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Partially space coherent diffraction by a circular 
aperture; optimally balanced fifth order spherical 
aberration

M. D evi, K. Singh
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This paper deals with the study of intensity distribution in the Fraunhofer diffraction patterns, 
formed under partially space coherent illumination by an optical system with circular aperture 
having fifth order spherical aberration optimally balanced against lower order aberration terms. The 
besinc and negative exponential forms have been assumed for the coherence function. Computed 
results are presented graphically for various values of the aberration coefficient and coherence para­
meter to show how the aberration balancing is affected by partially coherent illumination.

1. Introduction

The study of diffraction in an optical system under partially space coherent illumination is 
of considerable significance because this illumination is by far the most common. The light 
derived from finite size sources or the light which has propagated from distant sources 
through the turbulent atmosphere are both partially coherent. A comprehensive biblio­
graphy by Singh and D e [1] on the subject indicates the interest in this subject.

The forms of coherence function mostly encountered in illuminations obtainable in 
optical system are besinc, sine and Gaussian. The first two represent the forms of coherence 
function on a plane illuminated respectively by a circular incoherent source and an infinite 
lambertian source [2]. The light coming from distant sources (such as stars) through the 
turbulent atmosphere is very nearly Gaussian correlated. The negative exponential form 
for the coherence function was considered by Shore [3] in his earlier theoretical study of 
partially coherent diffraction.

Wolf-Parrent formulation of mutual coherence propagation, as further simplified by 
Schell to a Fourier transform relation, has been extensively used by many investigators in 
far field diffraction studies of partially coherent light. The formulation uses scalar theory 
of light which is adequate to optical systems with not too large a value for the nume­
rical aperture. Coherent diffraction studies carried out in references [4-6] take into ac­
count the vector nature of light field.

Based on this Fourier transform relationship numerous researches have been made con­
cerning the diffraction pattern of different aperture shapes, apodizing filters and aberrated 
systems [7-11]. Asakura and co-workers extended Schell-Shore integral to study the Fre­
snel diffraction in partially coherent light [12-15].

Improvement in the performance of an optical system cannot be visualised independently 
of the consideration of the coherence characteristics of the light in which it has to operate.
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The lenses that are used for projection photolitography have to be extremely well corrected 
[16]. Although a particular aberration can never be eliminated completely, it can be balan­
ced optimally against lower order aberration terms to achieve more light in the Gaussian 
image. Thus, diffraction studies of systems with optimally balanced aberration with realistic 
illumination are of considerable practical value. Recently Gupta and Singh [17] have 
investigated the image formation by a circular pupil with optimally balanced coma. Zernike 
aberration theory for constant amplitude circular apertures has been extended by Barakat 

[18] to annular apertures having Gaussian-like radial taper.
In this paper we have presented the numerical results for the partially coherent diffrac­

tion by a circular pupil with optimally balanced fifth order spherical aberration for besinc 
and exponential forms of coherence function.

2. Theoretical formulation

We make use of the Fourier transform relation (Schell theorem) according to which the 
far field intensity is essentially the Fourier transform of the product of coherence function 
and the aperture autocorrelation. Accordingly,

where I  is the mean wavelength of the radiation, k = 2n/X, A — the area of the aperture 
A! — the region of S  such that both and S 2 lie within the aperture (a circular region 
of radius equal to twice the aperture radius), C(S) — the autocorrelation of aperture am­
plitude transmission, y(S) — the degree of coherence, and p unit vector in the direction 
0 2P. The meanings of the quantities R, 0 , S t , S 2 and S  are clear from fig. 1.

A  result similar to that of Schell theorem was also obtained by Som [19]. Recently, 
C arpenter  and P a sk  [20] considered the angular spectrum approach in partially coherent 
light and arrived at essentially the same results. In a subsequent paper [21] they have used 
the vector from Kirchhoff integral and obtained the diffraction pattern and total power 
transmissions of circular aperture.
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The pupil function considered in the present paper is given by a function of the radial 
coordinate q only, i.e.:

HQ) =  exp j 2niW6 j  g*+ j  q2 | j for 0 <  q <  1,

=  0 (otherwise).

The autocorrelation C(S) is also a rotationally symmetric function of the modulus value 
of S. For an isotropic spatially stationary coherence function v(S) =  v(|S|) and for small 
diffraction angles cos 0  æ  1 and sin# sa 0 . Thus, eq. (1) in normalized form can be written
as

j 2n 2

l(v, ÿ r) =  —— J* J* v (s) C(s) exp [ivscos (6>—ï 7)] sds dO,
0=0 s= 0

and after integration w.r.t. 0  it gives

2

7 ( r ) =  f  W(s) C(s)J0(vs)sds, 
0

( 2 )

where s =  ¡S1—S2\/a, v = ka0, and W and 0  — polar angles in the observation and spa­
tial frequency planes, respectively, and a — aperture radius.

The autocorrelation of the pupil function is the incoherent transfer function of the opti­
cal system and for a system with optimally balanced fifth order spherical aberration; the 
latter has been calculated by Barakat [22] and presented in a tabular form, for several 
values of the aberration coefficient W6(=  32, 42, 52, and 62).

For v(s) we have considered besinc and exponential forms. These functions are explicitly 
given by 2 J1(as)las and exp (—as), where Jt is the Bessel function of order one, a is the 
coherence parameter and for perfect coherence its value is zero. For a circular incoherent 
source of radius ¿/illuminating a circular diffracting-aperture of radius a at a distance L  from
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Fig.3 . Intensity distribution in the far field patterns in presence of optimally balanced fifth order spherical aberration for besinc form of coherence function 
and various values of the coherence parameter a and fifth order aberration coefficient W6
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Fig. 4. Intensity distribution in the far field patterns in presence of optimally balanced fifth order spherical aberration for negative exponential form of coher- ^
ence function for various values of the coherence parameter a and fifth order aberration coefficient W6 ^
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Fig. 5. Central lobe intensity distribution in the presence of optimally balanced fifth order spherical aberration for besinc form of coherence function for 
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the source, the coherence function is of besinc form and a = Icad/L. This represents the 
number of correlation intervals contained in the linear dimension of the aperture.

In our investigations we have omitted the phase term in the coherence function and this 
is justified if the primary source is at a very large distance from diffracting aperture or is 
located in the focal plane of a well corrected lens as is done in the experimental set up of 
Shore et al. [23]. In the latter case the phase part of the coherence function is annulled 
by the phase transformation produced by the lens. The excellent agreement between experi­
mental results and the theory [23] which omits the phase factor can thus be accounted for.

The effect of the phase term in the coherence function was investigated by S hore [24] 
and A sa k u r a  [25]. Z a ją c  [26] investigated partially coherent near and far field diffraction 
starting from Kirchhoff-Fresnel diffraction integral and obtained the diffracted intensity 
as a convolution of coherent diffraction intensity and the Fourier transform of the 
stationary part of the coherence function.

The partially coherent diffraction pattern with besinc coherence function can also be 
evaluated by calculating the intensity distribution in the image of a circular incoherent sour­
ce (disk of radius a) formed by system. This can be obtained by the convolution of the ap­
propriate point spread function P(v) with the object function (see fig. 2), i.e.

2 7t a

m  =  —  J j  P(v)rdrdp, (3)
0 0

where

v =  (r2-f-v2— 2rwcos/?)1/2.

For the coherent case the intensity point spread function P(v) is the modulus square of 
the Fourier transform (or for a circularly symmetric function Hahkel transform) of pupil 
function. Thus

n*>) =  |z  fexp 1  e4+ j  e'jje.U«’!?)*] · (4)

Cross-checking of results has therefore been done by evaluating eqs. (3) and making use 
of eq. (4) for coherent diffraction in the presence of aberration.

3. Results and discussion

The intensity distribution given by eq. (2) was evaluated numerically by Gauss quadratic 
method [26] on an ICL 2960 computer. In view of the oscillatory nature of the integrand, 
the range of integration is suitably subdivided between the zeroes of the integrand function. 
This technique ensures greater accuracy even with a small number of Gauss points. The 
results are checked for convergence by varying the number of Gauss points. The eq. (3) 
involving eq. (4) was also programmed for ICL 2960 computer and the results were found 
to be in perfect agreement with those obtained frojn eq. (2), for besinc form of coherence 
function. Also for the coherent case the intensity given by eq. (4) agrees exactly with that 
given by eq. (2) when v(s) is replaced by unity.
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Five values of aberration coefficient W6 =  0.0, 3A, 4A, 5A, and 6A, and seven values of 
coherence parameter a =  0.0, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0, covering the useful range of 
partial coherence are used with both besinc and negative exponential forms of coherence 
function. The results of intensity distribution have been plotted on semilog scale and shown 
in figs. 3a, b, c, d and 4a, b, c, d. To show more clearly the influence of a and W6 on the 
intensity distribution in the central lobe a set of separate graphs on linear scale is plotted 
(for besinc case) and shown in fig. 5a, b, c, d.

It is seen that the central intensity is lower for higher values of W6 and coherence para­
meter a. With besinc form a slight dip in the central intensity occurs for large values of a. 
This effect for an aberration free case, reported by Shore et al. [23], is due to out of phase 
addition of contributions from the coherence area for larger values of a with oscillatory 
forms of coherence function. Our results for the aberration free case agree very well with 
those of Shore [3] and S hore et al. [23] for negative exponential and besinc forms of co­
herence function.

To bring out clearly the effect of a on the halfwidth a separate graph is plotted (fig. 6). 
It may be seen that for a given a the halfwidth is not affected by W6, within the range of 
values of W6 considered; a consequence of the optimum aberration balancing. On the other

> >— 
ln

Fig. 6. Effect of the coherence parameter a on the halfwidth and central intensity, for W6 — 0, 3A, 4A, 5 ,̂ 
and 6A
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hand, halfwidth is significantly influenced by a, particularly above a =  0.5. The central 
intensity as a function of a is also shown in fig. 6 for various values of W6.

The central intensity in the image of a disc of radius a is the same as the encircled energy 
within the radius a in the diffraction image of a point source. The energy encircled within 
the radius a is equal to a2 times the central intensity in the diffraction pattern for besinc 
form of coherence function. These values of encircled energy obtained from central inten­
sity agree very well with those given by Barakat [22] for various values of fV6.
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Дифракция и пространственно частично когерентном свете в системе с круговым 
отверстием и с оптимально откорректированной сферической аберрацией пятого 
порядка

Работа касается ислледований распределения интенсивности в дифракционном спектре Фраунго­
фера, возникшем во время пространственно частично когерентного освещения в результате при­
менения оптической системы с круговым отверствием, со сферической аберрацией пятого порядка, 
но оптимально откорректированной ввиду аберраций низших порядков. Функция когерентности 
принята в виде besine или отрицательного экспоненциала. Численные результаты графически 
представлены для различных значений коэффициента аберрации, а также параметра когерентности 
с  целью показать, как коррекция аберрации зависит от степени когерентности освещения.


