próbki prądu 
różnicowego i stabilizacyjnego, a także ich amplitudy dla pierwszej, drugiej i piątej 
harmonicznej (te dwie ostatnie tylko w odniesieniu do prądu różnicowego). Jeśli na-
stąpi przekroczenie progu rozruchowego (id1 > a0), to następuje sprawdzenie prze-
biegu trajektorii prądu różnicowego na charakterystyce rozruchowej przekaźnika (rys. 
C.30). Odpowiednie nastawy i punkty na charakterystyce odniesione są do amplitud: 
prądu różnicowego i stabilizującego. Odpowiednie nastawy są dostępne w zbiorze 
T_Diff.mod.  
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Rys. C.29. Schemat algorytmu zabezpieczenia (dla jednej fazy transformatora) 
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Rys. C.30. Charakterystyka rozruchowa: oznaczenia przyjęte w programie 

Jeśli warunki działania zabezpieczenia są spełnione, to w dalszej części procedury 
następuje sprawdzenie warunków blokady od drugiej i piątej harmonicznej prądu róż-
nicowego. Odpowiednie nastawy są tu wyrażone przez współczynniki C2 oraz C5. Sy-
gnał wyłączający wyłączniki po obu stronach transformatora pojawia się w przypad-
ku, gdy wskaźnik trip przyjmuje wartość 1 przynajmniej w jednej fazie.  

C.4.4. Badanie zabezpieczenia 

Rozpatrywany model zabezpieczenia był badany w sieci elektroenergetycznej z trans-
formatorem, która jest opisana w p. C.2. Pełny model sieci wraz z zabezpieczeniem 
jest pokazany na rys. C.27. Poniżej podano wyniki kilku testów przeprowadzonych 
z wykorzystaniem tego modelu.  

a) Załączanie nieobciążonego transformatora 

Test został przeprowadzony zgodnie z przykładem C.2. Przebiegi prądów fazowych są 
pokazane na rys. C.17. Przebieg prądu różnicowego w poszczególnych fazach jest po-
kazany na rys. C.31. Schodkowy charakter krzywych wynika z procesu próbkowania. 
Należy zauważyć, że prądy te są odniesione do uzwojeń strony Y transformatora. Wi-
dać, że prąd różnicowy przybiera wartości przekraczające prąd znamionowy tej strony 
transformatora. Kryterium różnicowe z pewnością spowodowałoby wyłączenie trans-
formatora. Potwierdzają to trajektorie prądów różnicowych we wszystkich trzech fa-
zach względem charakterystyki rozruchowej przekaźnika (rys. C.32). Charakterystyka 
ta jest w tym zakresie zmian prądu stabilizującego ograniczona przez wartość rozru-
chową a0, która jest nastawiona na 20% prądu znamionowego transformatora. Jednak 
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amplituda drugiej harmonicznej prądu różnicowego w tym przypadku jest również du-
ża (na rys. C.33 są pokazane przebiegi amplitud w fazie C) i decyzja przekaźnika jest 
blokowana. Udział piątej harmonicznej jest niewielki – jej wzrost mógłby być spowo-
dowany wzrostem napięcia lub obniżeniem się częstotliwości.  
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Rys. C.31. Przebieg prądów różnicowych podczas załączania nieobciążonego transformatora 

0 50 100 150 200 250 Is1, A
0

100

200

300

400

Id1, A

Id1C

Id1A

Id1Ba0

działanie

blokowanie

b0

 

Rys. C.32. Trajektorie prądów różnicowych na charakterystyce rozruchowej przekaźnika 
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Rys. C.33. Amplitudy pierwszej, drugiej i piątej harmonicznych prądu różnicowego fazy C 

b) Zwarcie 5% uzwojenia Y 

Rozpatrywane jest zwarcie 5% liczby zwojów uzwojenia fazy C strony Y transforma-
tora. Również ten przypadek jest analizowany w przykładzie C.2. Przebieg prądów 
jest pokazany na rys. C.18. Przebieg prądu różnicowego przedstawia rys. C.34. Widać, 
że jest on stosunkowo niewielki – prąd fazy A jest mniej więcej równy prądowi zna-
mionowemu, który ma amplitudę równą 785 A. Wystarcza to jednak do pobudzenia 
przekaźnika (0,1IN).  

Trajektorie pierwszej harmonicznej prądu różnicowego na charakterystyce rozru-
chowej przekaźnika są pokazane na rys. C.35. Widać, że tylko prąd fazy C przekracza 
tę charakterystykę. Prądy w pozostałych fazach są zbyt małe. Tym niemniej, zabez-
pieczenie prawidłowo działa, wyłączając uszkodzony transformator.  

Interesująca jest także analiza charakterystyk czasowych działania zabezpieczenia. 
Składowe harmoniczne: druga i piąta, są bardzo małe, więc w stanie ustalonym nie 
powodują one blokowania działania zabezpieczenia. Jednak stan przejściowy filtru 
drugiej harmonicznej powoduje, że w tym czasie przekaźnik jest blokowany, wprowa-
dzając zwłokę o długości niemal jednego okresu składowej podstawowej (rys. C.35 – 
sygnał wyłączający pokazano na tle przebiegów amplitud odpowiednich harmonicz-
nych prądu różnicowego). W takim przypadku nawet szybkie wyłączenie transforma-
tora nie uchroni go przed wymianą, jednak szybka decyzja zabezpieczenia zapobiega 
rozwojowi awarii. 
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Rys. C.34. Przebieg prądów różnicowych podczas zwarcia 5% uzwojenia transformatora 
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Rys. C.35. Trajektorie prądów różnicowych na charakterystyce rozruchowej przekaźnika
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Rys. C.36. Trajektorie prądów różnicowych na charakterystyce rozruchowej przekaźnika 

Przedstawione przebiegi stanowią tylko fragment analizy działania omawianego 
zabezpieczenia transformatora. Jak widać, tego rodzaju model stanowi bardzo wygod-
ne narzędzie zarówno przy projektowaniu algorytmów różnych bloków funkcjonal-
nych zabezpieczenia, jak w analizie pracy zabezpieczenia wybranego obiektu.  

C.5. Analiza rozruchu silnika indukcyjnego 

C.5.1. Wprowadzenie 

Silnik elektryczny jest podstawowym elementem układu napędowego, stosowanym 
w różnorodnych urządzeniach powszechnego użytku i w instalacjach przemysłowych. 
Rozruchowi takich silników towarzyszy znaczny wzrost prądu (prąd rozruchowy), co 
wywołuje, niekiedy groźne, zapady napięcia i komplikuje pracę ich zabezpieczeń.  

Zamieszczony poniżej przykład ilustruje sposób określania parametrów modelu 
silnika indukcyjnego oraz ich wykorzystania w modelu ATP–EMTP. Przeprowadzone 
symulacje pokazują przebieg zjawisk elektromagnetycznych i mechanicznych, zwią-
zanych z rozruchem silnika klatkowego.  



336 Dodatek C. Przykłady 

C.5.2. Model matematyczny silnika indukcyjnego 

Parametry, zatem i właściwości silników indukcyjnych, mogą się dosyć istotnie róż-
nić, w zależności od szczegółów ich budowy. W charakterze przykładu rozpatrzmy 
model silnika klatkowego, którego parametry są następujące:  

Moc znamionowa   2,8 MW 
Napięcie znamionowe 10 kV 
Liczba par biegunów  4 
Współczynnik mocy  0,9 
Sprawność   0,98 
Poślizg znamionowy  1 % 
Prąd rozruchowy, j.w. 4 
Moment rozruchowy, j.w. 0,9 
Stała inercji H  0,97 s. 
Wszystkie składowe pliki związane z prezentowanym modelem znajdują się w kar-

totece przykład_C5.  
Do obliczenia parametrów silnika wygodnie jest skorzystać z programu WindSyn, 

który jest przeznaczony do współpracy z systemem WINDOWS [42]. Jest on dostępny 
w pakiecie z podstawowym programem ATP–EMTP. Po zainstalowaniu programu 
i przygotowaniu niezbędnych podstawowych danych silnika, postępujemy zgodnie 
z następującą procedurą:  
1. Uruchomić program. Na pierwszym ekranie (rys. C.37) należy podać adres dostępu 

do używanego edytora tekstowego oraz adres kartoteki, w której umieszczone zo-
staną pliki wyjściowe po wykonaniu obliczeń (w dolnej części okna). Przy czytaniu 
wprowadzanych danych liczbowych, w programie korzysta się z lokalnie ustawio-
nego formatu zapisu liczb dziesiętnych (przecinek ‘,’ lub kropka ’.’ oddzielająca 
część ułamkową). Ponieważ przetwarzanie w programie prowadzone jest zgodnie 
z formatem anglosaskim (kropka dziesiętna), więc przed rozpoczęciem obliczeń 
należy ustawić w systemie WINDOWS (Panel sterowania/Opcje regionalne) zapis 
liczb dziesiętnych w formacie z kropką dziesiętną. Następnie należy wybrać odpo-
wiedni rodzaj analizowanej maszyny. W tym przypadku zaznaczono silnik induk-
cyjny z dwoma klatkami na wirniku (Double cage).  

2. W kolejnym kroku należy wprowadzić szczegółowe dane silnika (rys. C.38). Naj-
ważniejsze z nich, to wielkości znamionowe: moc (Rated Power), KM (ang. horse 
power, hp), częstotliwość zasilającego napięcia, napięcie (wartość skuteczna na-
pięcia międzyfazowego), prędkość obrotowa (zależna od liczby par biegunów ma-
szyny i częstotliwości sieci) oraz współczynnik mocy. Jeśli brakuje któregoś z pa-
rametrów, zaleca się pozostawienie wartości podpowiadanej przez program. 
Należy także podać nazwę zbioru dyskowego, w którym zostaną umieszczone wy-
niki obliczeń (parametry modelu silnika). 
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Rys. C.37. Okno wyboru rodzaju modelowanej maszyny 

 

Rys. C.38. Okno wprowadzania parametrów maszyny 
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3. W ostatnim etapie należy określić wymagane parametry, związane z rodzajem sy-
mulacji. Można tu wprowadzić dodatkowe źródło prądowe, odzwierciedlające 
zmianę obciążenia silnika (ang. Extra load) i moment jego załączenia (ang. Time of 
extra load) – rys. C.39. Ponadto: sposób określenia warunków początkowych 
(w przykładzie wybrano Autoinitialization, co oznacza, że odpowiednie parametry 
stanu początkowego zostaną określone na podstawie początkowego stanu ustalone-
go, w innym przypadku użytkownik powinien podać te parametry jako dane mode-
lu silnika). Zauważmy, że w rozpatrywanym przykładzie, początkowy poślizg 
(ang. Initial slip) przyjmuje wartość 99,99% w miejsce wartości 100% (w stanie 
początkowym silnik jest zatrzymany), aby uniknąć błędu przepełnienia numerycz-
nego. Model silnika jest opisany równaniami o zmiennych współczynnikach (ze 
względu na przekształcenie 0dq), a w ogólnym przypadku, jest to model nieliniowy 
(przy uwzględnieniu nasycenia żelaza). Do numerycznego rozwiązywania tych 
równań wybrano metodę kompensacji (rys. C.39).  
W rezultacie, otrzymuje się dwa pliki wyjściowe:  
– INDMOT.LIS, z danymi wejściowymi oraz z parametrami modelu; 
– INDMOT.PCH, który przedstawia plik wejściowy modelu w formie gotowego 

bloku modułowego, który może być dołączany do głównego pliku danych 
przez zastosowanie dyrektywy $INCLUDE.  

 

Rys. C.39. Okno określania sposobu obliczania modelu 
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C.5.3. Analiza rozruchu silnika 

Test rozruchu silnika był prowadzony z wykorzystaniem modelu, jak na rys. C.40. 
Pliki związane z tym testem mają nazwę SIL_INDA z odpowiednimi rozszerzeniami. 
W celu ustalenia właściwych warunków rozruchu silnika należy w oknie ATP Settings 
(ATP/Settings/Switch/UM – rys. C.41) wybrać opcję: Initialization – Automatic. Wa-
runki początkowe symulacji zostaną wówczas określone automatycznie na podstawie 
stanu ustalonego modelu dla czasu t = 0- (przed uruchomieniem symulacji). W tym ce-
lu wyłącznik generatora powinien być otwarty na początku symulacji.  

IX
M

BUSM

MOT
IM

ω

INERS
INER

U
(0)

+

V

 

Rys. C.40. Schemat modelu sieci z silnikiem indukcyjnym – faza uruchomienia  

 

Rys. C.41. Okno programu ATPDraw do ustawienia warunków symulacji rozruchu modelu 
maszyny uniwersalnej z automatyczną inicjalizacją  
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Właściwa informacja o zasilającym napięciu jest przekazywana przez równoległe 
włączenie rezystancji o dużej wartości. Rozruch silnika rozpoczyna się po załączeniu 
wyłącznika (w rozpatrywanym modelu zachodzi to dla t = 0,1 s).  

Kondensator w obwodzie reprezentującym układ mechaniczny odzwierciedla war-
tość momentu inercji obracającego się wirnika: 1 kg·m2 ↔ 1 F. Wartość napięcia po-
czątkowego na kondensatorze odpowiada początkowej prędkości kątowej wirnika: 
ω (1/s) ↔ UC (V) – w tym przypadku UC(0) = 0.  

Źródła prądowe w obwodzie odzwierciedlającym układ mechaniczny silnika okre-
ślają wartość momentu obciążenia. Aby uwzględnić początkową wartość tego momen-
tu, należy użyć źródła prądu przemiennego o bardzo niskiej częstotliwości (właści-
wym byłoby tu zastosowanie źródła prądu stałego, ale stan początkowy sieci jest 
obliczany tylko dla obwodu prądu przemiennego). Zmiana obciążenia w trakcie symu-
lacji jest reprezentowana przez dodatkowo dołączone źródło (w rozpatrywanym przy-
kładzie amplituda tego źródła jest bardzo mała). W przypadku obciążenia zmiennego 
wygodnie jest stosować źródło sterowane (MODELS lub TACS).  

Przebieg zmian momentu obrotowego silnika i prędkości kątowej wirnika podczas 
rozruchu jest pokazany na rys. C.42. Widać, że rozruch nieobciążonego silnika trwa 
ok. 1,7 s. W tym czasie prędkość wirnika narasta niemal liniowo od zera do wartości 
bliskiej 50π/2 rad, co odpowiada 750 obr/min. Chwilowy przebieg prądu rozruchowe-
go stojana jest pokazany na rys. C.43. Po zakończeniu rozruchu prąd ten spada do ni-
skiej wartości, odpowiadającej wartości prądu biegu jałowego silnika.  
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Rys. C.43. Przebieg prądu stojana silnika podczas rozruchu (faza A) 

Przebiegi prądów w osi d obu klatek wirnika są pokazane na rys. C.44. Można za-
uważyć przeciwne kierunki narastania obu tych prądów w czasie rozruchu: w miarę 
wzrostu prędkości obrotowej wirnika prąd pierwszej klatki maleje, podczas gdy prąd 
drugiej klatki rośnie. Po zakończeniu rozruchu, gdy poślizg jest bliski zeru, oba prądy 
przyjmują bardzo małe wartości.  
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Rys. C.44. Prądy wirnika: iwd1 (linia ciągła), iwd2 (linia przerywana) 
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C.5.4. Analiza rozruchu i zmiany obciążenia silnika 

Rozpatrzmy przypadek, gdy po rozruchu silnika załączane jest znamionowe obciążenie. 
Schemat odpowiedniego modelu jest pokazany na rys. C.45. Wartość momentu obcią-
żenia jest reprezentowana za pomocą źródła prądowego dołączonego do węzła INERS 
(w tym przypadku element z prawej strony), którego wartość  48,34576== eNTI A,  
gdzie: 48,34576=eNT Nm – znamionowy moment elektryczny (w szczelinie) silnika. 

Przyjęto, że zarówno moment bezwładności, jak i współczynnik tłumienia dołą-
czanego obciążenia są takie same, jak w przypadku rozpatrywanego silnika. Te wiel-
kości są w modelu reprezentowane za pomocą załączanych dodatkowo: pojemności 
(do węzła IX) i rezystancji (INER). Czas załączenia obciążenia tobc = 3 s. W obwodzie 
zasilania silnika został umieszczony miernik mocy jednofazowej (zauważmy, że od-
wrócony został wyłącznik, aby mierzony prąd miał poprawny kierunek)). Pliki zwią-
zane z tym modelem mają nazwę SIL_INDB z odpowiednimi rozszerzeniami.  
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Rys. C.45. Schemat modelu do symulacji rozruchu i obciążenia silnika 

Przebiegi momentu obrotowego oraz prędkości kątowej wirnika są pokazane na 
rys. C.46. Po załączeniu obciążenia znamionowego, prędkość obrotowa silnika chwi-
lowo spada dosyć znacznie i odbudowuje się po czasie ok. 5 s. Można zauważyć, że 
ustala się ona na nieco niższym poziomie, niż dla pracy bez obciążenia (większy po-
ślizg).  
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Rys. C.46. Przebieg momentu obrotowego (ciągła linia) oraz prędkości kątowej wirnika  
(linia przerywana) 

Zgodnie z oczekiwaniami zmienia się także obraz prądu stojana (rys. C.47). 
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Rys. C.47. Przebieg prądu stojana (faza A) podczas startu i załączenia obciążenia 

Częstotliwość prądu klatki wirnika (rys. C.48 – prąd pierwszej klatki) zależy od 
wartości poślizgu i w stanie ustalonym, przy pełnym obciążeniu, jest ona mniejsza od 
1 Hz.  
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Rys. C.48. Przebieg prądu wirnika 

C.6. Modelowanie generatora indukcyjnego dwustronnie zasilanego 

C.6.1. Wprowadzenie 

W związku ze wzrostem zainteresowania problematyką generacji rozproszonej, szcze-
gólnie tej, w której do wytwarzania energii elektrycznej można wykorzystać źródła 
energii odnawialnej, obserwuje się znaczny rozwój technologii związanych z wyko-
rzystaniem siłowni wiatrowych do napędu generatorów elektrycznych. Ze względu na 
dużą zmienność mocy i prędkości obrotowej turbin wiatrowych, w takich elektrow-
niach najczęściej stosuje się generatory indukcyjne. Dominują tu zwłaszcza dwustron-
nie zasilane generatory indukcyjne (DZGI) (ang. Doubly Fed Induction Generator – 
DFIG).  

Modelowanie takich instalacji ma na celu poznanie zjawisk, które zachodzą pod-
czas stanów przejściowych – zarówno w części mechanicznej, jak i elektrycznej – ale 
także weryfikację nowych metod sterowania generatorami napędzanymi siłowniami 
wiatrowymi. Ważnym zagadnieniem jest także analiza oddziaływania tych niespokoj-
nych źródeł energii elektrycznej na sieć elektroenergetyczną (zwłaszcza sieć rozdziel-
czą, do której są one zazwyczaj przyłączone), a także ich wpływu na automatykę za-
bezpieczeniową.  
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C.6.2. Struktura elektrowni wiatrowej 

DZGI jest pierścieniową maszyną indukcyjną (znane są także wykonania bezpierście-
niowe [13]), w której wirnik jest zasilany z zewnętrznego sterowanego źródła prądu 
lub napięcia o regulowanej częstotliwości. Źródło to jest realizowane w postaci prze-
twornika AC/AC zasilanego z sieci, do której przyłączony jest generator (rys. C.50). 
Częstotliwość źródła jest na bieżąco dobierana do aktualnej prędkości obrotowej wir-
nika tak, aby strumień główny maszyny miał częstotliwość sieciową. Zauważmy, że 
w przypadku zasilania prądem stałym, maszyna spełnia funkcję generatora synchro-
nicznego – jeśli tylko prędkość obrotowa wirnika jest dostosowana do częstotliwości 
sieci (z uwzględnieniem liczby par biegunów wirnika).  

Atrakcyjność stosowania dwustronnie zasilanego generatora indukcyjnego jako źró-
dła energii elektrycznej w elektrowniach wiatrowych wynika głównie z tego, że energia 
jest bezpośrednio przekazywana z generatora do sieci, bez pośrednictwa przetwornika, 
co jest charakterystyczne dla tradycyjnego generatora indukcyjnego [13, 48].  

Do sterowania DZGI stosowane są różne strategie. Ze względu na współpracę ta-
kiej elektrowni z siecią elektroenergetyczną ważna jest możliwość elastycznej regula-
cji mocy czynnej i biernej przekazywanej do sieci. Efektywne algorytmy takiego ste-
rowania są zapewnione w układzie jak na rys. C.49, gdzie podstawowe parametry 
generatora są kontrolowane za pośrednictwem napięcia wirnika ur.  
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Rys. C.49. Schemat siłowni wiatrowej z generatorem indukcyjnym dwustronnie zasilanym 

Wirnik generatora jest napędzany przez siłownię wiatrową za pośrednictwem od-
powiedniej przekładni mechanicznej. Uzwojenie wirnika zasilane jest 3-fazowym na-
pięciem Ur wytwarzanym przez przekształtnik AC–AC. Układ ten jest utworzony 
z prostownika i falownika, które są kontrolowane przez sterownik DZGI. W nowych 
rozwiązaniach stosuje się przekształtniki z możliwością pełnej kontroli przepływu 
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mocy czynnej i biernej w obu kierunkach (ang. back-to-back), co zapewnia oszczędną 
pracę układu. Falownik jest zasilany ze źródła napięciowego (rys. C.49), co z kolei 
pozwala na bardzo elastyczną kontrolę przekazywanej do sieci mocy czynnej i biernej. 
W takim układzie moc generatora jest sumą mocy generowanej (pobieranej) w stoja-
nie i wirniku:  

 
rsn

rsn

QQQ
PPP

+=
+=

 (C.10) 

Prędkość obrotowa wirnika generatora może się zmieniać w szerokich granicach: 
zarówno w przedziale nadsynchronicznym (poślizg ujemny: s < 0), jak i podsynchro-
nicznym (poślizg dodatni: s > 0). Niezależnie od tego, układ sterowania przekształtni-
ka AC–AC powinien zapewnić, w zależności od potrzeb, generację mocy biernej  po-
jemnościowej lub indukcyjnej. Układ sterowania łopatek wiatraka zapewnia 
optymalne wykorzystanie energii wiatru.  

Jak widać, pełny model omawianej elektrowni jest układem dosyć złożonym. 
Zwłaszcza implementacja przekształtnika energoelektronicznego w programie ATP–
EMTP jest dużym wyzwaniem ze względu na pojawiające się oscylacje numeryczne, 
które przenoszą się z obwodu pierwotnego do układu sterowania. Wymaga to stoso-
wania bardzo krótkiego okresu symulacji i wprowadzenia odpowiednich obwodów 
tłumiących. Z tego względu dalej rozważany jest model uproszczony, w którym prze-
kształtnik jest reprezentowany przez 3-fazowe sterowane źródło napięciowe.  

Wśród przykładów dostępnych na wskazanej stronie internetowej znajduje się 
również model generatora indukcyjnego ze sterowaniem za pomocą prądu wirnika 
(model DFIG_I). W tym przypadku przekształtnik energoelektroniczny jest w modelu 
reprezentowany za pomocą źródła prądowego. 

C.6.3. Model matematyczny generatora z układem sterującym 

Struktura uproszczonego w ten sposób modelu jest pokazana na rys. C.50. W progra-
mie ATP–EMTP maszyna pierścieniowa jest reprezentowana za pomocą modelu ma-
szyny uniwersalnej typu 4 (ang. Universal Machine UM4). Model części mechanicz-
nej jest reprezentowany za pomocą obwodu RC ze sterowanym źródłem prądowym, 
które odzwierciedla wartość momentu napędowego Tm. Obwód ten imituje zachowa-
nie się turbiny wiatrowej wraz z generatorem, co jest określone przez związek (6.70), 
gdzie na zasadzie wzajemności poszczególne wielkości mechaniczne mogą być repre-
zentowane za pomocą odpowiednich wielkości elektrycznych. Spadkowi napięcia na 
oporniku w tym obwodzie odpowiada aktualna prędkość kątowa wirnika ωr 
(1 V = 1 rad/s przy założeniu, że na wirniku znajduje się jedna para biegunów). Model 
matematyczny części elektrycznej maszyny jest utworzony z równań odnoszących  
się do schematu zastępczego przedstawionego na rys. 6.20 (dla osi α i podobnie dla 
osi β) [13].  
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Rys. C.50. Struktura modelu EMTP rozpatrywanego generatora 

Sterownik jest wykonany w postaci modułu MODELS, w którym są realizowane 
algorytmy sterowania, których rezultatem jest napięcie podawane na wirnik DZGI. 
Wielkościami mierzonymi są trójfazowe prądy i napięcia stojana oraz prędkość kąto-
wa wirnika. Wielkości zadane, to wartość mocy czynnej i biernej przekazywanej do 
sieci: Psref, Qsref (przy pominięciu przekształtnika w obwodzie wirnika, pomijane są 
również związane z nim moce).  

W modelu generatora indukcyjnego (DZGI) reprezentowanego za pomocą maszy-
ny uniwersalnej (UM4) prędkość kątowa wirnika jest ustalana jako wynik równowa-
żenia się zadanego momentu napędowego Tm (pochodzącego od wiatraka) z momen-
tem elektrycznym Te (6.106). 

Model sterownika wywodzi się z modelu wektorowego maszyny w układzie 
współrzędnych x–y w postaci równań (6.100) i (6.101). Obliczane są tam cztery wiel-
kości: prąd magnesujący (im = Im), kąt pomiędzy stojanem i głównym strumieniem 
(γsm) oraz prądy wirnika: irx, iry. Mierzone prądy i napięcia stojana należy w każdym 
kroku modelowania przekształcić ze współrzędnych fazowych do układu x–y.  

W przypadku napięć zachodzi następujący związek:  
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gdzie: 22
sqsds uuU +=  – amplituda napięcia stojana, smss t γωδ −= .  
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Napięcia wirnika (6.99) można rozdzielić na dwie części:  
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gdzie: 
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Pozostały składnik: 
t

iL sm
r d

d)1( σ−  w (6.99) można pominąć, gdyż ma on małą wartość 

z uwagi na niewielkie zmiany w czasie prądu im.  
Stosując zapis operatorowy Laplace’a, z (C.13), można określić prąd wirnika jako:  
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Widać, że składowe prądu wirnika są niezależnie wyrażone przez dwie składowe po-
chodzące od napięcia wirnika. Warto tu przypomnieć, że moc czynna generatora (sto-
jana) bezpośrednio zależy od napięcia ury, natomiast moc bierna – od napięcia urx. Wi-
dać zatem z (6.107) i (6.108), że moce te mogą być niezależnie sterowane za pomocą 
składowych napięcia wirnika.  

Syntezę odpowiedniego regulatora napięcia można przeprowadzić, korzystając 
z metody znanej jako Sterowanie z Modelem Wewnętrznym (SMW) (ang. Internal 
Model Control – IMC) [118]. W rozpatrywanym zastosowaniu idea metody SMW jest 
pokazana na rys. C.51. Aby uzyskać żądany prąd Irxref(s) na wyjściu układu z rys. 
C.51a, należałoby zastosować korektor o transmitancji Gc(s) = (Gp(s))–1, gdzie Gp(s) 
jest transmitancją procesu, jak w (C.17). Układ o takiej transmitancji jest jednak fi-
zycznie nierealizowalny (stopień wielomianu licznika transmitancji jest większy od 
stopnia mianownika). Realizację takiego układu można jednak przybliżyć za pomocą 
układu pokazanego na rys. C.51b, gdzie: )()(ˆ sGsG pp ≈  jest modelem procesu, który 
w rozważanym przypadku jest określony w postaci transmitancji pierwszego rzędu:  
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Proces określony tą transmitancją zachodzi w wirniku maszyny.  
Transmitancja Gc(s) jest określana jako odwrotność transmitancji modelu, 

z uwzględnieniem warunku realizowalności układu. Można to zapewnić przez dodanie 
członu inercyjnego odpowiedniego rzędu [118]:  
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gdzie n należy dobrać tak, aby stopień wielomianu licznika transmitancji C(s) nie był 
większy od stopnia mianownika.  

Wybór takiego właśnie członu jest uzasadniony charakterem odpowiedzi układu 
w stanie ustalonym. W rozpatrywanym przypadku prąd wyjściowy irx(t) przyjmuje 
w tych warunkach stałą wartość. W danym przypadku n = 1, co daje:  
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Parametr α należy określić na podstawie oczekiwanej odpowiedzi na skok jednostko-
wy projektowanego układu. Widać, że dodany człon pełni także rolę filtru dolnoprze-
pustowego o stałej czasowej τ.  

Sprzężenie zwrotne w pokazanym układzie ma na celu korekcję błędów wynikają-
cych z ewentualnej różnicy transmitancji procesu )(sGp  i jego modelu )(ˆ sGp  oraz 
występujących zakłóceń, jak szumy, błędy numeryczne i inne (w tym przypadku za-
kłócenia wynikają głównie z pominięcia w odtwarzanym procesie składnika: 

tiL mr dd /)1( ⋅−σ . W ten sposób, poszukiwany korektor (regulator) jest utworzony 
przez układ zakreślony na rys. C.51b linią kropkowaną. Jego transmitancja jest nastę-
pująca:  
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co po podstawieniu odpowiednich wielkości, prowadzi do:  
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gdzie: rI RK α= , rIp TKK σ= . 
Powyższe nastawy odpowiadają idealnej sytuacji, gdy znany jest dokładny model 

procesu i w układzie nie występują zakłócenia. Znak minus w mianowniku transmi-
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tancji (C.20) wynika stąd, że zakreślony układ z rys. C.51b można sprowadzić do 
układu zamkniętego o dodatnim sprzężeniu zwrotnym.  

Widać, że transmitancja C(s) jest równoważna transmitancji regulatora PI. Trans-
mitancja zamkniętego układu z tym regulatorem (rys. C.51c) jest następująca:  
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co jest słuszne tylko w przypadku pełnej znajomości modelu procesu i braku zakłóceń 
(jest to zatem zależność idealna, z pominięciem nieuchronnych uproszczeń).  

Parametr α można określić na podstawie założonego przebiegu odpowiedzi tego 
układu na skok jednostkowy:  

 t
rx ti αα −= e)(  (C.23) 
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gdzie przedział odpowiadający czasom t1, t2 należy wybrać na wznoszącej części od-
powiedzi na skok jednostkowy.  
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Rys. C.51. Zasada sterowania z modelem wewnętrznym 
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Określając nastawy regulatora, należy także zapewnić dostateczny zapas stabilno-
ści układu. Dobór tych nastaw można przeprowadzić zgodnie z ogólnymi zasadami 
odnoszącymi się do regulatorów PID.  

Ponieważ modele procesu dla obu składowych prądu wirnika Irx oraz Iry są takie 
same, więc regulatory w obu obwodach są również takie same (rys. C.52). Procesy, 
reprezentowane na tych rysunkach odpowiednimi transmitancjami, w rzeczywistym 
układzie są fizycznymi obiektami – w tym wypadku jest to wirnik generatora. 
W układach tych określane są napięcia rxû , ryû  odpowiadające założonym prądom: 
irxref, iryref. Pozostałe składniki napięcia wirnika generatora w układzie współrzędnych 
x–y są obliczane zgodnie z (C.14).  

Ostatecznie, określone w ten sposób napięcia, po przekształceniu do trójfazowego 
układu związanego z wirnikiem, są podawane na zaciski jego uzwojeń (najczęściej 
poprzez pierścienie ślizgowe). Ta transformacja odbywa się w dwóch etapach, zgod-
nie ze schematem: (x–y) → (d–q) → (ABC).  

Pierwsze przekształcenie dotyczy transformacji obliczonego napięcia względem 
składowych x–y do naturalnych składowych związanych z wirnikiem:  
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gdzie kąt ( )esm γγ −  określa wzajemne przesunięcie pomiędzy obu układami odniesie-
nia (rys. 6.22). 
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Rys. C.52. Schematy blokowe układu regulacji napięcia wirnika generatora 
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Druga część transformacji odnosi się do zamiany wielkości reprezentowanych 
w prostokątnym układzie d–q na wielkości trójfazowe. Oba układy są związane z wir-
nikiem, więc nie ma pomiędzy nimi przesunięcia fazowego (układ d–q jest zatem 
równoważny układowi α–β). Stosuje się tu przekształcenie (6.83) z macierzą trans-
formacji C23.  

Uzyskane w ten sposób napięcia urA, urB, urC, służą do generacji impulsów sterują-
cych układem falownika w obwodzie wirnika generatora (rys. C.49), chociaż w przy-
padku stosowania modulacji szerokością impulsów (MSI) można do tego celu wyko-
rzystać bezpośrednio składowe wektora przestrzennego w układzie α–β [52]. 

W przypadku regulacji mocy czynnej i biernej generatora prądy Irxref, Iryref, poda-
wane odpowiednio na wejścia układów z rys. C.52 są powiązane z zadanymi warto-
ściami tych mocy. Do projektowania stosownych regulatorów tych mocy można za-
stosować podobną zasadę jak do określenia prądów stojana. Pomijając szczegóły 
związane z zamianą współrzędnych i obliczaniem wielkości pośrednich, zamknięty 
układ regulacji mocy biernej jest określony schematem jak na rys. C.53. Podobną 
strukturę ma również układ sterowania mocą czynną. Jak widać, również w tym przy-
padku regulacja jest prowadzona za pomocą regulatora PI.  
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Rys. C.53. Schemat układu sterowania mocą bierną 

W ten sposób ogólny układ sterowania napędzaną wiatrakiem maszyną DZGI ma 
postać jak na rys. C.54. Wewnętrzny układ regulacji z regulatorami oznaczonymi in-
deksami 2 realizuje funkcje stabilizacji prądów wirnika: irx oraz iry poprzez wymusza-
nie napięć na jego uzwojeniach. W zewnętrznym układzie regulacji regulatory ozna-
czone indeksem 1 spełniają funkcję stabilizacji prądów odniesienia wynikających 
z równowagi  mocy: zadanej i aktualnej.  

Pomiary elektryczne wykonywane są na zaciskach stojana (napięcia i prądy); mie-
rzona jest ponadto prędkość kątowa wirnika. W blokach oznaczonych 3→2 obliczane 
są składowe wektorów przestrzennych zgodnie z macierzą C32 (6.82), natomiast od-
wrotne przekształcenie (z macierzą C23) zachodzi w bloku 2→3. W Bloku 1 obliczane 
są następujące wielkości wyjściowe:  

– prądy  Irx oraz Iry; 
– prąd magnesujący Ism; 
– kąty:  smγ , eγ  oraz ( )esm γγ − . 
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Rys. C.54. Struktura układu sterowania DZGI 

Jako wielkości pośrednie określane są też napięcia usx oraz usy (C.11). Podstawowa 
część wykonywanej tu procedury jest określona przez układ równań różniczkowych 
(6.100) i (6.101)).  

W Bloku 2 obliczane są następujące wielkości:  
– napięcia udrx oraz udry (C.14); 
– prędkość kątowa poślizgu slω  (uwzględnić liczbę par biegunów (6.101)). 
W rzeczywistym układzie wymuszanie 3-fazowego napięcia wirnika o zmieniają-

cej się amplitudzie i częstotliwości odbywa się za pośrednictwem przekształtnika AC 
– AC, co pominięto na rys. C.54. W nowych instalacjach stosuje się przekształtniki 
z możliwością dwustronnego przekazywania mocy czynnej i biernej, co należy 
uwzględnić w całkowitym bilansie mocy generatora:  
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gdzie moce stojana i wirnika są obliczane zgodnie z (6.107) i (6.108).  
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C.6.4. Model ATP–EMTP 

Do badania analizowanego generatora został utworzony model w programie ATP–
EMTP. Schemat modelu rozpatrywanej sieci, utworzony za pomocą programu 
ATPDraw [104], jest pokazany na rys. C.55. Wszystkie składowe zbiory znajdują się 
w kartotece przykład_C6. Rozpatrywany jest tu model układu ze sterowaniem genera-
tora za pomocą napięcia wirnika (pliki DFIG_V z odpowiednimi rozszerzeniami). 
W miejsce układu przekształtnikowego źródło napięciowe w obwodzie wirnika zosta-
ło dla uproszczenia przedstawione za pomocą sterowanych fazowych źródeł napię-
ciowych. W obwodzie wirnika znajduje się także niezależne źródło prądowe, które 
jest wykorzystywane do wymuszenia określonych warunków początkowych w modelu 
generatora (okres załączenia tego źródła prądowego obejmuje czas przed rozpoczę-
ciem symulacji: (–1,0)–(–0,5) s.  

W obwodzie odtwarzającym część mechaniczną generatora znajdują się dwa źródła 
prądowe: jedno o stałej wartości, które w danym przypadku ma bardzo małą wartość, 
co odpowiada brakowi napędu od wiatraka w stanie początkowym; drugie z nich jest 
sterowane z bloku DFIG_V i służy do symulacji momentu napędowego wiatraka.  
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Rys. C.55. Schemat analizowanego modelu ATPDraw 
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Model układu sterowania źródłami napięciowymi w obwodzie wirnika generatora 
został zrealizowany w postaci modułu MODELS [13] (blok DFIG_V). Realizowana 
jest w nim procedura, której struktura jest pokazana na rys. C.54. Jest tam także gene-
rowany sygnał sterujący źródłem prądowym (węzeł INERS), za pomocą którego za-
dawany jest moment napędowy turbiny wiatrowej. Na wejście tego bloku doprowa-
dzane są pomiary prądów i napięć z zacisków generatora (parametry stojana). Na 
wyjście podawane są trójfazowe sygnały sterowania źródłami napięciowymi. Podsta-
wową procedurą realizowaną w układzie sterującym jest blok rozwiązywania układu 
równań różniczkowych (6.100) i (6.101). Ponieważ równania te są wzajemnie powią-
zane, więc do ich numerycznego rozwiązywania w każdym kroku symulacji zastoso-
wano iteracyjny blok programowy COMBINE, który jest konstrukcją języka progra-
mowania MODELS [32]. Tekst tego bloku jest następujący:  
 
  COMBINE ITERATE {5} AS first_group 
   del_s:=gam_s-gam_sm 
   Vsx:=Vs*cos(del_s) 
   Vsy:=Vs*sin(del_s) 
   -- solution of differential equations 
    a1:=Irx*Ts1+Vsx*Lm1 
    laplace (Ism/a1) := Ts| / (1|s0+Ts|s1) 
    a2:=(Iry*Ts1+Vsy*Lm1)*recip(Ism) 
    laplace (gam_sm/a2) := 1| / (0|s0+1|s1) 
    a3:=Vrx*Lrp1+om_sl*Iry+sTs*Ism-Vsx*Lm1s 
    laplace (Irx/a3) := 1| / (Trps|s0+1|s1) 
    a4:=Vry*Lrp1-om_sl*Irx-s1om*Ism 
    laplace (Iry/a4) := 1| / (Trp1|s0+1|s1) 
  ENDCOMBINE 
 

Pełny tekst procedury znajduje się w pliku DFIG_V.MOD. 
W każdym kroku wynik tej procedury jest ustalany na drodze iteracyjnego rozwią-

zywania zadanego układu równań. Całkowanie równań różniczkowych odbywa się 
z wykorzystaniem funkcji Laplace. Przyjęto, że maksymalna liczba iteracji wynosi 5. 
Wyjście z tego bloku może nastąpić po mniejszej liczbie iteracji, jeśli uzyskana zosta-
nie założona zbieżność procesu obliczeniowego.  

Analizowany generator o mocy 2 MW i napięciu 690 V współpracuje z siecią roz-
dzielczą za pośrednictwem transformatora. Wszystkie dane maszyny są dostępne 
w oknie edycji danych bloku DFIG_V. W stanie początkowym wirnik obraca się 
z prędkością nadsynchroniczną z poślizgiem s = –10%, przy braku momentu napędo-
wego od turbiny wiatrowej. W tym stanie generator oddaje do sieci moc: Pini = 45 kW 
oraz Qini = –100 kVA (moc pojemnościowa).  

Parametry modelu układu mechanicznego maszyny zostały obliczone za pomocą 
programu WindSyn [42] – patrz poprzedni przykład (p. C.5) przy danych wejścio-
wych z tabeli C.1.  
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C.6.5. Warunki początkowe 

W modelu DZGI występuje wiele zmiennych, które są związane za pomocą równań 
różniczkowych. Obliczanie tych zmiennych w wyniku całkowania równań różniczko-
wych wymaga znajomości ich wartości początkowych. Rozsądnie jest założyć, że stan 
początkowy modelu odpowiada stanowi ustalonemu rozpatrywanej sieci wraz z gene-
ratorem przy znamionowej pulsacji 1ωω =sm , znanym poślizgu s (a więc także pulsa-
cjach: poślizgu ( slω ) i pola wirnika ( eω ), a także napięciu stojana Us. Dzięki takiemu 
założeniu, wartości początkowe niektórych zmiennych są bezpośrednio znane (jak 
wymienione powyżej pulsacje).  

W stanie ustalonym maszyna znajduje się w stanie zrównoważenia mocy (jeśli 
pominąć moc strat), więc zależności (C.25) prowadzą do następujących związków:  
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gdzie: Prk  = 1 – jeśli obwód wirnika jest zasilany przez dwukierunkowy przekształtnik 
(co pozwala przekazywać moc wirnika do sieci) oraz Prk  = 0 – w przeciwnym razie.  

Korzystając z zależności związanych z modelem wektorowym maszyny (p. 6.2.5), 
moce czynne i bierne w (6.107) i ( 6.108) można wyrazić za pomocą zmiennych mo-
delu, dla których poszukiwane są wartości początkowe:  
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gdzie: mm LX 1ω= , mssm LLm /= . 
W zależnościach tych występują trzy niewiadome: im, isx oraz isy. Po wstawieniu 

ich do (C.26) uzyskuje się dwa równania. Dodatkowe równanie można utworzyć, wy-
znaczając kwadrat napięcia stojana. W ten sposób otrzymuje się:  
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gdzie: 222
sysxs iiI += , sxssx iRu −= , sysmmsy iRiXu −=   

W wyniku rozwiązania tego układu równań otrzymuje się trzy wspomniane nie-
wiadome. Składowe prądu wirnika można więc obliczyć z następujących zależności:  
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Tak, jak składowe napięcia wirnika, również składowe prądu w układzie d–q po-
krywają się z odpowiednimi składowymi w osiach α–β. Można je zatem obliczyć 
zgodnie z (C.24). Można dzięki temu oszacować amplitudę i początkową fazę prądu 
dostarczanego przed uruchomieniem symulacji do obwodu wirnika: irA = irα. Wielkości 
te są obliczane w bloku INIT modułu MODELS i wyprowadzane do zbioru *.lis za 
pomocą funkcji write(), co ułatwia nastawianie warunków początkowych symulacji.  

C.6.6. Wyniki symulacji 

Parametry badanego generatora są podane w tabeli C.1. Na ich podstawie, za pomocą 
programu WindSyn [42], obliczone zostały parametry elektryczne schematu zastęp-
czego:  

Lm = 0,002354 H, Rs = 0,001717 Ω, Lls = 0,000055 H, Rr = 0,005563 Ω, 
Llr = 0,000055 H. Dane wejściowe do symulacji są następujące: przebieg zmian mo-
mentu turbiny wiatrowej Tt – jak na rys. C.56a, natomiast żądana moc elektryczna ge-
neratora zmienia się zgodnie wykresem na rys. C.56c: moc czynna Pe – krzywa 1, moc 
bierna Qe – krzywa 3.  

Tabela C.1. Parametry analizowanego generatora 

Moc znamionowa P, (kW) 2000 Liczba par biegunów 2 
Napięcie znamionowe U, (V) 690 Poślizg początkowy –10% 

Współczynnik mocy cos ϕ 0,9 Moment inercji H, (kgm2) 58,0134 
Sprawność 0,906 Znam. moment napędowy Tm, (Nm) 2485,94 

Maks. moment napędowy, j.w. 1,58 Współczynnik tłumienia D, (Nm/(rad/s)) 2,53 
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Rys. C.56. Wyniki symulacji: a) moment wiatraka, b) prędkość obrotowa wirnika, c) zmiana 
mocy czynnej i biernej, d) przebiegi prądów wirnika  

W trakcie symulacji prędkość obrotowa generatora zmienia się zgodnie z krzywą 
na rys. C.56b (podana w jednostkach względnych). Widać, że na początku prędkość 
obrotowa była większa od wartości synchronicznej (wartość 1,0). Moment napędowy 
w tym czasie jest równy zero i przy niewielkim obciążeniu generatora w krótkim 
przedziale czasu nie obserwuje się zmian prędkości obrotowej całego zespołu (rys. C. 
56b). W chwili t = 4 s następuje duży wzrost momentu napędowego oraz obciążenia 
przez zwiększenie mocy czynnej i biernej. Jednak, ze względu na przeważającą żąda-
ną moc obciążenia, obserwuje się obniżkę prędkości obrotowej, która następnie 
zwiększa się od czasu t = 10 s, kiedy zmniejsza się moc obciążenia.  

Zmianom tym towarzyszy zmiana napięcia i prądu wirnika w zakresie amplitudy 
i częstotliwości. Przebiegi prądów fazowych wirnika są pokazane na rys. C.56d. Na 
początku prąd ten przybiera stosunkowo niewielką wartość, a jego częstotliwość wy-
nika z poślizgu: s = –10 %, fr = 5 Hz. Po zwiększeniu obciążenia widać gwałtowny 
wzrost amplitudy tego prądu, a jego częstotliwość maleje zgodnie ze zmniejszaniem 
się prędkości obrotowej wirnika. Dla czasu t ≈ 9s poślizg zmienia kierunek, co odpo-
wiada przejściu prędkości obrotowej generatora przez wartość prędkości synchronicz-
nej (rys. C.56b). W przebiegach prądu wirnika widać charakterystyczną zmianę kie-
runku wirowania: generator przechodzi z obszaru prędkości nadsynchronicznej 
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w obszar prędkości podsynchronicznej. Odwrotne przejście następuje dla czasu ok. 
17 s. W całym obszarze pracy rozpatrywanej instalacji moc oddawana do sieci (w tym 
przypadku moc stojana) jest utrzymywana na zadanych poziomach: przebiegi mocy 
zadanych: Pref, Qref i uzyskanych: Ps, Qs niemal się pokrywają (rys. C56c).  

C.6.7. Podsumowanie 

Prezentowany przykład odnosi się do modelowania dwustronnie zasilanego generatora 
indukcyjnego, który jest stosowany głównie w elektrowniach wiatrowych. Badany 
model został utworzony z wykorzystaniem programu ATP–EMTP. Źródło prądowe 
w obwodzie zasilania wirnika generatora jest dla uproszczenia reprezentowane za po-
mocą sterowanych z modułu MODELS trójfazowych źródeł napięciowych (w rze-
czywistości funkcję tę spełnia przekształtnik energoelektroniczny). Zamieszczone wy-
niki symulacji wybranego generatora ilustrują właściwości modelu. Można przy tym 
sformułować następujące wnioski.  

Dostępny obecnie w programie ATP–EMTP model DZGI w postaci maszyny uni-
wersalnej (UM–4) jest stosunkowo prosty, jednak dokładność odwzorowania stanu 
przejściowego maszyny jest ograniczona, co prowadzi do niestabilności numerycznej 
obliczeń przy dużych wymuszeniach. Na jego korzyść można zapisać łatwość wpro-
wadzania zmian momentu napędowego turbiny.  

Przedstawiony algorytm sterowania mocą czynną i bierną generatora poprzez regu-
lację składowych napięcia w płaszczyźnie x–y zapewnia skuteczną kontrolę podsta-
wowych dla współpracy z siecią parametrów siłowni wiatrowej. Metoda ta jest po-
wszechnie stosowana we współczesnych rozwiązaniach takich układów [13, 48].  

C.7. Symulacyjna analiza zwarć łukowych w linii elektroenergetycznej 

C.7.1. Wprowadzenie 

Zwarcia w obwodach elektrycznych najczęściej zachodzą w postaci przerywanych, 
nieregularnych łączeń, którym towarzyszy łuk elektryczny. Określenie to odnosi się 
do zjawiska przewodzenia zjonizowanego gazu (powietrza), które zazwyczaj można 
także obserwować w postaci efektu świetlnego. Proces ten jest bardzo nieregularny, 
a jego analiza jest trudna z powodu występowania wielu lokalnych, losowych czynni-
ków (temperatura, ciśnienie powietrza, skład powietrza, wilgotność, długość łuku, pa-
rametry obwodu elektrycznego, kształt przewodów i inne), które mają wpływ na jego 
przebieg.  

W przypadku linii elektroenergetycznych, w których ochrona zabezpieczeniowa 
wspomagana jest przez automatykę jednofazowego samoczynnego powtórnego załą-
czenia (jednofazowe SPZ) [129], rozróżnia się dwa rodzaje łuków zwarciowych: łuk 
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pierwotny, który pojawia się w miejscu jednofazowego zwarcia doziemnego oraz łuk 
wtórny. Ten ostatni może powstać jako kontynuacja łuku pierwotnego, jeśli po wyłą-
czeniu zwartej fazy przez układ SPZ powstaną warunki do zasilania łuku zwarciowe-
go przez napięcie indukowane w odłączonym przewodzie fazowym, z faz zdrowych 
linii. Sytuację tę ilustruje schemat zastępczy na rys. C.57. Do podtrzymania łuku 
wtórnego wystarczy stosunkowo niewielki prąd zamykający się w obwodzie: odłączo-
na przez SPZ faza linii, jej ekwiwalentne elementy poprzeczne (głównie pojemności) 
oraz przewodzący kanał zjonizowany przez łuk pierwotny. Warunkiem utrzymywania 
się łuku wtórnego jest wystąpienie odpowiednio dużego prądu we wspomnianym ob-
wodzie, co może zachodzić w długich liniach wysokiego napięcia.  

System
S

System
R

zabezpieczenie S
SPZ

pomiar

zabezpieczenie R
SPZ

pomiar

 

Rys. C.57. Schemat zastępczy ilustrujący zasadę powstawania wtórnego łuku zwarciowego 

Korzyść ze stosowania automatyki SPZ w omawianym przypadku zwarć jednofa-
zowych wynika stąd, że najczęściej są to zwarcia przemijające (po krótkim okresie 
zwarcia ustępuje przyczyna, która go wywołała) i po krótkotrwałym wyłączeniu 
uszkodzonej fazy można ją znów załączyć, przywracając normalną pracę linii (cykl: 
wyłącz (W) – załącz (Z)). Gdyby jednak zwarcie było trwałe, to zabezpieczenie defi-
nitywnie wyłączy uszkodzoną linię (wszystkie jej fazy): cykl W–Z–W, co określa się 
jako nieskuteczne SPZ. W liniach z dwustronnym zasilaniem działania zabezpieczeń 
na obu jej końcach są w takim wypadku ze sobą skoordynowane [129].  

Jak widać z przedstawionego opisu mechanizmu powstawania zwarciowego łuku 
wtórnego, jego pojawienie się całkowicie niweczy nadzieję na skuteczne SPZ: po-
nowne załączenie wyłączonej fazy, przy obecności łuku wtórnego, nieuchronnie do-
prowadzi do wystąpienia łuku pierwotnego, a więc zwarcia. Informację tę można jed-
nak wykorzystać do odpowiedniej adaptacji układów SPZ. W tym celu stosowanie 
SPZ może być blokowane przy obecności łuku wtórnego [47, 111]. Innym sposobem 
jest zredukowanie prądu podtrzymującego łuk wtórny poniżej wartości jego utrzymy-
wania się [34, 35]. Do analizy powyższych scenariuszy bardzo pomocny jest ade-
kwatny model łuku. Dalej przedstawiono symulacyjną analizę zwarć jednofazowych 
w linii elektroenergetycznej z wykorzystaniem modeli obu wspomnianych łuków 
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zwarciowych: pierwotnego i wtórnego. Zbiór wszystkich elementów modelu niezbęd-
nych do symulacji jest zawarty w module przykład_C7.  

C.7.2. Model matematyczny łuku zwarciowego 

Do pełnej analizy zjawisk związanych z jednofazowym zwarciem w linii elektroener-
getycznej potrzebne są dwa różne modele zwarcia łukowego, które zwykło się nazy-
wać łukiem pierwotnym (o dużym prądzie zwarcia) oraz łukiem wtórnym, w którym 
prąd łuku jest stosunkowo niewielki. Przedstawione w punkcie a i b modele tych łu-
ków mają długą historię praktycznej weryfikacji, co można prześledzić w bogatej lite-
raturze przedmiotu. W modelach tych występuje wiele parametrów o charakterze em-
pirycznym.  

a) Model łuku pierwotnego 

Dynamika łuku pierwotnego jest zazwyczaj reprezentowana za pomocą następującego 
równania [47, 67, 111]:  

 
p

gG
t
g

τ
−

=
d
d  (C.33) 

gdzie: g jest zastępczą przewodnością łuku; τp jest stałą czasową procesu palenia się 
łuku; G jest przewodnością statyczną łuku, która jest określana następująco:  

 ( )liRu
i

G
p +

=  (C.34) 

przy czym: i – prąd łuku (A); up – charakterystyczne napięcie jednostkowe łuku 
(V/cm); R – charakterystyczna jednostkowa rezystancja łuku (Ω/cm); l – długość łuku 
(cm).  

Wspomniane parametry charakterystyczne łuku zależą głównie od prądu łuku i na-
pięcia znamionowego linii. W proponowanym modelu przyjęto:  

up = 15 V/cm, 
R = 10–5 Ω/cm, 
l = 400 cm. 
Stała czasowa τp jest szacowana według zależności [111]: 

 
l
I p

p

α
τ =  (C.35) 

gdzie: α = 2,5 10–5 – stały parametr, Ip = 15000 A – zakładana szczytowa wartość prą-
du łuku. 
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Równanie (C.33) jest rozwiązywane numerycznie w każdym kroku obliczeniowym 
według zależności:  

 ( ) 11 )1(1)( akgaGkg −+−=  (C.36) 

gdzie: pTa τ/
1

−= e , T – krok modelowania; wartość początkowa przewodności:  

lu
ig

p0,5
27,0)0( = . 

Schemat modelu łuku pierwotnego jest pokazany na rys. C.58. Procedura oblicza-
nia przewodności łuku zgodnie z (C.36) odbywa się w bloku Fl_pri. Rezystancja Rg 
jest równa odwrotności obliczonej przewodności g(k).  

W1

Rm

Rg

i

Fl_pri

inicjalizacja

 

Rys. C.58. Struktura modelu łuku pierwotnego 

b) Model łuku wtórnego 

Różnice w procesie palenia się łuku wtórnego w stosunku do łuku pierwotnego wyni-
kają głównie ze znacznie mniejszej energii dostarczanej, w tym wypadku do miejsca 
zwarcia. Łuk wtórny może powstać dzięki dużej jonizacji powietrza w obszarze pale-
nia się łuku pierwotnego. Po jego przerwaniu (w wyniku wyłączenia zwartej fazy) 
przewodność tej strefy jest nadal duża, przez co stosunkowo niewielkie napięcie indu-
kowane w odizolowanym przewodzie wystarczy do podtrzymywania łuku wtórnego 
w jego kolejnych półokresach. Ponieważ prąd związany z łukiem wtórnym jest nie-
zbyt duży, więc przewodność zjonizowanego obszaru z czasem maleje, aż do ustania 
warunków jego odbudowy.  

Schemat modelu łuku wtórnego (utworzonego w programie ATPDraw) jest poka-
zany na rys. C.59. Główna procedura jest zapisana w kodzie języka MODELS w blo-
ku Fl_sec. Procedura ta funkcjonuje według algorytmu przedstawionego na rys. C.60. 
Nazwy zmiennych są takie, jak w treści programu MODELS. Model jest inicjowany 
za pomocą zmiennej RUNTIM, która jest przekazywana z zewnętrznego bloku sterują-
cego. Równocześnie ze startem modelu zamykany jest wyłącznik W2 za pomocą 
zmiennej S_FLTS. W bloku FL_sec określane są wartości napięć źródłowych 
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voltmn = –voltpl oraz stan wyłącznika W3. Wielkościami wejściowymi są: napięcie 
łuku ufs oraz prąd ifs. Sterowane źródła napięciowe wraz z diodami tworzą dyskrymi-
nator napięcia łuku.  

Model łuku
wtórnego

Fl_sec

W2

W3

do linii

RUNTIM

voltpl
voltmn

swdrv

S_FLTS

ufs
ifs

Rs

 

Rys. C.59. Schemat modelu łuku wtórnego 

Zgodnie z przebiegiem rzeczywistego procesu w łuku wtórnym prąd ifs zanika (łuk 
gaśnie) w każdym półokresie, gdy znajdzie się on w pobliżu zera (ze względu na okre-
sowy przebieg napięcia). Jest to identyfikowane za pomocą zmiennej ramrst (rys. 
C.60).  

Stan ten powoduje wyłączenie wyłącznika W3 (zmienna swdrv). Zanik prądu wy-
wołuje odbudowę napięcia ufs. Jeśli napięcie to przewyższy bieżącą wartość napięcia 
przebicia (VARCW), to następuje ponowne zapalenie się łuku (załączenie W3 i odbu-
dowa prądu płynącego przez łuk). Można to prześledzić, obserwując przebiegi na rys. 
C.61. Napięcie przebicia VARCW ma kształt piły, przy czym jej amplituda rośnie 
z czasem, co odzwierciedla zmieniające się warunki ponownego zapłonu łuku. Łuk 
ostatecznie gaśnie, gdy napięcie indukowane w izolowanym przewodzie fazowym jest 
za małe do przebicia słabo już zjonizowanej przerwy. Prąd łuku wówczas całkowicie 
zanika, a napięcie przybiera sinusoidalny kształt o wartości wynikającej ze schematu 
zastępczego linii trójfazowej z odizolowaną jedną fazą (rys. C.57). Odpowiednie 
wielkości prądu łuku uzyskuje się przez właściwy dobór parametrów obwodu z rys. 
C.59. Ogranicza go głównie wartość rezystancji Rs. W rozpatrywanym modelu 
Rs = 200 Ω.  
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Rys. C.60. Algorytm funkcjonowania modelu łuku wtórnego 
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Rys. C.61. Przebiegi napięć (VARCW, ufs) oraz prądu (ifs) w modelu łuku wtórnego 
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C.7.3. Model ATP–EMTP 

Schemat pełnego modelu sieci wraz z modelami obu zwarć łukowych, przygotowany 
za pomocą programu ATPDraw, jest pokazany na rys. C.62. Wszystkie pliki związane 
z modelem są dostępne w kartotece \przyklad_C7. Linia 400 kV o łącznej długości 
160 km (odcinki: 32 km, 64 km, 64 km) łączy system S z systemem R. Zwarcie do-
ziemne fazy A zachodzi w odległości 32 km od stacji NODA2. Linia jest reprezento-
wana za pomocą modeli o parametrach rozłożonych z transpozycją (model Clarke) 
[30]. Na obu końcach linii rozdzielone są poszczególne fazy w celu wyodrębnienia 
zwartej fazy. Zwarcie jest reprezentowane w postaci modelu łuku pierwotnego i wtór-
nego.  

W tej części modelu znajdują się trzy bloki zrealizowane za pomocą modułów pro-
gramowych MODELS. Ich funkcje są następujące:  
1. Blok Flt_prim wraz z przyłączonymi do niego elementami odwzorowuje łuk pier-

wotny. Zwarcie jest inicjowane przez zamknięcie łącznika W1 z bloku SPAR. Na-
stępuje to w czasie tz = 0,02 s od początku symulacji. Parametrem wejściowym 
w tym bloku jest długość łuku: arc_l = 400 cm. Pozostałe parametry występują ja-
ko stałe (CONST) w tekście procedury flt_prim.mod.  
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Rys. C.62. Schemat analizowanego modelu ATPDraw 

2. Blok Flt_sec steruje fragmentem sieci odwzorowującej łuk wtórny. Jest on inicjo-
wany po otwarciu wyłączników w zwartej fazie na obu końcach linii. Następuje to 
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poprzez załączenie wyłącznika W2 i podanie sygnału RUNTIM z bloku SPAR. Sy-
gnał ten jest przekazywany pomiędzy dwoma blokami MODELS poprzez sztucz-
nie dodany fragment sieci ze źródłem napięciowym, gdyż w dostępnej wersji pro-
gramu ATPDraw nie ma możliwości bezpośredniej wymiany sygnałów pomiędzy 
takimi blokami. Użytkownik może wprowadzić następujące parametry modelowa-
nego łuku wtórnego: arc_l = 400 cm – długość łuku, xip = 35 A – szczytowa war-
tość prądu zwarciowego przy zerowej rezystancji zwarcia, runtm0 = 0,1 s – czas 
trwania łuku wtórnego.  

3. Blok SPAR steruje przebiegiem procesu zwarcia oraz inicjuje oba modele: łuku 
pierwotnego i wtórnego. Parametry wejściowe w tym bloku są następujące: thet_v, 
thet_i – współczynniki transformacji, odpowiednio, toru napięciowego i prądowe-
go (ma to znaczenie wówczas, gdy w modelu występują przekładniki – w rozwa-
żanym przypadku oba parametry są równe jedności), N = 64 – liczba próbek mie-
rzonego prądu i napięcia w okresie, FAINIT = 0,02 s – moment załączenia zwarcia, 
CRIMAR = 100 A – graniczna wartość prądu zwarciowego, poniżej której zakłada 
się, że zwarcie zostało przerwane (łuk pierwotny), ISOTIM = 0,05 s – moment 
włączenia modelu łuku wtórnego (i zakończenia zwarcia podstawowego).  

C.7.4. Wyniki symulacji 

Funkcjonowanie rozpatrywanego modelu można analizować na podstawie uzyskanych 
przebiegów prądu i napięcia podczas symulowanych zwarć z odtworzeniem pierwot-
nego i wtórnego łuku zwarciowego. Niektóre z nich są pokazane na rys. C.63.  

Górny rysunek (rys. C.63a) przedstawia przebieg prądu zwarciowego, który jest 
w tym przypadku, prądem łuku pierwotnego. Zwarcie wystąpiło w momencie 
tz = FAINIT = 0,02 s i trwa przez okres ok. 0,09 s. Zauważmy, że wprawdzie, intencja 
przerwania zwarcia została określona przez zmienną ISOTIM = 0,05 s, to jednak trwa 
ono nieco dłużej, aż do momentu, gdy prąd zwarciowy spada poniżej zadanej wartości 
granicznej CRIMAR = 100 A. Prąd zwarciowy przybiera dużą wartość ze względu na 
małą impedancję pętli zwarciowej, a w szczególności, małą rezystancję palącego się 
łuku. W tym czasie napięcie w miejscu zwarcia spada do małych wartości. Należy za-
uważyć, że zmienna ISOTIM odzwierciedla czas działania zabezpieczenia.  

Po ustąpieniu zwarcia (wyłączniki na obu końcach zwartej fazy są wyłączone) po-
jawia się łuk wtórny, który charakteryzuje się stosunkowo niewielkim prądem (rys. 
C.63c) i dosyć regularnym przebiegiem napięcia. Łuk ten po pewnym czasie gaśnie, 
co objawia się zanikiem prądu i wzrostem napięcia w miejscu zwarcia. Napięcie to 
jest indukowane w odizolowanym już przewodzie z dwóch zdrowych faz (rys. C.63b).  
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Rys. C.63. Wyniki symulacji: a) prąd zwarciowy; b) napięcie w miejscu zwarcia,  
c) prąd łuku wtórnego 

C.7.5. Podsumowanie 

Przedstawione modele zwarć łukowych pozwalają analizować zjawiska dynamiczne 
związane z jednofazowym zwarciem w linii przesyłowej, w której, ze względu na sto-
sowanie automatyki SPZ, ważne jest, czy po wyłączeniu zwarcia przemijającego 
można ponownie załączyć uszkodzoną fazę. W celu usprawnienia automatyki jedno-
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fazowego SPZ stosuje się różne techniki sprawdzania, czy w odłączonej fazie nie 
utrzymuje się łuk wtórny. Mówi się wówczas o adaptacyjnym SPZ [47, 111].  

Rozpatrywany model zawiera trzy oddzielne moduły przygotowane w programie 
MODELS. Pokazano sposób ich łączenia z wzajemnym przekazywaniem sygnałów. 
Należy przypomnieć, że w programie ATP–EMTP przyjęto, że nazwy są ograniczone 
do sześciu znaków i dla poprawnej pracy całego modelu, nazwy poszczególnych blo-
ków programowych (modułów) także nie powinny być dłuższe. W tekście procedury 
Fl_sec pokazano, jak można wyprowadzać wartości poszczególnych zmiennych 
z wnętrza procedury do zbioru wyjściowego (*.pl4).  

W przedstawionym modelu pominięto reprezentację przekładników prądowych 
i napięciowych. Należy zauważyć, że w rzeczywistym obiekcie układy zabezpieczeń 
i automatyki elektroenergetycznej otrzymują informacje o przebiegach prądów i na-
pięć poprzez te właśnie przekładniki, a w przypadku układów cyfrowych na wejściu 
do przetworników A/C są także umieszczone analogowe filtry odcinające. Sygnały 
prądu i napięcia obserwowane przez te układy są w rezultacie pozbawione szumów 
wysokoczęstotliwościowych, które można obserwować w zarejestrowanych powyżej 
przebiegach.  

C.8. Statyczna kompensacja mocy biernej 

C.8.1. Wprowadzenie 

Kompensacja mocy biernej może spełniać różne funkcje w sieci elektrycznej, co zale-
ży przede wszystkim od poziomu napięcia sieci, w której jest stosowana:  
• W sieciach zakładowych i rozdzielczych głównym powodem stosowania kompen-

sacji mocy biernej (poprawy współczynnika mocy) jest dążenie do ograniczenia 
strat mocy czynnej w sieci, wywołanych przepływem prądu biernego. Ilustruje to 
rys. C.64. Moc ∆P wydzielana na rezystancji linii jest równa (pominięto parametry 
poprzeczne linii):  
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Widać zatem, że zmniejszenie mocy biernej Q przepływającej przez linię prowadzi 
do zmniejszenia strat ∆P. Jest to równoważne zmniejszeniu kąta ϕ (zwiększeniu 
cos(ϕ)). Można to uzyskać przez kompensację mocy biernej jak najbliżej odbiornika, 
przez równoległe dołączenie indukcyjności lub pojemności, stosownie do znaku mocy 
biernej pobieranej przez odbiornik. Jest to kompensacja statyczna (podobny efekt 
można uzyskać przez dołączenie maszyny wirującej – najczęściej jest to generator 
synchroniczny z odpowiednio dobranym prądem wzbudzenia).  
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Rys. C.64. Schemat zastępczy sieci: a) z obciążeniem oraz b) wykres wektorowy 

• W sieciach przesyłowych często sprawą ważniejszą od redukcji strat w liniach jest 
regulacja napięcia i zapewnienie przesyłu maksymalnej mocy czynnej. Problem ten 
ilustruje rys. C.65.  
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Rys. C.65. Schemat zastępczy sieci przesyłowej: a) z obciążeniem   
oraz b) wykres wektorowy prądów i napięć w sieci 

Spadek napięcia na linii jest równy:  
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gdzie zakłada się, że rezystancja linii jest znacznie mniejsza od jej reaktancji: R<<X.  
Widać, że chcąc przesłać w tym układzie zadaną moc P, przy zachowaniu dopusz-

czalnego spadku napięcia ∆U, należy odpowiednio zmniejszyć wartość przesyłanej 
mocy biernej Q lub/i reaktancję linii X. Problem ten jest bezpośrednio związany ze 
stabilnością napięciową, utrata której często prowadzi do awarii systemowej (ang. 
black-out).  

W obu wymienionych przypadkach pożądana jest adaptacyjna kompensacja mocy 
biernej, w której wartość i charakter mocy kompensującej jest dobierana elastycznie, 
stosownie do występującego deficytu. W nowoczesnych rozwiązaniach jest to reali-
zowane przez zastosowanie sterowanych układów energoelektronicznych. Urządzenia 
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tego typu obejmuje się wspólną nazwą FACTS (akronim od ang.: Flexible Alternative 
Current Transmission System). Układy FACTS mogą się znacznie różnić zarówno co 
do realizowanych funkcji, jak i technicznych rozwiązań. Następny przykład ilustruje 
niektóre właściwości takich układów i sposób sterowania łącznikami elektronicznymi.  

C.8.2. Statyczny kompensator mocy biernej 

Nazwa: Statyczny Kompensator Mocy Biernej (ang. Static VAr Compensator – SVC) 
obejmuje grupę układów umieszczanych poprzecznie do linii (odbioru), w których 
elementy pojemnościowe lub indukcyjne są dynamicznie włączane za pośrednictwem 
elementów elektronicznych. Ich nazwy i szczegóły budowy zależą od sposobu stero-
wania elektronicznymi kluczami oraz sposobem generacji mocy biernej pojemnościo-
wej lub indukcyjnej. Pokazuje to następujący model przygotowany w programie 
ATPDraw:  

Model kompensatora przygotowany w edytorze ATPDraw jest pokazany na rys. 
C.67. Schemat ideowy głównego obwodu jest pokazany na  rys. C.66. Wszystkie pliki 
modelu są dostępne w kartotece przykład_C8.  
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Rys. C.66. Schemat ideowy kompensatora mocy biernej 

Źródłem mocy biernej są indukcyjności L, a przepływający przez nie prąd jest kon-
trolowany przez tyrystory. Gałęzie RCC pełnią funkcje ochrony przepięciowej. W peł-
nym modelu (rys. C.67) dodane są także podobne obwody do ochrony tyrystorów.  
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Sposób generacji impulsów wyzwalających tyrystory w rozpatrywanym modelu 
jest pokazany na rys. C.68. W chwili przejścia wybranego napięcia odniesienia (uL1L2) 
przez zero (od wartości ujemnej do dodatniej) generowany jest liniowo narastający 
sygnał β o takim nachyleniu, że w końcu półokresu przyjmuje on wartość 180, co od-
powiada zmianie kąta napięcia w tym czasie, (°). W modelu ATP–EMTP układ ten 
jest realizowany z wykorzystaniem bloku TACS (dolna część schematu na rys. C.67). 
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Rys. C.67. Schemat modelu ATPDraw  

Sygnał impulsowy FIRE_1 jest generowany w chwili zrównania się zadanej warto-
ści kąta wyzwalania α z omawianym przebiegiem piłokształtnym (rys. C.68). Szero-
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kość tego impulsu w modelu jest stała. Sygnały wyzwalające pozostałe tyrystory są 
generowane przez opóźnienie kolejnych impulsów o 60°. Operacje te są realizowane 
w module TACS za pomocą elementów typu 54. Szczegóły są pokazane na rys. C.67.  

Regulacja wartości mocy biernej, generowanej w tym układzie, jest realizowana za 
pomocą kąta α. Metoda ta jest znana jako modulacja szerokością impulsów (ang. Pul-
se Width Modulation – PWM) [52, 93]. Na rysunku C.69 pokazane są przebiegi prądu 
w jednej gałęzi trójkąta w schemacie zastępczym kompensatora (rys. C.66) dla dwóch 
różnych wartości kąta α. Związane z tym przebiegi całkowitej mocy biernej kompen-
satora są pokazane na rys. C.69. Moc bierna jest tu określana na podstawie znanych 
zależności pomiędzy składowymi ortogonalnymi prądu i napięcia, które są określane 
za pomocą filtracji pełnookresowej Fouriera [105].  

0

czas t, s

uL1L2

a

FIRE_1

b

0,00 0,02 0,04 0,06 0,08 0,10
 

Rys. C.68. Generacja impulsów wyzwalających tyrystory 

Na podstawie rys. C.69 można zauważyć, że ze względu na przeciwsobne umiesz-
czenie tyrystorów sterujących, zakres zmian wartości kąta α ogranicza się do prze-
działu: 0 < α < 90°. W rzeczywistości zakres ten jest jeszcze nieco mniejszy, co za-
pewnia stabilną pracę układu.  

Przebiegi mocy biernej, odpowiadające dwóm kątom sterowania tyrystorów z rys. 
C.69 są pokazane na rys. C.70. Widoczne narastanie przebiegów na początku pomiaru 
jest związane ze stanem przejściowym algorytmu określania składowych ortogonal-
nych prądu i napięcia [105].  
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Rys. C.69. Przebiegi prądu fazowego na zaciskach kompensatora dla dwóch różnych 
 wartości kąta α  
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Rys. C.70. Przebiegi mocy biernej kompensatora dla dwóch różnych wartości kąta α 

Na podobnej zasadzie można tworzyć także modele bardziej złożonych układów 
FACTS.   





 

LITERATURA 

1. ALEXANDER R., Diagonally implicit Runge–Kutta methods for stiff O.D.E.'s, SIAM Journal on 
Numerical Analysis, Vol. 14, No. 6 (Dec., 1977), s. 1006–1021. 

2. ALVARADO F.L., LASSETER R.H., SANCHEZ J.J., Testing of trapezoidal integration with 
damping for the solution of power transient problems, IEEE Transactions on Power Apparatus and 
Systems, Vol. PAS-102, No.12, December 1983, s. 3783–3790. 

3. AMETANI A. BABA Y., Frequency-dependent line and cable modeling, EEUG Course, 27-th Sep-
tember 2000, Wrocław, Poland.  

4. ANDERSON P.M., FOUAD A.A., Power system control and stability, The Iowa State University 
Press, Iowa, 1977.  

5. ANNAKKAGE U.D., MCLAREN P.G., DIRKS E., JAYASINGHE R.P., PARKER A.D., A current 
transformer model based on the Jiles-Atherton theory of ferromagnetic hysteresis, IEEE Transac-
tions on Power Delivery, Vol. 15, No. 1, January 2000, s. 57–61.  

6. ARRILLAGA J., WATSON N., Computer modeling of electrical power systems, John Wiley & 
Sons, Ltd, Chichester, 2001  

7. АРУШАНЯН О.Б., ЗАЛЁТКИН С.Ф., Численные методы решения обыкновенных дифферен-
циальных уравнений (задача Коши), w: http://www.srcc.msu.su/num_anal/list_wrk/sb3_doc/ 
part6.htm.  

8. ATP–EMTP Rule Book, Canadian/American EMTP User Group, 1987–92.  
9. BASTOS J.P.A., SADOWSKI N., Electromagnetic modeling by finite element methods, Marcel 

Dekker, Inc., New York, 2003. 
10. BERGEN A.R., VITTAL V., Power systems analysis, Prentice Hall, Upper Saddle River, N.J., 

2000. 
11. BERNAS S., CIOK Z., Modele matematyczne elementów systemu elektroenergetycznego, Wydaw-

nictwa Naukowo-Techniczne WNT, Warszawa, 1977. 
12. BIAŁKO M., Analiza układów elektronicznych wspomagana komputerem, Wydawnictwa Nauko-

wo-Techniczne WNT, Warszawa, 1989. 
13. BOLDEA I., Variable speed generators, Taylor & Francis Group, Boca Raton, 2006. 
14. BOLDEA I., NASAR S.A., The induction machine handbook, CRC Press LLC, Boca Raton, 2002.  
15. BRANDWAJN V., DOMMEL H.W., DOMMEL I.I., Matrix representation of three-phase n-win-

ding transformers for steady-state and transient studies, IEEE Transactions on Power Apparatus 
and Systems, Vol. PAS-101, No. 6, 1982, s. 1369–178.  

16. CAO X., KURITA A., TADA Y., OKAMOTO H., Type-58 synchronous machine model and re-
lated modifications, EMTP Journal, Vol. 11, 2006, s. 78–84. 

17. CAO X., KURITA A., MITSUMA H., TADA Y., OKAMOTO H., Improvements of Numerical Sta-
bility of Electromagnetic Transient Simulation by Use of Phase-Domain Synchronous Machine 
Models, Electrical Engineering in Japan, Vol. 128, No. 3, 1999, s. 53–62. 

18. CARSON J.R., Wave propagation in overhead wires with ground return, Bell Syst. Tech. Journal, 
Vol. 5, 1926, s. 539–554.  



376 Literatura 

19. CHANDRASENA W., MCLAREN P.G., ANNAKKAGE U.D., JAYASINGHE R.P., 
MUTHUMUNI D., DIRKS E., Simulation of hysteresis and eddy current effects in a power trans-
former, Proc. Int. Conf. on Power System Transients, IPST 2003, New Orleans, paper 9a-3. 

20. CHAUDHARY A.K.S., TAM K.S., PHADKE A.G., Protection System Representation in the Elec-
tromagnetic Transients Program, IEEE Transactions Power Delivery, Vol. 9, No. 2, April 1994, 
s. 700–711.  

21. CHEN X., Negative inductance and numerical instability of saturable transformer component in 
EMTP, IEEE Transactions on Power Delivery, Vol. 15, No. 4, October 2000, s. 1199–1204. 

22. CHOLEWICKI T., Elektrotechnika teoretyczna, T. II. Wydawnictwa Naukowo-Techniczne WNT, 
Warszawa, 1971. 

23. CHUA L.O., LIN P.M., Komputerowa analiza układów elektronicznych. Algorytmy i metody 
obliczeniowe, Wydawnictwa Naukowo-Techniczne WNT, Warszawa, 1981. 

24. CLARKE E., Circuit Analysis of AC Power Systems, Vol. I. New York, Wiley, 1950. 
25. DENNETIÈRE S., MAHSEREDJIAN J., MARTINEZ M., RIOUAL M., XÉMARD A., On the im-

plementation of a hysteretic reactor model in EMTP, Proc. Int. Conf. on Power System Transients, 
IPST 2003, New Orleans, paper 9d-3. 

26. DIRECTOR S.W., ROHRER R.A., Podstawy teorii układów elektrycznych, Państwowe Wydawnic-
two Naukowe PWN, Warszawa 1976. 

27. ДОЛГИНОВ А.И., СТУПЕЛЬ А.И., ЛЕВИНА Л.С., Алгоритмы и программа расчета на ЭВМ 
электромагнитных переходных процессов в электрических системах, Электричество, 1966, 
№ 8, s. 23–29. 

28. DOMMEL H.W., Digital computer solution of electromagnetic transients in single- and multiphase 
networks, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-88, April 1969, s. 388–
399.  

29. DOMMEL H.W., Nonlinear and time-varying elements in digital simulation of electromagnetic 
transients, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-90, November 1971,  
s. 2561–2567.  

30. DOMMEL H.W., Electromagnetic Transients Program. Reference Manual (EMTP theory book), 
Bonneville Power Administration, Portland, 1986.  

31. DOMMEL H.W., Introduction to the use of MicroTran® and other EMTP versions, Notes used in 
Graduate Course ELEC 553 ‘Advanced Power Systems Analysis’, w: http://www.ece.ubc.ca/ 
power/e553data/e553.pdf.  

32. DUBÉ L., Models in ATP. Language manual, Feb. 1996.  
33. DUBÉ L., BONFANTI I., MODELS. A new simulation tool in the EMTP, European Transactions on 

Electrical Power Engineering, Vol. 2, No. 1, January/February 1992, s. 45–50.  
34. DUDURYCH I., ROSOLOWSKI E., Analysis of Overvoltages on Overhead Ground Wires of EHV 

Power Transmission Line under Single-Phase-to-Ground Faults, Electric Power Systems Research, 
Vol. 53, January 2000, s. 105–111.  

35. DUDURYCH I.M., GALLAGHER T.J., ROSOLOWSKI E., Arc Effect on Single-phase Reclosing 
Time of an UHV Power Transmission Line, IEEE Transactions Power Delivery, Vol. 19, No. 2,  
s. 854–860. 

36. ДЖУВАРЛЫ Ч.М., ДМИТРИЕВ Е.В., Применение метода характеристик к решению m-про-
водной линии электропередач, Изв. АН СССР, Энергетика и Транспорт, № 1, 1967, s. 48–53. 

37. Electromagnetic Transients Program (EMTP) Workbook, Electric Power Research Institute, Palo 
Alto 1986. EL-4651, Research Project 2149-6.  

38. ФИРАГО Б.И., ПАВЛЯЧИК Л.Б., Теория электропривода, «Техноперспектива», Минск 2007.  
39. FITZGERALD A.E., KINGSLEY C., JR., UMANS S.D., Electric machinery, McGraw-Hill, New 

York, 2003. 



Literatura 377 

40. FORSYTHE G.E., MALCOLM M.A., MOLER C.B., Computer methods for mathematical compu-
tations, Englewood Cliffs, N.J., Prentice-Hall, Inc., 1977. 

41. FORTUNA Z., MACUKOW B., WĄSOWSKI J., Metody numeryczne, Warszawa, WNT, 1993. 
42. FURST G., Induction and synchronous motor simulation using ATP/U.M. type 1, 3 and 4. A brief 

review, European ATP–EMTP Users Group e.V Meeting, Wrocław, 2000.  
43. GALAS G.J., DOYLE J.C., GLOVER K., PACKARD A., SMITH R., µ-Analysis and Synthesis 

Toolbox For Use with MATLAB. User’s Guide, The MathWorks, Inc. 1998. 
44. GÓMEZ P., URIBE F.A., The numerical Laplace transform: An accurate technique for analyzing 

electromagnetic transients on power system devices, Electrical Power and Energy Systems, 31 
(2009), 116–123. 

45. GLOVER J.D., SARMA M.S., Power system analysis and design, Brooks/Cole, 2002. 
46. GOGOLEWSKI Z., KUCZEWSKI Z., Napęd elektryczny, Wydawnictwa Naukowo-Techniczne 

WNT, Warszawa, 1971. 
47. GOLDBERG S., HORTON W.F., TZIOUVARAS D., A computer model of the secondary arc in 

single phase operation of transmission line, IEEE Transactions on Power Delivery, Vol. 4, No. 1, 
January 1989, s. 586–595.  

48. HAGINOMORI E., Highly Sophisticated Electric Power Systems, Japanese ATP User Group, w: 
http://gundam.eei.eng.osaka-u.ac.jp/hseps/index.html.  

49. HENSCHEL S., IBRAHIM A.I., DOMMEL H.W., Transmission line model for variable step size 
simulation algorithms, Electrical Power and Energy Systems, 21 (1991), s. 191–198. 

50. HØIDALEN H.K., SPORILD R., Modeling of phase-shift zigzag transformers in ATP, EEUG Meet-
ing, Trondheim, 2004. 

51. HØIDALEN H.K., SPORILD R., Using Zigzag Transformers with Phase-shift to reduce Harmonics 
in AC-DC Systems, Proc. Int. Conf. on Power System Transients, IPST 2005, Montreal, 
IPST05_Paper044.  

52. HOLMES D.G., LIPO T.A., Pulse width modulation for power converters, Principles and practice. 
IEEE Press, Piscataway, 2003. 

53. HUMPAGE W.D., Z-Transform Electromagnetic Transient Analysis in High-Voltage Networks, Pe-
ter Peregrinus Ltd., London, 1982.  

54. IBRAHIM A.I., Frequency dependent network equivalents for electromagnetic transients studies:  
a bibliographical survey, Electrical Power and Energy Systems, 25 (2003), s. 193–199.  

55. IBRAHIM A.I., HENSCHEL S., LIMA A.C., DOMMEL H.W., Application of a new EMTP line 
model for short overhead lines and cables, Electrical Power and Energy Systems, 24 (2002), s. 639–
645.  

56. IEEE Standard Common Format for Transient Data Exchange (COMTRADE) for Power Systems, 
IEEE Std C37.111–1999. 

57. IŻYKOWSKI J., Fault location on power transmission lines, Oficyna Wydawnicza Politechniki 
Wrocławskiej, Wrocław, 2008. 

58. JACKSON L.B., Digital filters and signal processing, Kluwer Academic Publisher, Boston, 1986. 
59. JASICKI Z., Zjawiska nieustalone w układach elektroenergetycznych, Wydawnictwa Naukowo-

Techniczne WNT, Warszawa, 1969. 
60. KACEJKO P., MACHOWSKI J., Zwarcia w systemach elektroenergetycznych, Wydawnictwa Na-

ukowo-Techniczne WNT, Warszawa, 2002.  
61. KACZOREK T., Wektory i macierze w automatyce i elektrotechnice, Wydawnictwa Naukowo-

Techniczne WNT, Warszawa, 1998. 
62. КАДОМСКАЯ К.П., ЛЕВИНШТЕЙН М.Л, ШТЕРЕНБЕРГ Г.П., О решении уравнений 

длинной линии электропередачи на математических машинах непрерывного и дискретного 
действия, Изв. АН СССР, Энергетика и Транспорт, №  4, 1963. 



378 Literatura 

63. KASZTENNY B., ROSOŁOWSKI E., Cyfrowe zabezpieczenie różnicowe transformatora, Projekt 
celowy Nr 8 8259 94C/1830, Instytut Energoelektryki PWr. Raport Serii Sprawozdania Nr 39/95, 
Wrocław, 1995.  

64. KASZTENNY B., ROSOŁOWSKI E., SAHA M.M., HILLSTROM B., A power transformer model 
for investigation of protection schemes, Proc. Int. Conf. on Power System Transients, IPST 1995, 
Lisbon, Portugal, s. 136–141. 

65. KĄCKI R., Równania różniczkowe cząstkowe w zagadnieniach fizyki i techniki, Wydawnictwa Na-
ukowo-Techniczne WNT, Warszawa, 1989. 

66. KIEŁBASIŃSKI A., SCHWETLICK H., Numeryczna algebra liniowa, Wydawnictwa Naukowo-
Techniczne WNT, Warszawa, 1992. 

67. KIZILCAY M., PNIOK T., Digital simulation of fault arcs in power system, European Transactions 
on Electric Power, Vol. 1, January 1991, s. 55–60.  

68. KIZILCAY M., Review of solution methods in ATP–EMTP, EEUG News, Feb–May 2001, s. 25–36.  
69. KUDREWICZ J., Nieliniowe obwody elektryczne, Wydawnictwa Naukowo-Techniczne WNT, 

Warszawa, 1996. 
70. KURZAWA S., Liniowe obwody elektryczne, Państwowe Wydawnictwo Naukowe PWN, Warsza-

wa, 1971. 
71. LAGACE P.J., VOUNG M.H., AL.-HADDAD K., A time domain model for transient simulation of 

synchronous machines using phase coordinates, Power Engineering Society General Meeting, 2006. 
IEEE (2006), 6 s. 

72. LATEK W., Teoria maszyn elektrycznych, Wydawnictwa Naukowo-Techniczne WNT, Warszawa, 
1987. 

73. LAUW H.K., MEYER W.S., Universal machine modeling for representation of rotating electric 
machinery in an electromagnetic transients program, IEEE Transactions on Power Apparatus and 
Systems, Vol. PAS-101, No. 6, June 1982, s. 1342–1351. 

74. LEON F.D., SEMLYEN A., Complete transformer model for electromagnetic transients, IEEE 
Transactions on Power Delivery, Vol. 9, No. 1, January 1994, s. 231–239. 

75. LIN J., MARTI J.R., Implementation of the CDA procedures in the EMTP, IEEE Transactions on 
Power Systems, Vol. 5, No. 2, May 1990, s. 394–401.  

76. MACHOWSKI J., BERNAS S., Stany nieustalone i stabilność systemu elektroenergetycznego, Wy-
dawnictwa Naukowo-Techniczne WNT, Warszawa, 1989. 

77. MACHOWSKI J., BIALEK J., BUMBY J., Power System Dynamics, Stability and Control, New 
York, John Wiley & Sons, 2008. 

78. MARTI J.R., Accurate modelling of frequency-dependent transmission lines in electromagnetic 
transient simulations, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101, No. 1, 
January 1982, s. 147–155.  

79. MARTI J.R., LIN J., Suppression of numerical oscillations in the EMTP, IEEE Transactions on 
Power Systems, Vol. 4, No. 2, May 1989, s. 739–745.  

80. MARTI J.R., LOUIE K.W., A phase-domain synchronous generator model including saturation ef-
fect, IEEE Transactions on Power Systems, Vol. 12, No. 1, February 1997, s. 222–227. 

81. MARTI L., Low-order approximation of transmission line parameters for frequency-dependent 
models, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-102, No. 11, November 
1983, s. 3582–3589.  

82. MARTI L., Simulation of transients in underground cables with frequency-dependent modal trans-
formation matrices, IEEE Transactions on Power Delivery, Vol. 3, No. 3, July 1988, s. 1099–1106.  

83. MARTINEZ J.A., EMTP simulation of a digitally-controlled static var system for optimal load 
compensation, IEEE Transactions on Power Delivery, Vol. 10, No. 3, July 1995, s. 1408–1415.  



Literatura 379 

84. MARTINEZ J.A., JOHNSON B., GRANDE-MORAN C., Parameter determination for modeling 
system transients – Part IV: Rotating machines, IEEE Transactions on Power Delivery, Vol. 20, No. 
3, July 2005, s. 2063–2072. 

85. MATLAB user’s guide, The Math Works Inc., Natick, MA, USA, 2000. 
86. MENEMENLIS N., MAHARSI Y.H., Real-time implementation of a CCVT includeing a nonitera-

tive dynamic hysteresis model, Second International Conference on Digital Power System Simula-
tors – ICDS ’97, Montreal, May 28–30, 1997, s. 111–116. 

87. MEYER W.S., DOMMEL H.W., Numerical modelling of frequency-dependent transmission line 
parameters in an electromagnetic transients program, IEEE Transactions on Power Apparatus and 
Systems, Vol. PAS-93, Sept./Oct. 1974, s. 1401–1409.  

88. MOHAN N., UNDELAND T.M., ROBBINS W.P., Power electronics. Converters, applications and 
design, John Willey & Sons, Inc. 2003. 

89. MORENO P., RAMIREZ A., Implementation of the numerical Laplace transform: a review, Task 
Force on Frequency Domain Methods for EMT Studies, IEEE Transactions on Power Delivery, Vol. 
23, No. 4, October 2008, s. 2599–2609.  

90. NGUYEN H.V., DOMMEL H.W., MARTI J.R., Direct phase-domain modeling of frequency-
dependent overhead transmission lines, IEEE Transactions on Power Delivery, Vol. 12, No. 3, July 
1997, s. 1335–1342. 

91. NODA T., NAGAOKA N., AMETANI A., Phase domain modeling of frequency-dependent trans-
mission lines by means of an ARMA model, IEEE Transactions on Power Delivery, Vol. 11, No. 1, 
January 1996, s. 401–411.  

92. NODA T., TAKENAKA K., INOUE T., Numerical integration by the 2-stage diagonally implicite 
Runge–Kutta metod for Electromagnetic Transient Simulation, IEEE Transactions on Power Deliv-
ery, Vol. 24, No. 1, 2009, s. 390–399. 

93. NOWAK M., BARLIK R., Poradnik inżyniera energoelektronika, Wydawnictwa Naukowo-
Techniczne WNT, Warszawa, 1998. 

94. OGRODZKI J., Komputerowa analiza układów elektronicznych, Państwowe Wydawnictwo Na-
ukowe PWN, Warszawa, 1994.  

95. ORŁOWSKA-KOWALSKA T., Bezczujnikowe układy napędowe z silnikami indukcyjnymi, Oficyna 
Wydawnicza Politechniki Wrocławskiej, Wrocław, 2003. 

96. OSIOWSKI J., Zarys rachunku operatorowego. Teoria i zastosowania w elektrotechnice, Wydaw-
nictwa Naukowo-Techniczne WNT, Warszawa, 1972. 

97. OSIOWSKI J., SZABATIN J., Podstawy teorii obwodów, t. I, Wydawnictwa Naukowo-Techniczne 
WNT, Warszawa, 1992.  

98. OSIOWSKI J., SZABATIN J., Podstawy teorii obwodów, t. II, Wydawnictwa Naukowo-Techniczne 
WNT, Warszawa, 1993.  

99. OSIOWSKI J., SZABATIN J., Podstawy teorii obwodów, t. III, Wydawnictwa Naukowo-
Techniczne WNT, Warszawa, 1995.  

100. OSOWSKI S., Modelowanie układów dynamicznych z zastosowaniem języka SIMULINK, Oficyna 
Wydawnicza Politechniki Warszawskiej, Warszawa, 1999.  

101. PASZEK W., Stany nieustalone maszyn elektrycznych prądu przemiennego, WNT, Warszawa 1986. 
102. PLAMITZER A., Maszyny elektryczne, WNT, Warszawa, 1976. 
103. PRESS W.H., TEUKOLSKY S.A., VETTERLING W.T., FLANNERY B.P., Numerical recipes in 

C. The art of scientific computing, Cambridge University Press, Cambridge, 1997. 
104. PRIKLER L., HØIDALEN H.K, ATPDRAW version 3.5 for Windows 9x/NT/2000/XP. Users’ 

Manual. SINTEF Energy Research, Norway, 2002.  
105. ROSOŁOWSKI Е., Разработка и исследование метода имитационного моделирования 

электромагнитных переходных процессов в электрических системах для анализа условий 



380 Literatura 

функционирования быстродействующих защит, praca doktorska, Politechnika Kijowska, Kijów, 
1978. 

106. ROSOŁOWSKI E., Cyfrowe przetwarzanie sygnałów w automatyce zabezpieczeniowej, Akademic-
ka Oficyna Wydawnicza EXIT, Warszawa 2002.  

107. SACHDEV M.S., NAGPAL M. ADU T., Interactive Software for Evaluating and Teaching Digital 
Relaying Algorithms, IEEE Transactions. on Power Systems, Vol. 5, No. 1, Feb. 1990, s. 346–352.  

108. СЕГЕДА М.С., Електричнi мережi та системи, Видавництво Нацiонального унiверситету 
„Львiвска полiтехнiка”, Львiв 2007. 

109. SIDHU T.S., HFUDA M. SACHDEV M.S., Generating Relay Models for Protection Studies, IEEE 
Computer Applications in Power, Vol. 11, No. 4, Oct. 1998, s. 33–38.  

110. СИГОРСКИЙ В.П., ПЕТРЕНКО А.И., Алгоритмы анализа электронных схем, СОВЕТСКОЕ 
РАДИО, Москва 1976. 

111. SONG Y.H., AGGARWAL R.K., JONES A.T., Digital Simulation of Fault Arcs Long-Distance 
Compensated Transmission Systems with Particular Reference to Adaptive Autoreclose, European 
Transactions on Electric Power, Vol. 5, No. 5, Sept/Oct 1995, s. 315–324.  

112. STEIGLITZ K., Wstęp do systemów dyskretnych, Wydawnictwa Naukowo-Techniczne WNT, War-
szawa, 1977. 

113. STOER J., BULRISCH R., Wstęp do analizy numerycznej, Państwowe Wydawnictwo Naukowe 
PWN, Warszawa, 1987. 

114. TADEUSIEWICZ M., Metody komputerowej analizy stałoprądowej nieliniowych układów elektro-
nicznych, Wydawnictwa Naukowo-Techniczne WNT, Warszawa, 1991. 

115. TAPIA A., TAPIA G., OSTOLAZA J.X., SAENZ J. R., Modeling and control of a wind turbine 
driven doubly fed induction generator, IEEE Transactions on Power Energy Conversion, Vol. 18, 
No. 2, June 2003, s. 194–204. 

116. TAPIA G., TAPIA A., OSTOLAZA J.X., Two alternative modeling approaches of wind farm active 
and reactive power performances, IEEE Transactions on Power Energy Conversion, Vol. 21, No. 4, 
December 2006, s. 909–920. 

117. TEWARSON R.P., Sparse matrices, Academic Press, New York, 1973. 
118. THAM M.T., Internal model control. Lecture notes on Robust Control, w: http://lorien.ncl.ac.uk/ 

ming/robust/imc.pdf. 
119. TOKIC A., UGLESIC I., JAKL F., An algorithm for calculations of low frequency transformer 

transients, International Conference on Power Systems Transients – IPST 2003 in New Orleans, 
USA, paper 9a-2. 

120. TRAN-QUOC T., PIERRAT L., MONTMEAT A., KUENY J.L., Modeling of nonlinear elements in 
a digital simulator, Part I: Implementation, Second International Conference on Digital Power Sys-
tem Simulators – ICDS ’97, Montreal, May 28–30, 1997, s. 99–104. 

121. Tutorial on Electromagnetic Transient Program Applications to Power System Protection, IEEE 
Power Engineering Society, 01TP150, 2000. 

122. УЛЬЯНОВ С.А., Электромагнитные переходные процессы в электрических системах, 
ЭНЕРГИЯ, Москва, 1970. 

123. WATSON N., ARRILLAGA J., Power systems electromagnetic transients simulation, The Institu-
tion of Electrical Engineers, London, 2003.  

124. WATSON N.R., IRWIN G.D., Electromagnetic transient simulation of power systems using root-
matching techniques, IEE Proc.-Gener. Transm. Distrib. Vol. 145, No. 5, September 1998, s. 481–
486.  

125. WATSON N.R., IRWIN G.D., Comparison of root-matching techniques for electromagnetic tran-
sient simulation, IEEE Transactions on Power Delivery, Vol. 15, No. 2, April 2000, s. 629–634.  



Literatura 381 

126. WEDEPOHL L.M., Application of matrix methods to the solution of travelling wave phenomena in 
polyphase systems, Proc. IEE, pt C, Vol. 110 (12) 1963, s. 2200–2212. 

127. WEEDY B.M., CORY B.J., Electric power systems, John Wiley & Sons, Chichester, 1999. 
128. WILCOX D.J., Numerical Laplace transformation and inversion, Int. J. Elect. Eng. Educ. 1978, 15, 

s. 247–265. 
129. WINKLER W., WISZNIEWSKI A., Automatyka zabezpieczeniowa w systemach elektroenergetycz-

nych, Wydawnictwa Naukowo-Techniczne WNT, Warszawa, 2005.  
130. WISZNIEWSKI A., Przekładniki w elektroenergetyce, Wydawnictwa Naukowo-Techniczne WNT, 

Warszawa, 1992. 
131. WOJTKIEWICZ A., Elementy syntezy filtrów cyfrowych, Wydawnictwa Naukowo-Techniczne 

WNT, Warszawa, 1984. 
132. Working Group B5.17, Relay Software Models for Use with Electromagnetic Transient Analysis 

Programs, CIGRE 2003.  
133. Working Group C-5 of the Systems Protection Subcommittee of the IEEE Power System Relaying 

Committee, Mathematical models for current, voltage, and coupling capacitor voltage transform-
ers, IEEE Transactions on Power Delivery, Vol. 15, No. 1, January 2000, s. 62–72. 

Strony internetowe: 

134. Alan Philips, http://www.lancs.ac.uk/staff/steveb/cpaap/pfe/default.htm – edytor tekstowy PFE. 
135. http://www.ee.mtu.edu/atp/ – Kanadyjsko-Amerykańska Grupa Użytkowników EMTP.  
136. atp-emtp@listserv.nodak.edu – lista dyskusyjna ATP–EMTP.  
137. http://www.eeug.de – Europejska Grupa Użytkowników EMTP. 
138. http://www.emtp.org/ – Alternative Transients Program (ATP). 
139. http://www.elkraft.ntnu.no/atpdraw/ – strona twórców programu ATPDraw.  
140. http://www.emtp.com/ – CEATI International Inc. (EMTP–RV). 
141. http://www.microtran.com – wersja UBC (University of British Columbia, Kanada).  
142. http://www.pscad.com/ – PSCAD/EMTDC (Manitoba HVDC Research Centre).  
143. http://www.digsilent.com/ – DIgSILENT PowerFactory. 
144. http://etap.com/ – ETAP Enterprise Solution for Electrical Power Systems. 
145. http://www.netomac.com/index.html – NETOMAC (Siemens).  
146. http://www.rtds.com/ – RTDS (Real Time Digital Simulator, symulator czasu rzeczywistego).  
147. http://www.pes-psrc.org/Reports/Apublications_new_format.htm – Publications sponsored by the 

Power System Relaying Committee IEEE PES (EMTP Tutorial).  
148. http://lwww.ece.uidaho.edu/ee/power/EE524/ – Johnson Brian K., notatki do wykładu EE524, 

‘Transients in Power Systems’.  
149. http://www.ece.utexas.edu/~grady/EE394J.FALL02.html – Grady W.M., notatki do wykładu 

EE394J ‘Electrical Transients in Power Systems’.  
150. http://www.ece.utexas.edu/~grady/PNG.html – Grady W.M, ATP/ATPDraw Materials.  
151. http://www.pqsoft.com/top/index.htm – TOP, The Output Processor®, developed by Electrotek 

Concepts®.  
152. http://www.mathworks.com/ – The MathWorks, Inc.  
153. http://www.ipst.org/ – home page of the International Conference on Power Systems Transients 

(IPST), dostępnych jest wiele publikacji.  
154. http://gundam.eei.eng.osaka-u.ac.jp/jaug/index-e.htm – Japońska Grupa Użytkowników EMTP.  

 





 

SKOROWIDZ 

A 
Algorytm symulacji, 45 

warunki początkowe, 48 

C 
Częstotliwość graniczna, 34 
Częstotliwość Nyquista, 33, 315 

E 
Efekt naskórkowości, 12, 127, 241 
EMTP, 265 

F 
Format danych COMTRADE, 276 

G 
Generator 

indukcyjny dwustronnie zasilany, 344 
synchroniczny, Patrz Maszyna 

synchroniczna 

K 
Kompensacja mocy biernej, 368 

kompensator statyczny, 370 
Kryterium różnicowoprądowe, 323 

L 
Linia 

jednofazowa, 23 
kablowa, 153 
model 

o parametrach rozłożonych, 24 
o parametrach skupionych, 24 

obliczanie parametrów, 159 
opóźniająca, 104, 135 

parametry dla składowych 
symetrycznych, 151 

wielofazowa, 147 

M 
Macierz 

diagonalizacja, 154, 157 
Jakobiego, 83 
przekształceń 

unormowana, 164 
transformacji, 158 
wartości własne, 154 

Maszyna asynchroniczna, Patrz Maszyna 
indukcyjna 

Maszyna elektryczna 
maszyna uniwersalna, 263 
wirująca, 215 

Maszyna indukcyjna, 240 
klatkowa, 240 

głębokożłobkowa, 241 
model 

matematyczny, 243 
mechaniczny układu napędowego, 250 
metoda kompensacji, 338 
moment bezwładności, 248 
moment elektromagnetyczny, 248 
równanie równowagi, 248 
schemat zastępczy, 247 
transformacja wielkości trójfazowych, 

245 
w układzie współrzędnych α–β, 257 
w układzie współrzędnych d–q, 257 
w układzie współrzędnych x–y, 257 
wektorowy, 254 

obliczanie parametrów modelu, 336 
pierścieniowa, 242 
poślizg, 241 



384 Skorowidz 

prędkość kątowa wirnika, 241 
rozruch silnika, 335 
z dwustronnym zasilaniem, 243 

Maszyna synchroniczna, 215 
model 

metoda kompensacji, 235 
metoda predykcji, 236 
moment bezwładności, 229 
moment elektromagnetyczny, 230 
moment mechaniczny, 232 
nasycenie rdzenia, 228 
składowe 0dq, 216, 224 
układ wielomasowy, 232 
w składowych fazowych, 239 

przekształcenie Parka, 220 
Metoda 

Aitkena, 81 
charakterystyk, 12 
eliminacji Gaussa, 39 
kompensacji, 100 
Newtona, 79 
Newtona–Raphsona, 84 
prostej iteracji, 77 
rozwiązywania równań różniczkowych, 

Patrz Równania różniczkowe: 
metoda rozwiązywania 

siecznych, 81 
zmiennych stanu, Patrz Model: 

zmiennych stanu 
Model 

ATP–EMTP 
plik danych wejściowych, 278 

dyskretny, 12 
indukcyjności, 18 
okres modelowania, 51 
oporności, 18 
pojemności, 20 
właściwości częstotliwościowe, 32 

ekwiwalentny układu napędowego, 250 
elementu nieliniowego, 84 

aproksymacja odcinkowo-liniowa, 107 
indukcyjności, 89 
pojemności, 96 
rezystancji, 85 

filtru odcinającego, 315 
linii 

czas propagacji fali, 27 
długiej bezstratnej, 26 
dyskretny, 28 
impedancja falowa, 131 
metoda Bergerona, 28 
o parametrach rozłożonych, 153 
parametry schematu zastępczego, 145 
stała fazowa, 130 
stała propagacji, 130 
transponowanej, 151 
uwzględnienie rezystancji, 30 
w dziedzinie częstotliwości, 135 
w stanie ustalonym, 132 
współczynnik Maxwella, 149 
z parametrami zależnymi od 

częstotliwości, 144 
przekaźnika różnicowego, 325 
przekładnika prądowego, 325 
sieci 

metoda potencjałów węzłowych, 34 
prądowo-przewodnościowy, 20 
równania potencjałów węzłowych, 39 
z elementami nieliniowymi, 97 

zabezpieczenia różnicowego 
transformatora, 320 

zmiennych stanu, 111 
Modulacja szerokością impulsów, 372 
Moment bezwładności, 231 

O 
Obwody nieliniowe 

metody rozwiązywania, 75 
Oscylacje numeryczne, 54 

tłumienie, 55 
metoda dopasowania transmitancji, 65 
przez zmianę metody całkowania, 59 
za pomocą dodatkowej rezystancji, 56 

tłumienie krytyczne, 56 
współczynnik tłumienia, 57 

P 
Program 

ATP–EMTP, 269 
edytor danych wejściowych, 271 
edytor graficzny ATPDraw, 272, 290 
model transformatora, 309 
moduł danych modelu, 293 



Skorowidz 385 

moduł MODELS, 273 
moduł TACS, 273 
moduł w ATPDraw, 304 
prezentacja wyników, 276 
struktura pakietu, 270 
struktura programu, 272 
tworzenie modułu, 296 

Przekształcenie 
biliniowe, 71 
Clarke, 164 
Fouriera, 129, 134 
Laplace’a, 67 
składowych symetrycznych, 152 
transmitancji układu ciągłego, 65 
Z, 66 

PWM, Patrz Modulacja szerokością 
impulsów 

R 
Rozwiązywanie równań stanu, 117 
Równania 

telegraficzne, 26 
zmiennych stanu, 114 

Równanie różniczkowe, 13 
metoda rozwiązywania 

Geara, 15, 59 
jawna, 14 
jednokrokowa, 13 
niejawna, 14 
prostokątów, 14 
R–K II rzędu, 60 
Rungego–Kutty, 119 
trapezów, 14 
wielokrokowa, 13, 120 

S 
Samoczynne powtórne załączenie (SPZ), 

359 
Schemat zastępczy 

linii wieloprzewodowej, 146 
Silnik indukcyjny, Patrz Maszyna 

indukcyjna 
Silnik pierścieniowy, Patrz Maszyna 

indukcyjna: pierścieniowa 
Silnik synchroniczny, Patrz Maszyna 

synchroniczna 

Składowe 
modalne, 159 
ortogonalne, 329 

Stabilność 
modelu cyfrowego, 53 
rozwiązania równania różniczkowego, 

15 
Stała czasowa bezwładności, 231 
Sterowanie z modelem wewnętrznym, 348 

T 
Transformata 

Laplace’a, Patrz Przekształcenie: 
Laplace’a 

Z, Patrz Przekształcenie: Z 
Transformator 

jednofazowy, 172 
charakterystyka magnesowania, 185 
model obwodu magnetycznego, 184 
model strukturalny, 179 
model w postaci czwórnika, 175 
schemat zastępczy, 183 
trójuzwojeniowy, 182 
wielouzwojeniowy, 179 

model 
ATP–EMTP, 197 
autotransformatora, 184 
obwodu magnetycznego, 192 
symulacja zwarć wewnętrznych, 309 
udarowy prąd magnesowania, 324 
zygzak, 209 

obwód magnetyczny 
wartość początkowa indukcji, 311 

rdzeń ferromagnetyczny 
prądy wirowe, 175 

trójfazowy 
dwuuzwojeniowy, 193 
konstrukcja rdzenia magnetycznego, 196 
schemat połączeń, 195 
wielouzwojeniowy, 203 

Twierdzenie o próbkowaniu, 33 

U 
Układ minimalno-fazowy, 135 
Układy FACTS, 370 



386 Skorowidz 

W 
Wektor przestrzenny, 165, 255 

Z 
Zabezpieczenie różnicowe, Patrz Model: 

zabezpieczenia różnicowego 
transformatora 

Zależność parametrów od częstotliwości, 
Patrz Efekt naskórkowości 

Zjawisko naskórkowości, Patrz Efekt 
naskórkowości 

Zwarcie łukowe, 360 
łuk zwarciowy 

pierwotny, 359 
wtórny, 360 

model, 361 

Ź 
Źródło sterowane, 23 

 


	SPIS TREŚCI
	OD AUTORA
	1. DYSKRETNE LINIOWE MODELE SIECI ELEKTRYCZNEJ
	1.1. Wprowadzenie
	1.2. Dyskretna reprezentacja równań różniczkowych
	1.2.1. Wybrane algorytmy
	1.2.2. Dokładność i stabilność rozwiązania

	1.3. Modele cyfrowe liniowych elementów obwodu elektrycznego
	1.3.1. Rezystancja
	1.3.2. Indukcyjność
	1.3.3. Pojemność
	1.3.4. Gałęzie złożone
	1.3.5. Źródła sterowane
	1.3.6. Linia długa
	1.3.7. Właściwości częstotliwościowe modeli cyfrowych

	1.4. Metoda potencjałów węzłowych
	1.4.1. Tworzenie równań
	1.4.2. Rozwiązywanie równań potencjałów węzłowych
	1.4.3. Algorytm symulacji
	1.4.4. Określanie warunków początkowych

	1.5. Stabilność modeli cyfrowych
	1.5.1. Numeryczne oscylacje podczas symulacji stanu przejściowego
	1.5.2. Tłumienie oscylacji za pomocą dodatkowej rezystancji
	1.5.3. Tłumienie oscylacji przez zmianę metody całkowania
	1.5.4. Metoda dopasowania transmitancji


	2. MODELE ELEMENTÓW NIELINIOWYCHI ZALEŻNYCH OD CZASU
	2.1. Metody rozwiązywania równań nieliniowych
	2.1.1. Metoda iteracji prostej
	2.1.2. Metoda Newtona
	2.1.3. Metoda siecznych
	2.1.4. Metoda Aitkena
	2.1.5. Metoda Newtona–Raphsona

	2.2. Modele elementów nieliniowych obwodu elektrycznego
	2.2.1. Rezystancja
	2.2.2. Indukcyjność
	2.2.3. Pojemność

	2.3. Model sieci nieliniowej i zależnej od czasu
	2.3.1. Obwód z elementami nieliniowymi i zależnymi od czasu
	2.3.2. Metoda kompensacji
	2.3.3. Metoda odcinkowo-liniowej aproksymacji charakterystyki nieliniowej


	3. METODA ZMIENNYCH STANU
	3.1. Wprowadzenie
	3.2. Formułowanie równań stanu
	3.3. Rozwiązywanie równań stanu
	3.3.1. Układy liniowe
	3.3.2. Układy nieliniowe

	3.4. Podsumowanie
	Zadania

	4. MODEL LINII ELEKTROENERGETYCZNEJ
	4.1. Linia jednofazowa
	4.1.1. Parametry linii
	4.1.2. Uwzględnienie zależności parametrów od częstotliwości

	4.2. Linia wielofazowa
	4.2.1. Model o parametrach skupionych
	4.2.2. Model o parametrach rozłożonych


	5. MODEL TRANSFORMATORA
	5.1. Wprowadzenie
	5.2. Transformator jednofazowy
	5.2.1. Schemat zastępczy
	5.2.2. Model transformatora dwuuzwojeniowego
	5.2.3. Model transformatora trójuzwojeniowego
	5.2.4. Model autotransformatora
	5.2.5. Modele obwodu magnetycznego

	5.3. Transformator trójfazowy
	5.3.1. Transformator dwuuzwojeniowy
	5.3.2. Transformator wielouzwojeniowy


	6. MODELOWANIE WIRUJĄCYCH MASZYN ELEKTRYCZNYCH
	6.1. Maszyna synchroniczna
	6.1.1. Model w składowych 0dq
	6.1.2. Model w składowych fazowych

	6.2. Maszyna indukcyjna
	6.2.1. Uwagi ogólne
	6.2.2. Model matematyczny
	6.2.3. Model elektromechaniczny
	6.2.4. Modele cyfrowe
	6.2.5. Model wektorowy

	6.3. Maszyna uniwersalna
	Zadania

	UWAGI KOŃCOWE
	DODATEK A. ATP–EMTP: STRUKTURA PROGRAMU
	A.1. Wprowadzenie
	A.2. Struktura pakietu ATP–EMTP
	A.2.1. Edytor danych wejściowych
	A.2.2. Struktura programu ATP–EMTP
	A.2.3. Procesor wyników symulacji


	DODATEK B. PRZYGOTOWANIE DANYCH
	B.1. Wprowadzenie
	B.2. Edytor tekstowy
	B.2.1. Struktura pliku danych wejściowych
	B.2.2. Nagłówek zbioru danych
	B.2.3. Dane o modelach układu sterowania
	B.2.4. Dane o gałęziach modelu sieci
	B.2.5. Dane o wyłącznikach
	B.2.6. Dane o źródłach

	B.3. Edytor graficzny ATPDraw

	DODATEK C. PRZYKŁADY
	C.1. Tworzenie modułów danych
	C.1.1. Struktura modułu
	C.1.2. Tworzenie modułów w trybie wsadowym
	C.1.3. Tworzenie modułów w edytorze graficznym ATPDraw
	C.1.4. Zastosowanie modułów w edytorze graficznym ATPDraw

	C.2. Transformator trójfazowy do symulacji zwarć wewnętrznych
	C.3. Model analogowego filtru odcinającego
	C.4. Model zabezpieczenia różnicowego transformatora
	C.4.1. Wprowadzenie
	C.4.2. Zabezpieczenie różnicowe transformatora
	C.4.3. Model przekaźnika różnicowego
	C.4.4. Badanie zabezpieczenia

	C.5. Analiza rozruchu silnika indukcyjnego
	C.5.1. Wprowadzenie
	C.5.2. Model matematyczny silnika indukcyjnego
	C.5.3. Analiza rozruchu silnika
	C.5.4. Analiza rozruchu i zmiany obciążenia silnika

	C.6. Modelowanie generatora indukcyjnego dwustronnie zasilanego
	C.6.1. Wprowadzenie
	C.6.2. Struktura elektrowni wiatrowej
	C.6.3. Model matematyczny generatora z układem sterującym
	C.6.4. Model ATP–EMTP
	C.6.5. Warunki początkowe
	C.6.6. Wyniki symulacji
	C.6.7. Podsumowanie

	C.7. Symulacyjna analiza zwarć łukowych w linii elektroenergetycznej
	C.7.1. Wprowadzenie
	C.7.2. Model matematyczny łuku zwarciowego
	C.7.3. Model ATP–EMTP
	C.7.4. Wyniki symulacji
	C.7.5. Podsumowanie

	C.8. Statyczna kompensacja mocy biernej
	C.8.1. Wprowadzenie
	C.8.2. Statyczny kompensator mocy biernej


	LITERATURA
	SKOROWIDZ



