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Numerical reconstruction of the intensity 
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U. Real optical systems and multi-point imaging quality criterion
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In this paper the direct recovery method has been applied to the real (aberrated) 
optical systems. Its properties have been discussed so far as the influence of the sampling 
step, aberrations and the boundary sampling points on the reconstruction error is 
concerned. A new multi-point measure of imaging quality has been proposed being 
defined by the reconstruction errors for the actual systems as related to its 
diffraction-limited counterparts.

1. Introduction

In the previous paper [1] the results of numerical reconstruction of the intensity 
distribution by using the direct recovery method [2] have been presented for 
the case of diffraction-limited systems.

In this paper we show the results of applying the direct recovery method 
to the image intensity reconstruction for real telescopic, photographic and 
enlarging optical systems. Besides, an attempt has been made to define a new 
multi-point measure of the imaging system quality based on the concept of the 
reconstruction error given in [2]. In these respects the present paper is a 
direct continuation of the analysis given in [1].

Table 1. Parameters of the selected optical sy
stems: / '  — image focal length, a — field angle

Objective
number

/ '  [mm] /-number a

I 99.15 4.5 3°
II 99.77 4.5 3°

III 103.26 4.5 15°
IV 98.4 3.5 3°
V 100.58 4.5 15°

VI 105.6 4.5 37°

The method and algorithms 
useful in numerical estima
tions of the reconstruction 
matrix elements as well as in 
the reconstruction of the 
image intensity distribution 
for the real optical systems 
have been discussed in 
paper [3].

* This work was carried on under the Research Project M. R. 1.5.
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The basic parameters of the concrete objectives used in our calculations 
are given in table 1. The responses of the three first telescopic systems may 
be found in [4], while the two next are characterized in details in [5]. In parti
cular, the system VI is the enlarger AMAR objective (of PZO* make) of the 
focal length 105.6.

2. Numerical reconstruction of the image intensity distribution for 
some real optical systems
2.1. The effect of changes in sampling steps on the reconstruction process

The reconstruction is performed for the types of objectives mentioned in the 
Introduction. We assume the integrating element of radius BE =  0.0032 mm 
and the sampling step d, from the interval 0.005 mm < d <  0.008 mm.

Generally, it has been stated by numerical analysis that, similarly as it was 
the case for diffraction-limited counterpart systems considered in [1], the 
values of the recovered intensities increase with the increase of the sampling 
steps. This time, however, some sporadic deviations from this rule may happen.

Rig. 1. Changes in the upper and lower 
hound intensity distributions as related 
to the sampling step for the system III
(axial im a g in g ):--------- d — 0.008 mm,
---- -------  d =  0.0064 mm, d
— 0.006 mm

In the figure 1 the changes in upper and lower bound intensity distributions 
are shown for the optical system III and the sampling steps d =  0.006, 0.0064, 
and 0.008 mm (the results concern the points on the diagonal of the reconstructed 
image area which represent the sampling points Nos. 1, 7, 13, 19, and 25).

The reconstructed lower bound values of intensity distributions increase 
with the sampling step and the less the sampling steps {d = 0.006 and 0.0064 mm) 
the stronger this effect.

* Name of Polish Optical Works, in Warsaw.
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In spite of the general tendency that the npper bound values of the recons
tructed intensity distribution increase with the increasing sampling steps 
(fig. 1) the opposite situation is also observed, for instance, for d =  0.006 mm. 
The table 2 illustrates the changes in the intensity spread function of the system

Table 2. The changes in the intensity spread function (unnormed) for 
the system III (axial imaging)

r [mm] 0 0.001 0.003 0.005 0.006 0.007 0.0077
<p{r) [10-1] 1.701 0.682 0.184 0.141 0.172 0.162 0.108

III in the radial direction. It may be seen that for the distance d ~  0.006 mm 
there appears a samall maximum, which causes an unusual course of the changes 
in the reconstructed intensity distributions from fig. 1.

While, for the diffraction limited systems the inversion* of the upper and 
lower bound intensity distribution appeared only for great sampling steps 
and resulted from the diminished accuracy of the numerical estimation of the 
matrix elements, for the case of real systems the inversion may be additionally 
caused by the specific character of the intensity distribution within the aber
ration spot, especially in the boundary regions of the spread functions.

For instance, the inversion of the upper and lower bound intensity distri
butions for the telescopic system IV is observed for the majority of the sampling 
steps assumed. The changes in the intensity spread function of the system IV 
(tab. 3 and fig. 2) explain the reasons for the inversion of the extreme values of 
intensity.

From the table 3 it may be seen that the whole energy is concentrated 
practically within the region of radius r <  0.01 mm, while within the much 
larger region of radius r <  0.025 mm it increases only slightly. Therefore, for 
small sampling steps the sum of the energy contributions from the closest

Table 3. The changes in the intensity spread function (unnormed) for the system IV (axial 
imaging)

r [mm] 0 0.0025 0.005 0.01 0.0125 0.0175 0.002 0.0225

<p(r) [10-2] 2.82 2.72 1.23 0.11 0.058 0.047 0.01 0.026

neighbours in the case of the lower bound reconstruction may exceed that of 
energy contributions supplied by the respective neighbours in the case of the 
upper bound reconstruction. This is explained in fig. 2 which illustrates the

* In the case of intensity inversion at a given point the absolute value of the reconstru
cted upper bound intensity is less than that for lower bound intensity.
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mutual positions of the integrating element and the intensity spread functions 
generated by two image points for the sampling step d =  0.005 mm.

v

Fig. 2. Mutual position of the spread 
function for two image points and that 
of the integrating element for the case of 
upper bound reconstruction (sampling 
step d — 0.005 mm, integrating element 
of radius E e  =  0.0032 mm)

3. Normalization of the aberrational spread function

Usually for the real optical systems it is not difficult to find their diffraction- 
limited counterparts of the same /-number. In order to compare the image 
intensity distributions reconstructed for a real imaging system with those 
generated by the corresponding aberration free optical system it is necessary to 
normalize properly the aberrational spread function. For this purpose it is 
easy to notice that the quantity of energy contained within the domain of 
aberrational spread functions must be equal to that contained within the domain 
of the corresponding diffraction-limited spread function, i.e.

f  <pm tds =  k  J  <pahGVtd s , (1)
P Pt

where P, Px — the respective domains of the diffraction-limited and aberrational 
spread functions,

Jc — the normalizing factor.
Both the integrals in (1) have been evaluated numerically by the method of 
spot-diagrams [3], and hence the normalizing factor was estimated.

In the table 4 the quantities are given, which allow to find the diffraction- 
limited counterparts and the values of the respective normalizing factors, for 
the real objectives chosen to the reconstruction procedure. In the same table 
the conventional radii of the respective domains of the real and aberration-free 
spread functions <paberr, and cp̂ tt are compared.
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Table 4. Basie parameters of the examplified real systems: Z>' — exit pupil 
diameter, 8' — distance of the exit pupil from the image, k — normalizing fac
tor, — radius of the domain of the diffraction limited intensity
spread function limited to the second minimum, jjaberr _  raaiug 0f the circle 
in the domain of the aberration spread function (axial imaging [3])

Objective
number

B '

[mm]
8'

mm
S'/D ' k

[ X 102]
Rditt
<P

[mm]
jgaberr
<P

[mm]

I 22.47 101.11 4.5 3.66 0.0058 0.0046
II 22.17 99.62 4.5 3.51 0.0058 0.0053

III 22.44 104.58 4.5 3.75 0.0058 0.0078
IV 31.77 111.22 3.5 0.58 0.0045 0.0353
V 23.9 107.64 4.5 4.07 0.0058 0.0240

VI 22.06 152.31 6.9 3.47 0.0089 0.0570

4. The effect of the aberrations on the reconstruction error

The most interesting is the comparison of the image intensity distributions 
reconstructed in the case of real optical systems with those recovered for the 
aberrationless optical systems; the reconstruction parameters d, BE being the 
same. In the tables 5, 6 and 7 the extreme reconstructed image inten
sities are listed for different systems: (photographic) III, (telescopic) V, and 
(enlarging) VI. From the graphs of the respective transfer functions (fig. 3) 
it may be seen that these systems differ in aberration correction. It is easy to 
notice that the reconstruction error [1]:

M  =  |jmax_pnin|
( 2 )

becomes the smaller the lower the quality of the imaging system.
This point, surprising at the first sight, is in fact consistent with the physical 

intuition. To make it clear it suffies to notice that: the better the optical system 
the more detailed information may be transferred through this system, i.e. 
the more complex image structure to be sampled. If both the sampling system 
and the sampling procedure (sampling configuration and sampling steps) are 
fixed, and if there exists no prior-to-measurement information about the imaged 
object, then the resulting error must be greater.

On the other hand, the same result may be interpreted in another way, 
more suitable to discussion of the multiple-point measure of the imaging quality 
proposed below. Namely, it is obvious that having assumed the same sampling 
results for both the diffraction-limited and real systems the due changes in the
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Table 5. Comparison of the extreme reconstructed image intensity distributions 
and the reconstruction errors for the system III (photographic) with its diffraction-limited 
counterparts (axial imaging)

Reconstruction for a diffraction-limited 
system, N  =  1 : 4.5

Reconstruction for a 
graphic system

real photo 
III

-

Upper bound image density distribution Upper bound image intensity distribution
/max x 10- 1 /max x l  0- i

1.37 1.37 1.37 1.37 0.96 1.32 1.20 1.22 1.24 0.89
1.37 1.37 1.37 1.37 0.96 1.20 1.14 1.14 1.16 0.82
1.37 1.37 1.37 1.37 0.96 1.22 1.14 1.15 1.17 0.83
1.37 1.37 1.37 1.37 0.96 1.24 1.16 1.17 1.19 0.84
0.96 0.96 0.96 0.96 0.96 0.89 0.82 0.83 0.84 0.62

Lower bound image intensity distribution Lower bound image intensity distribution
/min x 10 -1 /min x 10-1

0.014 0.014 0.014 0.014 0.010 0.33 0.33 0.33 0.33 0.23
0.014 0.014 0.014 0.014 0.010 0.33 0.33 0.33 0.33 0.23
0.014 0.014 0.014 0.014 0.010 0.33 0.33 0.33 0.33 0.23
0.014 0.014 0.014 0.014 0.010 0.33 0.33 0.33 0.33 0.23
0.010 0.010 0.010 0.010 0.007 0.23 0.23 0.23 0.23 0.16

Reconstruction error Reconstruction error
AZx 10“ 1 AI x 10- 1

0.68 0.68 0.68 0.68 0.47 0.49 0.43 0.44 0.45 0.33
0.68 0.68 0.68 0.68 0.47 0.43 0.40 0.40 0.41 0.29
0.68 0.68 0.68 0.68 0.47 0.44 0.40 0.41 0.42 0.30
0.68 0.68 0.68 0.68 0.47 0.45 0.41 0.42 0.43 0.30
0.47 0.47 0.47 0.47i 0.34 0.33 0.29 0.30 0.30 0.22

Table 6. Comparison of the extreme reconstructed image intensity distributions and the 
reconstruction errors for the system V (telescopic objective) with its diffraction-limited 
counterparts (axial imaging)

Reconstruction for a diffraction-limited 
system N  =  1 : 4.5

Reconstruction fot a real telescopic 
system V

Upper bound image intensity distribution 
jmax x 10- l

1.37 1.37 1.37 1.37 0.96
1.37 1.37 1.37 1.37 0.96
1.37 1.37 1.37 1.37 0.96
1.37 1.37 1.37 1.37 0.96
0.96 0.96 0.96 0.96 0.68

Upper bound image intensity distribution 
jmaxxio-1

0.79 0.73 0.74 0.75 0.54
0.73 0.69 0.69 0.70 0.50
0.74 0.69 0.69 0.71 0.50
0.75 0.70 0.71 0.72 0.51
0.54 0.50 0.50 0.51 0.37
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Table 6 (continued)

Lower bound image intensity distribution Lower bound image intensity distribution
p n i n x i o - l  jm inx l 0 - l

0.014 0.014 0.014 0.014 0.010 0.32 0.33 0.33 0.32 0.21
0.014 0.014 0.014 0.014 0.010 0.33 0.34 0.34 0.33 0.22
0.014 0.014 0.014 0.014 0.010 0.33 0.34 0.34 0.33 0.22
0.014 0.014 0.014 0.014 0.010 0.32 0.33 0.33 0.32 0.21
0.010 0.010 0.010 0.010 0.007 0.21 0.22 0.22 0.21 0.14

Reconstruction error Reconstruction error
A Ix 1 0 " 1 A I x 10“ 1

G.GS 0.68 0.68 0.68 0.47 0.24 0.20 0.20 0.22 0.16
0.68 0.68 0.68 0.68 0.47 0.20 0.17 0.17 0.19 0.14
0.68 0.68 0.68 0.68 0.47 0.20 0.20 0.17 0.19 0.14
0.68 0.68 0.68 0.68 0.47 0.22 0.19 0.19 0.20 0.15
0.47 0.47 0.47 0.47 0.34 0.16 0.14 0.14 0.15 0.11

Table 7. Comparison of the extreme reconstructed image intensity distributions and the recon
struction errors for the system VI (enlarger) with its diffraction-limited counterpart (axial 
imaging)

Reconstruction for a diffraction-limited sy- Reconstruction for a real enlarger
stem, N  =  1 : 4.5 system VI

Upper bound image intensity distribution 
I max x 10- 1

Upper bound image intensity distribution
im axx 10- i

0.57 0.61 0.61 0.57 0.44 0.21 0.23 0.24 0.22 0.18
0.61 0.66 0.66 0.61 0.44 0.23 0.26 0.27 0.23 0.19
0.61 0.66 0.66 0.61 0.44 0.24 0.27 0.27 0.25 0.19
0.57 0.61 0.61 0.57 0.44 0.22 0.24 0.25 0.23 0.18
0.44 0.44 0.44 0.44 0.37 0.18 0.19 0.19 0.18 0.16

Lower bound image intensity distribution 
I min x 10“ 1

Lower bound image intensity distribution 
I min x i o - 1

0.11 0.11 0.11 0.11 0.08 0.39 0.41 0.41 0.39 0.27
0.11 0.12 0.12 0.11 0.08 0.41 0.41 0.41 0.41 0.28
0.11 0.12 0.12 0.11 0.08 0.41 0.41 0.41 0.41 0.28
0.11 0.11 0.11 0.11 0.08 0.39 0.41 0.41 0.39 0.27
0.08 0.08 0.08 0.08 0.07 0.27 0.28 0.28 0.27 0.22

Reconstruction error Reconstruction error
A I x 1 0 -1 A Ix  10"]l

0.23 0.25 0.25 0.23 0.18 0.09 0.09 0.08 0.08 0.04
0.25 0.27 0.27 0.25 0.18 0.09 0.07 0.07 0.09 0.04
0.25 0.25 0.27 0.25 0.18 0.08 0.07 0.07 0.08 0.04
0.23 0.25 0.25 0.23 0.18 0.08 0.08 0.08 0.08 0.04
0.18 0.18 0.18 0.18 0.15 00.4 0.04 0.04 0.04 0.03



202 E. N owak, I. W ilk

reconstruction error may be attributed to the aberrations of the optical system 
(see tables 5, 6, 7, and fig. 3), and, consequently, used to define a multi-point 
measure of the imaging quality (see Section Multi-point measure of imaging 
quality).

Fig. 3. Monochromatic optical 
function (F). Axial imaging

transfer

5. The influence of the boundary sampling points
on the reconstruction process for the real optical systems

In the reconstruction examples, discussed earlier for the real imaging systems, 
the sampling steps d ranged within the interval 0.005 < d <  0.008 mm.

As it should be expected, in this case, the least admissible sampling step is 
much greater than that for the respective analogous diffraction limited systems ; 
the least admissible sampling step being assumed to be the distance between the 
two neighbour sampling points for which the solutions G{ of the reconstruction 
equations :

N

y(Pk4k) = £ c i j  f <PUlu - ( P - P k ) i ® - ( « “ «*)]
i~l

dudvdpdq, ft = 1, . . . ,n (3)
are still non-negative. Here, y(pk, qk) — the result of sampling in the (pkqk)- 
point, 9?1, cp11 — the spread functions of the imaging and measuring systems, 
respectively.

The following discussion aims at determining certain properties of the 
numerically simulated reconstruction procedure which are of special importance 
for defining and using of the multi-point measure of the optical system 
quality.
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To facilitate the future comparison of the numerical reconstruction for 
different aberrated systems it is necessary to normalize some parameters of the 
reconstruction procedure, for example, the sampling step d . The decision how to 
normalize the sampling is by no means simple, as it turns to be correlated to 
the others reconstruction parameters, for instance, to the sampling point values.

It has been found numerically that the least sampling step, common to all 
the aberrated systems considered above, is d =  0.005 mm. However, this value 
may suffer from considerable fluctuations depending upon the postulated 
measurement results at the boundary sampling points of the sampled region.

It has been stated that an increase of the postulated sampling results at the 
boundary points may cause a considerable increase in the least admissible 
sampling step. For instance, for the telescopic system V an increase of the postula
ted sampling values at the boundary sampling points by 20 % causes the increase 
of the least admissible sampling step from d  =  0.005 to d  = 0.008 mm, while 
for telescope system IV the respective increase reached only the value 
d  = 0.0064. This difference may be explained by the fact that the system IY 
is better corrected than the system V.

The considered numerical examples indicate that the aberration-free systems 
show much greater tolerance for the changes in the postulated sampling results 
at the boundary points than the real system. For instance, for the diffraction- 
limited counterparts of the systems IY and Y there exist solutions of the re
construction procedure for many sampling steps and the measurement results 
which would not be unacceptable for the true aberrated system. Table 8 il
lustrates the influence of the changes in the sampling results at the boundary 
points on the image intensity reconstruction at the image points. The dif
ferences between the reconstructed intensity values (differing in the boundary 
points) for the case of the real system Y and its diffraction-limited counterpart 
were calculated and presented in table 8, for the sampling result distributions 
of types I and II (parts A and B).

Additionally, the influence of the same changes in the sampling results 
at the boundary points on the extreme intensity distributions has been pointed 
out for the telescope system IY, which is slightly better corrected than the 
system Y (tab. 8, part C).

It may be seen (tab. 8, part A) that for the aberration-free systems there 
exists only slight influence of the change in the intensity measurement results 
at the boundary points in the case of the upper bound reconstruction (and it 
affects only the boundary points), which, however, is much more distinct in the 
lower bound reconstruction. It has been found that the differences between 
the reconstructed intensities evoked by the change in the sampling point 
values at the border decrease with the increase of the sampling step.

A similar tendency exists also for the aberrated system. Here, the influence 
of the boundary points both in the upper bound and lower bound reconstructed 
intensity distributions is much greater than in the analogous aberration-free 
system (tab. 8, part B). For instance, in the case of the system Y it may be
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Table 8. Influence of the change in the sampling point values at boundary points on the 
reconstruction of the image intensity distribution in the remainder points. The reconstruction 
being made for d =  0.005 mm and Be  =  0.0032 mm. I™ax, / âin, I “ ax, I “ in — the extreme 
image intensity distributions reconstructed for the I and II sampling point configurations

Configuration I Configuration II

1 1 1 1 0.7 1 1 1 1  0.5
Postulated 1 1 1 1 0.7 1 1 1 1 0. 5
sampling 1 1 1 1 0.7 1 1 1 1 0. 5
result 1 1 1 1 0.7 1 1 1 1 0.5

0.7 0.7 0.7 0.7 0.5 0.5 0.5 0.5 0.5 0.3

/¿/m ax _  /m ax _  /ma:£ /¿/min __ /m in  _  /ruin

Ö U5 
.2 0 0 0 0.01 0:01 0.02 0.02 0.02

A <D G i-« 0 0 0 0.01 0.02 0.03 0.03 0.02
+3 O

s  g ® 11 
Q -M & §

0
0.01

0 0 
0.01 0.01

0.01
0.02

0.02 0.03 0.03 
0.02 0.02 0.02

0.02
0.04

¿ /m a s  _  jrmax _  /m ax ¿¿/min _  /m in  _  /m in

»o
.2 ^  ft ^  ..

0.01 0.01 0.06 0.06 No solutions for
B S S ~ 0.01 0.04 0.02 0.07 II configuration

* 1  » 0.06 0.02 0.06 0.07 of measuring points
o ?
H 0.04 0.07 0.07 0.03

¿ /m a x  _  /m a x  _  /m ax ¿¿/min _  /m in  _  /m in

§ a

0.01 0.01 0.01 0.02 0.03 0.14 0.14 0.02
C 0.01 0.01 0.01 0.03 0.14 0.07 0.07 0.14

£  1 il 0.01 0.01 0.01 0.04 0.14 0.07 0.07 0.14
H te  1*3 0.02 0.03 0.04 0.05 0.03 0.14 0.14 0.02

seen that the change in the postulated measurement results at the boundary 
points makes sometimes the upper bound reconstruction impossible. The dif
ferences in the upper bound intensity distributions for the system V  are 
distinctly greater than those for the aberrated systems appearing in the same 
situation even for the lower bound reconstruction.

By comparing the differences in the reconstructed intensities for the systems V 
and IV (tab. 8, part B and C) it may be seen that the sensitivity of the recon
structing procedure to a change in the measurement results at the boundary 
sampling points (the values attributed to the other points being unchanged) 
depends essentially upon the system correction. The poorer system shows much 
less tolerance for the admissible changes in the value of the sampling results 
at the boundary points.
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This property shows some difficulties which may occur when simulating 
the reconstructing experiments, for instance, for the purpose of constructing 
the multi-point measures of the imaging quality*.

6. Multi-point measure of imaging quality

The construction of a measure or a criterion of the imaging quality which would 
be applicable in practice is still one of the most important problems of the 
contemporary theory of optical imaging. There exist a number of measures or 
criteria proposed so far by many authors and based on different concepts. 
Just to name some examples we may distinguish: single-point criterion (repre
sented, for instance, by Strehl definition or Maréchal criterion), two-point 
criterion or measure (like that of Rayleigh), continuous type measures (like 
Linfoot fidelity defect or relative structural content). There exist also some 
criteria based on statistical approach and information theory. The main pro
blems seems to lie in construction of such criterion or measure that would be 
universal enough to be used in wide variety of very different problems. The 
multi-point recovery measure proposed below seems to meet the requirement 
of higher than usual universality at reasonable costs of computing time 
and therefore may be .useful for optical system designer.

Let us accept the expression

2 ’ |AJi|ftborE
M =  ^ -----------  (4)

2  | Aid41”
» = 1

as a multi-point measure of the imaging quality within the recovered region 
of the image. Here |Ait|aberr is the absolute value of the reconstru
ction error for the real aberrated optical system at the i-th sampling point, 
|AIi|diff is the absolute value of the reconstruction error for its diffraction- 
limited counterpart at the same sampling point.

There are three features distinguishing this measure from the others : firstly, 
it relates the actual optical system to that of ideal (diffraction-limited) counter
part, secondly, it encounters the mutual influence of the neighbouring object 
points on the respective image points, thirdly, it takes accont of the specificity 
of the measuring (observing) system used in assessing the object quality which 
makes the assessment more realistic.

As may be easily noticed the multi-point measure satisfies the inequality

(5 )

* It is quite obvious that such difficulties never appear for real reconstruction procedure 
based on real measurement results. In these situation the direct recovery method always 
works >
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The better the correction of the estimated optical system the greater recons
truction errors |AIi|aberr, i = 1, ... N and, consequently, the greater value of the 
proposed multi-point measure. In the table 9 the calculated multi-point recon
struction measures of imaging quality for some chosen optical systems are 
given as they depend upon the sampling steps for the sampling restricted to 
the one-dimensional case.

Table 9. Dependence of the multi-point reconstruction measure of imaging 
quality upon the sampling step (d )

Objective
number d =  0.005 mm d =  0.006 mm d =  0.0064mm d — 0.008 mm

I 0.8500 0.8800 0.9800 *
II 0.7900 0.8080 0.7240 0.9500

III 0.6300 0.6150 0.4400 0.6700
IV 0.3800 0.3200 0.3900 0.5800

V 0.3100 0.2450 0.0980 0.2940
VI 0.0034 0.0031 0.0025 0.0039

* — absence of the lower bound matrix (due to too great sampling step)

From the calculated examples it may be seen that the value of the multi-point 
measure depends on the sampling step. This means that a comparison of the 
quality of different optical systems or the consecutive version of the same 
system obtained subsequently in the designing procedure may be done only 
for fixed sampling steps. As expected the value of the multi-point reconstruction 
error decreases for systems of worse correction which may be noticed by compa
ring the table 9 with fig. 3, in which the curves of monochromatic modulation 
transfer function is presented for the systems I-IY for the axial imaging.

The said dependence of the multi-point measure on the sampling step is 
only one of three dependences of this kind. The other two are: dependence 
on the sampling configuration and dependence on the used measuring (obser
vation) system.

These three .dependences make the multi-point measure flexible and easily 
adjustable to the concrete tasks to be fulfilled by the designing optical system 
(including the detecting stage).

7. Concluding remarks

In this paper some general properties of the direct recovery procedure have 
been discussed for real (aberrated) systems and illustrated by numerical 
examples. In particular, the effect of changing the sampling step on the recovery 
procedure was considered. It was followed by the discussion of the correlation 
between the reconstruction error and the aberrations of the optical system under 
test which preceded by a normalizing procedure for aberrational spread function
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to enable the due comparisons with the respective ideal diffraction limited 
case.

The results of these considerations were employed to define a new multi
point measure of the imaging quality of optical systems. This measure has 
been calculated for selected types of optical systems (like those of telescopes, 
enlargers and photographic cameras). It has been shown that the proposed 
measure proved to be very sensitive.

The calculations have been restricted to the axial region, since in this case 
it was possible to choose such a priori sampling results, which assure simulta
neous solution of the upper and lower bound reconstruction equations under 
the additional condition of positivity of the reconstruction weights G{.

The suggested multi-point measure seems to offer some additional advanta
ges as compared to the single- and two-point measures. In particular:

i) it allows to take account of the mutual influence of many neighbouring 
points in the image on the measuring results which creates the situation closer 
to that occurring in the real imaging procedure ended by a detection stage,

ii) it takes account of the specificity of both the measurement (observa
tion) system and the way of performing the measurement (observation) so far 
as the sampling configuration and sampling step are concerned, [6],

iii) it offers a possibility of including also the prior information (independent 
of the measurement results) about the object [6] into considerations as an 
essential determinant of imaging quality measure,

iv) it may be generalized to include the case of partially coherent imaging 
which would allow to determine the influence of the partial coherence on the 
quality of the imaging systems [6].

Unfortunately, the inclusion of the last two points in the reconstruction 
procedure results iii a considerable increase of calculation complexity.

Finally, it is worth noting that both the reconstruction procedure and the 
resulting multi-point measure is especially suitable in the optical systems, 
at the exit of which a sampling procedure is applied with the help of a “point” 
detector with automatic data processing.
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Численная реконструкция распределения интенсивности 
в некогерентном отображении
П. Реальные оптические системы и многоточечный критерий 
качества отображения

Обсуждены результаты численных расчётов распределений интенсивностей в изображении полу
ченных методом непосредственной реконструкции по отношению к реальным оптическим системам. 
Доказано, что процедура непосредственной реконструкции может служить для определения новой, 
многоточечной меры качества. Для избранных типов оптических (фотографических, телескопиче
ских и увеличительных) систем была рассчитана, в случае отображения на оси, предлагаемая мно
готочечная мера для различных шагов пробирования. На основе сопоставления с оптической фун
кцией переноса констраста можно отметить, что предлагаемая мера является пригодной для оценки 
коррекции оптических систем и обладает высокой чувствительностью.


