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The AB CD-matrix for holographic gratings

Reiner Guther
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We derive the ABCD-matrix for the diffraction by a holographic grating. We
show that this matrix can be decomposed into a part describing pure diffraction
by a plane grating and a part describing pure reflection by an effective concave
mirror. The possibilities of production of the gratings by interference of deformed
wavefronts are included.

The theory of holographic concave gratings was developed by corderie
et al. [1], Namioka and co-workers [2], Yeirzer [3], and others. The
ABCJD-matrix, is described in [4]. The theory of using the ABCD-matrix
for transformation of Gaussian beams was given by K ogetnik [6]. Exam-
ples of application of Gaussian beams are given in [6, 7, 9,13].

For the incorporation of concave gratings in optical systems a first
paraxial calculation is appropriate. In this connection the formulation
by means of the -ABOD-matrix is an useful tool. For plane uncorrected
gratings the ABOD-matrix was provided by Kanstaa and wang [8].
In this paper the beam transformation matrix is derived for an in-plane
recorded and in-plane used concave grating.

It has been suggested earlier ([12]), that for production of gratings,
instead of spherical waves the interference of deformed wavefronts should
be used. In this paper we derive the ABOD-matrices for the case of spherical
waves, and the simple changes occurring in the matrices due to deformed
wavefronts are explained.

The symbols used for recording and reconstruction of the gratings
correspond to those in [1]. The definitions are given for symbols in fig. 1.
The record of the grating is made on the grating surface G by interference
of the coherent light coming from the two point sources C and D situated
at the distances Ic and IDfrom 0. The angles of GQOand DO with the X-axis
are y and 6. These angles are greater than zero if they point to positive
Y-axis direction. The use or reconstruction of the grating is made by a point
source at A (distance IAL angle a) and the image appears in B (distance
IB, angle /?). The points A, B, 0, and D are positioned in the X-*Y plane.
The surface G may be a sphere or a paraboloid, because we need only
the equation of this surface up to the second order in Y and Z coordinates,
e.g.

X = (Y2+Z2)/2B (1)

with B being the radius of curvature of the surface in 0.
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1. Record and reconstruction
holographic grating

Now, we consider the tangential focussing (see [1]), i.e. the focussing
in the X-Y plane obtained by generalization of the method applied in
[8]. Figure 2 shows the X -Y plane.

The central ray of the Gaussian beam arrives at 0 at the angle a and
the spot size is w. The diffracted beam has the spot size w*. Now, the follo-
wing question arises: Supposing that the incoming beam has a convergence

(or divergence) Aa at its edge, how this is transformed into the convergence
z/? of the outgoing beam ?

Fig. 2. Geometry of beam transfor-
0 X mation
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First we approximate YM & Yw  Yw in fig. 2, which means that
wjB 1, because in the contrary case the symmetry of the beam with
respect to the positive and negative parts of the Y-axis is lost:

il 1 W tana t ¥ Wy
M 2 {coda 4B cos2a "t ~ 2cos a w 2

This is shown by a short calculation marked by 0, P >YMI Yw and by M
in the fig. 2.

The transformation of Aa into Aft is determined by the diffraction
equation at the point M related to the surface

sin (a-M a+ £)+sin (0— + Y 3)

giy~y
where Ais the wavelength under investigation, k is the order of the spectrum
and g(Yw) is the local grating constant at M, £is simply derived by differen-
tiating (1):

W w
£ £= M
tan B 2B cos a 2Bcos 9

Aa, Af} and £ are assumed to be small. We use the addition theorem and
expand the sines to get

4

KX
sin a-f {Aa+ £) cos a+sin 2+ (E—Ap) cos = - (5)
9\Ym)
sin a and sin ft are connected by the grating constant at the origin 0. By
using (4) we obtain

cosa A (cos a+cos ftyw kX
“““ﬁ“a +, 6
cos 2Bcosac o s cosfthg(f) G&¥¢m)]-

The calculation of kx\—2— -----—1 is simplified by notingin [1] that
. 9{0) ~ a(YM)J .
in the well known expansion of the optical path function
A= MA-{-MB------ (MC-MD) )
¢0

the term —%(MC —MD) enumerates the grooves depending on M(XO0
is the wavelength of production of the grating). The grooves per length
unit are

1 1 d I MC-MD \

glM)  o{¥YM ds \ 0
d 1MC-MD \ *Ym
dymiy 0 f ds ®
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where ds describes the line element along the curve given by G in the
X-Y plane. It holds approximately

8 « 0 K* )9)
or dYMJds —1. In this manner we take from [1] the expression

d

(MC-MD)  —siny-fsind
dYm

coszy cosy QRO ax0O

(10
R b 1 z

+
up to the second order. The term siny —sin d is also connected with 1ig(0).
Finally, by using (2) we obtain

cosa cos8 1

[ _W
cos/? a\ cosa ft2 (11

with the effective radius for the tangential focussing B2

R f U R
2 cosa+ cos/? | 10 cosa-feos/?
0s2y  cosy c0s23 cos<$) 1
(12
h b AT + R\
Taking account of (4) we obta
w' as? w
2 cosa 2° (13)
and the ABCD-matrix is
(14)

The symbols A, B,C and D should not be confused with the point
A, B,C and D in fig. 1. The eqg. (14) shows that the ABCD-msAxix. of the
transformation by a grating can be constructed by applying first the
transformation to a plane grating (see [8]) and then the transformation
to a concave mirror with an effective radius B 2-

In the special case of autocollimation (a = /?) R%can be calculated
by the following simple argument: The tangential focal distance Im is
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obtained by equating to zero the coefficient of YR1in the expansion of (7):

0= - (0032/’? cos2a\  cosa-fcos6
0T +-17-) +- R
M lcoszy cosy  cos26 aosOn
+ (15)
\ e R m * -8 |

If a = /2, we remark in eq. (15) the combination I/~ +1/L i (which
is in correspondence with the mirror imaging equation) equal to 2/R2.
So defined R2is consistent with that determined in (12).

The paraxial ray transformation for all possible a and /? in the radial
case (focussing in ~-direction) can be calculated by the latter argument.
The coefficient of ZR1in (z), according to [1], is

(1 1\ cosa-fcos/? M il cosy 1 (602

A 1Bl K.U =« I'D R )
(16)

With I/IA+1/IBi = 2/Rxwe obtain the corresponding matrix

17)

2R MR
cosa-fcos/? A)(cosa-fcos/?)

The beam transformations resulting from (14) and (17) correspond to
a toroidal mirror, which changes its focal distances from one wavelength
to another. However, among the holographic concave gratings there are
also well corrected examples, where the both focal distances do not essen-
tially change. Then the mode conversion losses due to mismatch of the
focal distance [10] are small.

In our calculations the terms Y 3in the light path function are neglected.
(This means Y2 in the grating equation.) The beam waist and curvature
radius of a diffracted Gaussian beam can be calculated up to the terms of
order Y2. This we obtain also by a wave-optical argument similar to that
used in [11].

Now, we consider the possibility of deformed wavefronts. Such defor-
mations can be realized by optical surfaces between the light sources
C or D and the grating, for example by cylindrical or toroidal lenses or
mirrors. The interference of such deformed waves with plane waves yields
elliptical deformed Fresnel zones, as, for instance, used in optical processing
of radar signals [15]. The deformation of the spherical waves from C is
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explained on fig. 3. In a coordinate system with 1 along the distance
Ic (see fig. 1), Y, respectively, rotated and Z parallel to Z, the nsnal expan-
sion of CM, with (X, Y, Z) = M near to 0, yields (without deforming
elements) the rotational symmetric expansion

CM=00-1+a(Y2+ZD+ ... (19)

which (after the appropriate rotation X, Y, Z-+X, Y, Z) gives the nsnal

contribution to A = AM +BM —kX(CM —DM)IXqa. Therefore, at Y2 and
Z2equal factors in (19) imply the same distance Ic in (12) and (18).

Pig. 3. Deformation by a parabolic
cylinder

If the factors at Y2and Z2are imeqnally, then the effective Ic in (12)
is unequally to Ic in (18). We given a short example shown already in
fig. 3:

° We divide the distance Ic into Icl and IQ{lc = Ici +1C). At the distance
icl from O we locate a simple optical surface, say, a parabolic cylinder,
whose symmetry-axis in the X -Y plane is perpendicular to X. The cylinder
is filled with a medium of the refractive index n, and described by the
equation

X = lol+F@z2, (20)

where FQ@is one of the general surface expansion coefficients used in more

extented calculations up to the third order. Generally, we obtain CM by
variational elimination of the coordinates of the cylinder surface via
Fermats principle (comparable with [14]). The result until the second
orderini, Y and Z can also be very simply derived from the usual ima-
ging equation for a spherical surface

n
T 2@+ nnd)
1 2(1-n)F@+ nii@  ~
210 2 (1-n) F 02-\-IlicI-\-nli

After the rotation 1, Y,Z->JC, Y,Z we obtain CM expressed by X,
Y, Z, taking account of (1). Now, A is available in (7). If we denote the

CM ici‘bN2—1

@b
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factor of Y2in (21) by 1/21Q2 we find that the matrix (14) and eq. (12)
are given by the substitution Ic-+Ic2- The denotation of the factor at z2in
(21) by 1/2XC dues to the matrix (17) and the formula (18) if the substi-
tution Ic-+lci is performed. _

If we extent the argument also to DM and to toroidal gratings (R-+Rx
resp. R2in the two matrices with Rxand R2the main curvature radii of
the grating) we see that deformation in second order yields two indepen-
dent gratings for the saggital case and for the meridional -case. If we like
a combination of a grating with suitable saggital properties with another
grating with suitable meridional properties we can combine this properties
by appropriate deformations of wavefronts or by a toroidal grating surfa-
ce.

The main application of the given matrices we see in the inclusion of
gratings in lens- and mirror-systems when attempting the of first simple
optimizations of polychromators, monochromators, resonators [16] and
other dispersing devices.
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Matpuusl ABCIO gns ronorpaguueckux cetok

BbiBegeHbl MaTpuubl ABCU ans gudpakumm Ha ronorpaduueckux cetkax. NokasaHo, uTo aTu
MaTpULbl MOXHO PasfeNinTb Ha YacTb, OMUCLIBAIOLLYIO YMCTYIO AU(PAKLMIO HA MIOCKONA CeTKe,
a TaKXKe Ha YaCTb, OMUCLIBAIOLLYIO YUUCTOE OTPaXKEHME IPHEKTUBHBLIM BOTHYThIM 38pKa/loM. YKasaHo
TaKKe Ha BO3MOXHOCTb BbINO/IHEHWSI CETOK MPU WCMO/b30BaHUM WHTepdepeHLun AedopMupo-
BaHHbLIX ()POHTOB BOJHbI.



