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The present paper consists of five parts and is devoted mainly to the results of optical constants exa
mination in Zn3As2 and Zn3P2 which are compounds o f H3-V 2 type with broad energy gap. The 
analysis of the up to now state-of-affairs, so far as the application of the Kramers-Kronig analysis 
method (KK) to the complex coefficient of reflection is concerned has indicated that it is necessary 
to develop the research in three additional directions described in the first three parts of this series.

In the part I a critical analysis of the calculation methods used till now and based on dispersion 
relations due to Kramers and Kronig has been presented. The general idea of the extrapolation met
hods has been discussed. Next, four methods o f extrapolation of reflection coefficients have been 
considered, being followed by a discussion o f two extrapolation methods for the phase angle and 
three original (elaborated lately) methods of calculations based on KK relations. Also, three other 
methods o f optical constant calculations have been reported for which the KK relations are not 
exploited.

In the parts II and III some proposals of effective improvements of the calculation methods 
based on KK integral are given. Additionally, in both these parts the results o f calculations for 
GaAs (a relatively well known semiconductor) are presented and used next for testing the methods of 
calculation improved by us. For these methods the analysis of errors and accuracies is very widely 
presented in the part IV. Finally, the part V contains the results of calculations of optical constants 
for Zn3As2 and Zn3P2, carried out by using the improved methods of calculation and basing on 
our own measurements of optical properties o f those semiconductors.

1. Introduction

The dispersion relations, well-known in the theory of analytic functions, have been used in 
physics since twentieths of this century [1]. They may be applied when the physical system, 
described by a complex function, responses to the input signal in accordance with the prin
ciples of linearity and causality [2]. Hence, the application of dispersion relations in so 
many different fields like, for instance, analysis of electric circuits [3] and optics of solid 
state is so common. In the last field the dispersion relations are known, among others, for 
the complex electric permittivity and complex refractive index [4], as well as for the com
plex reflection coefficient [5, 6]. It turned out, that the knowledge of reflection spectrum for
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given substance allowed to obtain the spectra of the remaining optical constant of this 
substance.

This way of determining the optical constants has been first suggested by Robinson 
in 1952 [7]. Next works were published by Jahoda in 1957 [8], and by Philipp and Taft 
in 1959 [9]. Phillip and Taft in their paper on optical constants of Ge within the range of 
1 —10 eV have initiated the application of the method proposed by Robinson to semicon
ductor physics. In the next years there appeared further articles devoted to the optical con
stants of Ge [10, 11] as well as to these of Si [12], InSb, InAs, and GaAs [13] and PbS, 
PbSe, PbTe and SnTe [14]. In all these works the most simple method of calculation, called 
the Philipp-Taft method was used. This method will be considered in Section 3.2 and its 
detailed analysis may be found in part III of this work. Unfortunately, the application of 
this method led to nonphysical results in many cases, especially, when the results of the 
reflection spectrum were available solely in relatively narrow spectral range. Hence, the 
necessity of looking for other methods became evident. The methods, due to Roessler 
(1965), Ahrenkiel (1971) and Leveque (1977), belonging to the most important technique 
will be shortly considered in Sections 3.1, 5.1 and 5.3. Besides, the part III of this work will 
be devoted to the methods by Ahrenkiel and Leveque. The procedures suggested by Mac 
Rae (1976), Tulvinski and Terentev (1970), and Spitzer and Kleinman (1961) are mentioned 
in Sections 5.2, 3.4, and 4 of the present review of the methods. The Section 6 is devoted to 
the methods of determining the optical constants from the reflection spectrum, in which the 
Kramers-Kronig (KK) integral is not employed. These are the dispersion analysis method 
(Section 6.1), the method based on the measurement of dependence of the reflection spec
trum upon the incidence angle (Section 6.2) and the algorithm employing the Fourier series 
(Section 6.3) proposed by King in 1977. In spite of so great number of the existing methods 
often very subtle and complicated that the Philipp-Taft method is still most widely used in 
practice (see, for instance, [15-20]). An attempt to make a detailed causal analysis of this 
fact may be also found in this work.

2. General idea of extrapolation method

The Kramers-Kronig (KK) relations allow to calculate the real or imaginary part of the 
complex function, if the other part of this function is known within the whole range of 
variability. This function must fulfil some conditions described in Appendix A. It turns 
out that the KK relation may be applied to the calculations of one (real or imaginary) part 
of the complex function of real variable, which may be, for instance, the logarithm of the 
complex coefficient of reflection

r  = (1)

where Ej, ER — intensity of the electric field for the incident and reflected waves, respecti
vely.

Since one of the quantities easiest to measure in the range of the basic light absorption 
is the coefficient of reflection R =  |r |2, and since it suffices to know one of the quantities:
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r, n or e to determine the other ones, the KK relation was used to calculation of the phase 
angle 0(E) on the base of the measured reflection spectrum R(E) [5]:

E r  lnÄ(x) , 
0(E) = - P  -= r^ -d x ,  

n J E2—x2
(2)

where P denotes the principal value of the integral.
For obvious reasons the measurements of reflection are restricted to some finite inter

val of energy (Ea, Eb), while the calculations of the phase 0(E) of the light reflected require 
the knowledge of the whole reflection spectrum (0, oo). The issue from this situation is the 
extrapolation from both sides of the interval (Ea, Eb).

In order to simplify the considerations the integral given by the eq. (2) may be divided 
into three parts

0(E) =
E r  r‘ !n*(x)

* 1  J

ln7?(;t)

E2 — x2

OO

dx-\-P J*

4

lni?(x)

E2 — x2
dx

= 0 1(E)+02(E)+03(E). (3)

On the other hand, in order to describe the optical properties of the semiconductors it 
is convenient to specify four spectral regions [21]:

(i) region of semiconductor transparency,
(ii) region of interband transitions,

(iii) region of plasma vibrations of valence electrons,
(iv) region of transitions from internal levels, lying below the valence band, to the 

condition band.
The interval (Ea, Eb) covers, as a rule, the whole second region, sometimes the third re

gion and partly the first and the fourth ones. The contribution from the unmeasured third 
and fourth parts, lying usually within the region of vacuum ultraviolet, is described by 
0 3(E), while that from the unmeasured part of the first region (usually infrared) to the 
whole phase is described by 0 1(E). Before we start to estimate this contribution it should 
be noticed that the region of sharp structure of R(E) occurs both in the second and fourth 
parts, but the absolute value of R(E) in the fourth region is usually less than in the second 
one. In the first region, apart from the lattice vibration spectrum, the energy of which is 
far from the interval (Ea, Eb), the coefficient of reflection depends weakly upon the energy. 
Finally, the third region is the interval of quick decay of the R(E) value.

By performing the integration by parts, the KK integral (2) may by transformed into 
the following form [8]:

0(E) =
1 dR(x)

dx
In

x-\-E

x - E
(4)

This vary form of this integral allows already to forsee to some extent the contributions 
of the regions (0, EJ and (Eb, oo) to 0(E): Firstly, under previous assumptions, the con
tribution of the structure of R(E) to the phase of the reflected wave is the greater the closer
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are x  and E due to the presence of the expression ln(\x+E\l\x—E\) in the integrand. The 
contribution to the total phase of the reflected wave from the parts positioned very far 
from the region (Ea, E^) is strongly damped by this logarithm, provided that E belongs to, 
the region comparable with (Ea, Eb). This fact allows to neglect the lattice vibration spectrum 
of the semiconductor. Secondly, since the region of smooth changes of R(E) (small dR/dE) 
gives small contribution to the total phase and dR/dE in the region of semiconductor trans
parence is small, it is clear that the contribution of 6 X(E) to 6(E) is small.

1 dR
In the region (Eb, oo) the term -----—  may take the values comparable with the values

R dE
within the region (Ea, Eb) coming from this term. Therefore, if the singularity in R(E) is 
close to the measuring region, its contribution in the vicinity of the point Eb may be signi
ficant. Thus, inclusion of the whole sharp structure R(E) into the interval would be the 
best issue (Ea, Eb). Unfortunately, however, this is not always possible.

Now, we shall present different methods of the estimation of the contributions of 6 X (E) 
and 6 3(E) to the total phase of the light reflected.

3. Extrapolation of methods for reflection coefficient

3 .1 . Roessler method

This is the simplest of the methods being in common use, though it was not the one first 
applied. Roessler employed the average value theorem to the Stielties integral and calcula
ted [22], for Ee(Ea,Eb)

E„

i l

2n dx

In
x+E

dx = A\n
Ea+E

x - E Ea- E  ’

- In
x+E

dx = Bln
Eb+E

x - E Eb- E  ’

(5)

(6)

where

A = - ,  | s ( 0  ,E X

In R(rj)
B =  - 2n -> r]e(Eb,oo)

The quantities A and B were calculated from the system of equations for two energies (for 
instance, E = Ec and E =  Ed), which belong to the transparence region of semiconductor, 
0(E) = 0,

Ain
Ea+Ec
Ea~Ec

+ 0 2(E)+B In
Eb+Ec
Eb~Ec

Ain
Ea+Ed
Ea~Ed

+ 0 2(£ )+ £ ln
Eb+Ed

Eb~Ed

=  0, 

=  0.

(7)

(8)
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The calculations were carried out as follows: R(E) was determined experimentally in the 
region (Ea, Eb), while A and B were found from formulae (7) and (8) by determining 0 2(Ec) 
and 0 2(Ed), for 0(EC) =  0(Ed) =  0. Next, 0(E) was calculated for all E (clearly, except 
for Ea and Eb, because of singularities occurring at these points).

Thus, though Roessler does not call his procedure explicite the extrapolation, he appro
ximates the coefficient of reflection in the regions (0, Ea) and (Eb, oo) by the straight lines 
R(E) = R(£) — const, ignoring the continuity of the curve R(E) at the points Ea and Eb. 
The same method was next applied by him to the case of perpendicular reflection in the work 
[23].

Roessler suggested also an improved variant of his method in the work [24], which 
is hardly mentioned in the literature, but in which he took into considerations also the case 
of rapid changes of the reflection coefficient at the immediate vicinity of the measurement 
limits Ea and Eb. When the dependence of £ and rj upon E may be neglected, 0(E) may be 
calculated in the previous way, but, if it is not the case, another approach to the problem 
becomes necessary. For 0 X (E) the logarithmic term in the formula (5) suggests that only 
the close vicinity of the point Ea should be encountered, provided that E is close to Ea. 
The expression describing 0 X(E) in the relation (3) may be integrated by parts, to obtain

0 x(E) = —  \n E + E a \ (i p u n  f a  ln K £+*)/l£ - * l l  d l n R ( x >
E -E a | r  ( J  J \n((E+Ea)l\E-Ea\] dx

(9)

This is a quite general expression. Similar procedure may be applied to 0 3 (E). The integral 
in the above expression does not introduce any great change to Ox(E) if there is no strong 
structure of the reflection coefficient in the vicinity of Ea .The said integral may be appro
ximated by a simple function of energy. Roessler has estimated the above integral for a con
crete case of sodium iodide by assuming an exponential change of R(E) below Ea.

The method due to Roessler -  ignoring the non-physical discontinuity of the curve 
R(E) at the points Ea and Eb, as being insignificant for calculation of optical constants with 
in the measurements limits of R(E) -  should give some good results in the case when the 
structure of the reflection coefficient disappears at the vicinity of the measuring limits of 
Ea and Eb. In the opposite case a strong influence of the dependence of £ and rj upon E may 
be observed. The method discussed would be mathematically rigorous, if the energies £ 
and rj (or rather the constants A and B) were determined separately for each energy E for 
which the change of phase 0(E) is calculated.

3.2 . Philipp-Taft extrapolation

Philipp and Taft have assumed in [9] that the reflection coefficient in the region (0, Ea) 
has a constant value R(E) — R(Ea), i.e.

0
ln ü (£ J In R(Ea) 

2 n
In

E+Ea
E-E„

while in the region (Eb, oo) it changes and takes the following form: 

\nR(E) = AlnE+\nB,

(10)

(ID
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or, equivalently, that R(E) =* BEA. For the first time Philipp and Taft calculated in this 
way the optical constants of germanium at Eb = 11.3 eV [9]. The constants A and B have 
been estimated from the conditions that the phase is equal to zero at one point of the tran
sparency region, 0(0.6 eV) =  0, and the condition that the calculations are consistent with 
the transmission measurements in the region 0.6-1.7 eV, The extrapolation according 
to the formula (1) has been carried out up to the energy of 30 eV (where the calculation was 
broken) by using the expression

^  x E  3?eV A\nx-\-\nB

- t o - * ·Eb
(12)

In the paper [9] it has not been explained why the calculations have been broken just at 
30 eV if the integral (12) may be easily calculated until infinity.

In the paper [26] the integral (12) has been calculated for diamond by assuming that 
above 35 eV, d(\nR)/d(\nE) = - 4  = A.

Philipp and Taft assumed generally that the region between Eb and the energy, above 
which the approximation d(lnR)/d(lnE) = —4 may be applied, contains no fundamental 
transitions. The only structure element in this region should come from the plasma vibration 
at Ep. The reflection should be great below Ep, while above Ep it should quickly fall down 
tending to the function given in (12) for A = —4. In the opinion of Philipp and Taft, in 
order to perform an extrapolation in this region the value of 0(E) should be known at least, 
at one point of this region. This value may be determined from the condition 0(E) — 0, 
E < E g.

The said method was also employed by other authors. Rimmek and Dexter [10] used 
an analogical extrapolation, lnR(Is) =  AE-\-B, for germanium truncating the calculations 
at 30 eV. This was necessary, since for such extrapolation the integral (2) is divergent. 
Zivitz and Stevenson [27] fixed the upper limit of calculations on the base of the condition 
of disappearing of 0(E) in the transparency region. Cardona and Greenaway [14] assumed 
A =  —4, which gave satisfactory results for semiconductors belonging to groups IV-VI 
and V. The parameter B was found from continuity condition for the curve R(E) at the point 
Eb, while the integral 0 3(E) was calculated to infinity.

The authors of the work [28] write that they used the Philipp-Taft method for GaAs, 
but they also say that the values of R(E) outside the measurement interval were almost 
constant. Hence, it should be concluded that the parameter A was there close to zero, which 
is not consistent with the anticipated decrease of the reflection coefficient like R (E )~E~4r. 
0 3(E) was probably calculated to infinity.

According to the authors of the work [29] ths analytical form of 0 3 (E) calculated by 
using extrapolation of (11) to infinity is the following

AXnx+XnB
E2- x 2

dx =
In R(Eb) Eb+E

271 n Eb- E

A 1 l E \ 2m 1

x 2 j  (2m—l)2 \T b) ’

(13)
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where the fact is encountered that

In
x+E
x - E

=  2 V
(2m

1 tE \2m~i

= ^ U / ’
and

(14)

\nB+A\nEb =  I n i? ® .

In the formulae (13) and (14) m denotes natural numbers.
Somewhat later (in seventieths) in the calculations methods due to Philipp and Taft the 

parameter B was written down in the region (Eb, oo) as

R(E) =  R(E„) \ e >E„ (15)

In this form this method was applied by Ellis and Stevenson [30] to Cd3As2, Zn3As2 

Cd3P2 and the three-component mixed crystal to determine the parameter A from the 

continuity condition for dR¡dE at Eb, since -  according to them -  the choice of A such 

that 0(E) is zero for E <E*, may result in discontinuity of dR¡dE at the point Eb. Th¿ 

upper limit of integration (Ef ) has been determined by taking advantage of the sum rule

OO
J (n-\)kEdE =  0,
o

so that

f  (n-l)kEdE< 0.0l, 
o

(16)

(17)

Another form of KK integral (slightly different from that given by formula (2) which 
was used in papers [14, 30-33]) should be mentioned in order to complete this review. Consi
dering that

ln£ (£ )

E2- x 2
dx =  0,

he formula (2) may be transformed to the form

(18)

o

The transformation (2) -> (19) is valid for all physically possible spectra of reflection [14]. 
This allows to avoid singularities of the integrand which is now finite for x->E, since the 
reflection spectrum has no infinite maximum at E. Such infinite jumps have never been 
observed experimentally.

* Eg denotes the energy gap of semiconductor.
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It should be noticed that the Philipp-Taft method is used very widely because of its 
simplicity. However, in many cases its application leads to nonphysical results taking the 
form of negative values of the absorption coefficient in the region of transparency, or -  for 
high energies -  to violation of the boundary conditions by the optical constants. The detailed 
analysis of the above method and its modification will be discussed in the part III of this 
work [41].

3.3 . Velicky method

This method, described in [34], does not propose any concrete form of extrapolation, but 
seems rather to suggest a mathematical trick allowing to generalize the extrapolation pro
cedure.

If  it is assumed that in the region (0, Ea) the coefficient of reflection has the 
form R(E) — R(EJ, it may be believed that the spectrum of reflection is known within the 
interval (0, Eb). Let W =  lnÄ(£) and

Í S m  Ee(0,Eb), 
[0, Ee(Eb, oo), (20)

YziE): =  n E ) - ^ ( E ) .

The KK integral takes the form

(21)

The first integral may be easily calculated, while the second is equal to

(22)

Hence
OO

(23)

where bm =  amElm~x

The series in the formula (23) is convergent for ElEb <  1 being the slower convergent the 
closer is the ratio E/Eb to unity. This may lead to the errors when the calculation of the 
successive terms is truncated too soon. No concrete form of R(E) in the interval (Eb, oo)
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was postulated by Velicky. If  this is done, the number of series terms (23) may be determi
ned to achieve the required accuracy.

If the description by Velicky was applied to the method of Roessler or to the extrapola
tion of Philipp-Taft type, the coefficient bm would take the forms

In R ( v )

m n ( 2 m - l )

and

In R(Eb) A 1

m n (2m—l)2 *

respectively. However, the method of R(E) extrapolation by using a power series is the first 
to offer a possibility of full exploitation of the fact that a part of KK integral may be 
represented in the form of a series (see formula (22)).

(24)

(25)

3.4 . Extrapolation by using a power series

This extrapolation proposed by Tulvinsky and Terentev [35] was based on the assumption 
that even if outside the point Eb the coefficient o f reflection does not behave like E~A', the 
character of its decay in the X-ray part o f the spectrum is asymptotic and may be approxi
mated with the power series o f the form

N

J J (£ )=  2 c mE ~ * ",E > E b.
m—X

(26)

In practice, the number of coefficients cm, which may be determined from the condition 
O(E) — 0,Ee(0,Eg) depends upon the value of the measurement error A R/R.

The advantage of the extrapolation of the power series for the method due to Velicky 
is that the concrete form of the coefficients bm allows to sum the series with respect to 
EfEb for given accuracy of calculation, independently of the number of determined coeffi
cients cm. If  cm is defined by the following relation [29]:

dlnR(E) y t . / i l - 1- 1 

dE Z j  Eb [ eJm=i
(21)

the Velicky coefficients bm in eq. (23) take the form

_  ln R(Eb) 1 y  1

M n(2m -\)  +  n Z j Ci (2 m - l) (2 m + 2 /- l)  '
(28)

As may be seen, the Philipp-Taft method is a version of the above method. The latter, 
having the same shortcomings as the Philip-Taft method improves, after all, only the accu
racy of the results. Apart from some subtleties, the Roessler method may be also considered 
as a particular case of the extrapolation by power series.
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4 . Extrapolation of the phase angle 0(E)

The methods of the refractive index extrapolation, described earlier, consisted in selection 
of suitable functions and their parameters. The phase shift 0(E) or its part may be treated 
in an analogous way [36, 37].

Spitzer and Kleinman [36] calculated the integral (2) for quartz within the limits de
fined by the measurement range of reflection coefficient, and next added a corrective term

A0(E) =  A+BE+CE2, (29)

the constants A, B, C being obtained from the condition of disappearance of 0(E) at three 
chosen energies, where it was known that the extinction coefficient k  was small (k <  0.003).

Miloslavski [37] also calculated the integral (2) within the limits of measurements, and 
next added a corrective term, which had been determined by expanding 0 l (E)Jr0 2(E) 
into series with respect to x/E assuming that Ee(Ea,Eb):

A0(E)
In R(E) (Eb-E)(E+Ea) 

2k “ (Eb+ E )(E -E j
1 2  ( E ^ ai-E % ) ,  

1 = 0

(30)

where at ~  f  \nR(x)x21 dx, bt = J  lnjR(x)* 2l~2dx.
O Eb

The method of the phase angle extrapolation seems to have more shortcomings than the 
methods of 0(E) extrapolation. The most serious argument against the extrapolation of 
0(E) (note that this extrapolation is rarely used), is the fact that the run of the curve R(E) 
in the range of both the low and high energies can be predicted easier than that of 0(E), 
under the condition that within the range of semiconductor transparency 0(E) is close to 
zero due to small absorption in this region. This property is successfully employed in 
both extrapolation procedures. Moreover, the values of 0(E) considered in this method 
are loaded with a measurement error of R(E) magnified by the calculations, which dimi
nishes the reliability of the results obtained.

5. Other methods of calculation

The next three methods are so much different that it will be convenient to present them sepa
rately. In the first of them, elaborated by Ahrenkiel [38] (instead of choosing the suitable 
extrapolation methods) the convergence of the KK integral is improved, the second one 
[39] is based on interpolation of a part of the phase angle 0(E), while the third one [40] 
is based on cyclic computations performed with the help of the KK relation to which the 
available measurements of absorption or the Drude-Lorentz equation are used to com
plete to the reflection measurements.

5 .1 . SKK method

This is the so-called substractive Kramers-Kronig method given by Ahrenkiel [38] and 
based on the transformation of the ordinary KK relation (2), to the form in which the inte-
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grand is convergent with E 4 instead of E 2, as it was the case in the integral (2):

0(E) = E
(E2- E 2)\nR(x)

(E20- x 2)(E2- x 2)
dx -j-

0 (£ o)1 

E0 J
(31)

Transformation (2) -> (31) is possible when the value of the phase shift of the wave reflec
ted at one point of eneigy scale E0e(Ea,Eb) is known. This condition, however, may be 
fulfilled also when no suitable measurements in E0 are available, then, however, the exis
tence of the semiconductor transparency region must be taken into account provided that 
the measurements of reflection cover, at least, a part of this region.

Because of quick convergence of the KK integral (31), in order to obtain the correct 
values of optical constants within the interval (Ea, Eb) the extrapolation of the coefficient 
of reflection outside the measurement region is no more needed. It is only to avoid the discon
tinuities of the curve R(E) that the values of R(E) are assumed to be R(E) = R(Ea) and 
R(E) =  R(Eb) in the regions of lower and high energy, respectively.

The SKK method is especially suitable in calculations of optical constants (on the base 
o f the measured spectrum of reflection) if the energy interval available to measurements is 
relatively narrow. The predominance of this method over the traditional KK method has 
been shown with the help of numerous different tests (see, for instance, [29,38]). The detailed 
SKK method will be discussed in the part III of this work [25].

5 .2 . M ac Rae method

Mac Rae [39] had at his disposal a wide range of his own measurements as well as the measu
rements of other authors for thin layers of white tin, i.e. the measurements of the index of 
refraction n(E) and extinction coefficient k(E) within the intervals 0.1-1.3eV and 14.5 
-20.5 eV as well as the measurements of the coefficient of reflection R(E) in the interval 
2.1-14.5 eV. For the cases where n(E) and k(E) were known, R(E) and 0(E) were calcula
ted from the relations

R(E) =

0(E) = arctan

(n — l)2 +  k2 
(n +  l)2 +  k2 9 

2k
n2 + k2-  1

(32)

(33)

The change of phase may be splitted into two parts
_  20.5 eV

0(E) = — P
71

r  In R(x) ., _ r  in«(.J E2-Xldx+ 3IP J
20.5 eV

lnR(.x) 

X*
dx. (34)

The first integral in formula (34) may be easily calculated from the measurement results, 
while the other integral, denoted by A0, may be determined in the regions in which 0(E) 
is known. Having determined the values of A0(E) in the intervals 0.1-1.3 eV and 
14.5-20.5 eV, A0(E) was interpolated by a smooth function in the interval 1.3-14.5 eV. 
Then, by substitution of A0(E) to the eq. (34) 0(E) may be obtained within the interval 
2.1-14.5 eV, which, together with the knowledge of R(E) allowed to calculate n(E) and 
k(E) in this interval.
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Additionally, in order to complete the spectrum of the already known n(E) and k(E)y 
Mac Rae exploited the results from literature and extrapolated the coefficient of refraction 
basing on the points n =  0.88, E =  20.5 eVand n — 0.965, E =  27.5 eV. The above method 
gives, perhaps, the most reliable estimations of the optical constants, however, only in the 
extraordinary cases such a combination of the measurements completing so well one 
another is possible.

5.3. Leveque method

In the region of low energies, L eveque [40] exploited the absorption measurements restric
ted, in principle, to the absorption edge in order to complete the measurements of reflection. 
For this purpose he carried out the cyclic calculations by employing the KK relations bet
ween d(E) and R(E), respectively, beginning with the measurements of the reflection coeffi
cient, completed with the help of an arbitrary extrapolation ; the scheme of calculations is 
presented in fig. 1, where [T\ and [T\~x are operators defined as follows:

a(E)=[T\R(E),

R(E)— [T]~1a(E), (35>

and [P] denotes the operation of fitting the results obtained from the measurements to  
the experimental results obtained in the respective measurement intervals for. R(E) and 
a(E).

R(E) arbitrary n 1C \ _ i i u a 0(E)
experiments extrapolation Po'b)

[PI IP]

R1(E)
[T1

a-j(E)

Fig. 1. Scheme of calculations according 
to the simples Leveque method (for 
explanation see text)

According to Leveque, the convergence of this method depends upon the accuracy of 
measurements and, the experimental data being loaded in reality with an experimental error, 
the convergence is assumed only for reduced overlaps of the measurement intervals for 
R and a. Sometimes, even the separation of both the domains becomes necessary.

Leveques suggested two methods of completing the measurements of the reflection coe
fficient from the high energy side. In the first of them he applied the cyclic self-consistent 
calculations, as it was the case for the low energy side, exploiting the approximate expres
sion for the cross-section of the atoms of two-component compounds AB for those energies 
in which the optical absorption results from the purely atomic phenomena (for instance, 
above 30 eV for GaTe, according to [40]), ie.

<*AB =  aA+<*B, (36)
Hence

(37)
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where NA, NB and — concentrations of the respective atoms and molecules, a — absorp
tion coefficient. The applicability of this method depends on the knowledge of the absorp
tion coefficients of both the components in the energy interval in question.

The second method is based on the Drude-Lorentz equation and consists in assumption 
that the deep level electrons behave like dependent oscillators of eigenfrequency co0 and 
damping coefficient y. In such a case the complex electric susceptibility % is:

_  y  <
Z.J  COqj — CO2 —  icoyj *

(38)

where copJ is the plasma frequency

Nje2 
me o

(39)

and Nj denotes the number of electrons in the volume unit on the y'-th level. In the single- 
electron approximation the complex dielectric permittivity e(E) describes the probability 
of transition between two states distant by energy E. In e (E) one may distinguish the parts 
corresponding to valence electrons and to electrons from deep levels. The boundary between 
these two groups of electrons is, of course, arbitrary and may be chosen suitably to assure 
the consistence. Thus, it may be written that

He) =  i+  * ( £ ) =  i + № ) + ? ( £ ) ]  =  i ’№ ) + ? № ) ·  ( « )

By applying the Kramers-Kronig relations and making the respective calculations

e(E) HE) =  VR exp(iff), (41)

ev(£) r\E) =  | / ^  exp (/00 , (42)

where R is a coefficient of reflection for the real solid and Rv is the coefficient of reflection 
for the virtual solid without deep electron levels, and applying the relation

e — e V — S l_
Z i  E h -E 2- iE r  ’

(43)

in which the summing is carried out only with respect to deep electron levels numbered by /, 
Leveque suggested the cyclic calculations according to the scheme shown in fig. 2. The 
complex operators used in these calculations have been defined as

r  =  M ]rv, 

rv =  [-A \r.
(44)

The [KK] operator is equivalent to calculation of 0(E) from the curve R(E), i.e. to the rota
tion r(E) in the complex plane. The curves R(E) and RV(E) are invariant with respect to 
this operator. The operator [EXP] acts, in turn, only on the real part of r(E) giving its 
real value in the measurement range. In the complex plane it is equivalent to a shift r along 
the circle of radius Rexp.
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For the said virtual solid there exists an energy threshold behind which all the possibi
lities of optical transitions are exhausted and the extrapolation of E~* type may by applied 
to the coefficient of reflection RV(E); consequently, it is possible to calculate accurately the 
KK relation.

Fig. 2. Scheme o f calculations according 
to the Leveque method taking account o f  
both valence and core electrons (for 
explanation, see text)

Let us return to the calculation scheme shown in fig. 2. If the calculations are conver
gent, different functions r*tend to rv and r, which are invariant with respect to [EXP] and 
[KK] operators, i.e.

limr* =  limre =  r , (45)

l im K = l im  rg = r \  (46)

Leveque received for GaTe the rapid convergence of this method; two or three cycles suffice 
to obtain the constant values. The parameters Eol and r t for the levels 3d and 4d of galium 
and tellurium, respectively, have been chosen to assure the consistence with the absorption 
curves for Ga and Te in the range of 40-120 eV. The operation denoted by [EXP] was per
formed by Leveque by hand which significantly complicated the calculations. The next 
objection raised to this method is the necessity of making measurements in wide range. In 
the part II of this work [25] an attempt to modify the Leveque method will be presented.

R(E)

exp.
-> r 1

[EXP] [KK]

Ar h

6, Calculation methods not based on KK relation

6 .1 . The dispersion analysis

In this case, it is assumed that the medium examined behaves like a set of independent har
monic oscillators, i.e. that the complex dielectric function describing this medium has a well 
known form

H e )=  i + 2
i

Qi

Eli—E2—iEri
(47)

We assume some hypothetical values Eoi, 7"), i.e. we determine e (E), and next, by 
applying the relation

R(E) =
HE)112- 1 2

I ( £ ) 1/2+ l
(48)

we determine the hypothetical spectrum of reflection, which is compared with the measured 
spectrum of reflection. By varying £>,·, r t, E0i the calculated spectrum may be fitted to the 
dependence obtained by measurements.
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The approach presented being used most frequently to determine the optical constants in 
the infrared gives good results in the analysis of reflection spectrum, provided that its 
course is not too flat, as then a great number of oscillators must be taken into account and 
the whole method becomes of low effectiveness [15].

In order to improve the dispersion analysis the latter is completed sometimes by [KK] 
analysis [46]. The change of phase during reflection 0, is calculated as follows:

where RDA and 0DA are the quantities obtained from the dispersion analysis of the measu
red spectrum of reflection R(E).

6.2. Angular dependence of reflection spectrum

The Fresnel formulae describing the dependence of the complex coefficients of reflection, 
rp and rs, depending upon the state of polarization and the incidence angle 0  have the well 
known forms

s c o s0 + (h 2—sin20 ) 112 ’

and show that when, for instance, the relation Rp(0) = \rp(0)\2, is known the refractive 
index n may be determined by the method of numerical fitting. It may be seen that the mi
nimum condition is that the reflection spectrum is known for two different angles of inci
dence or for two states of polarization.

The advantage offered by this method is that it reduces the errors of calculated optical 
constants caused by the state of the examined sample [23]. This is particularly useful in 
examination of strongly anisotropic substances, like graphite [47]. The difficulties connected 
with the measurements of the reflection in the light polarized at different temperatures and 
in wide range of energy for different angles of incidence are probably the reason that the 
method mentioned above is rarely quoted in the literature.

6.3 . Fourier-series algorithm

King [48] suggested in 1977 a new method for calculation of phase change G, which occurs 
during reflection, basing on the coefficient of reflection R, measured within some energy 
range. In the method suggested by King the fact is exploited that the function r (co) is 
analytic and the derivative dco\nr((o) is bounded. Then the relations hold

(49)
o

h2 COS 0 —(n2—sin20)112
Kp n2c o s0 + (n 2- s m 20 ) 112 ’ 

* c o s 0 —(n2—sm20 ) 112
(50)

(51)
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and

oo _ m/2

e w =  ( -1 ) ' Ç r - “ - 1/ . . » ,  (52)
m=l L /=1 * '

where

tg-1ct) -f J ?  ^  j  sin (2j—2l) tan~1 û) j .

Thus, the measured spectrum of reflection may be used to find the Fourier coefficients 
am (see formula (51)). Next, (9(co) is obtained on the base of eq. (52).

This method is, in principle, equivalent to the methods based on Kramers-Kronig rela
tion. If  compared with the latters this method -  according to conclusions of the work [48] -  is 
characterized by a shorter computer time and lower sensitivity to the error made by the ex
trapolation of R((o) outside the computed interval.

7w(ft>) =  o j- y i  ( - 1 Y I m
2 j  2j+1 y + 1 W )

7. Conclusions and remarks

The KK relations have been used for the first time in reflection spectroscopy by R o binso n  [7] 
in 1952, who based his work on the paper by B ode  [9]. The calculations made by Robinson 
concerned the infrared part of the reflection coefficient spectrum. His method has been 
summarized by Jah o da  [8], who used it to calculate the optical constants of BaO close 
to the absorption edge. He mentioned the extrapolation of R(E) in the high energy region 
by saying that it may be based on known values of n and k in the transparency region 
(n — known, k = 0). Since the year 1959, after the works by Philipp and T aft  [9] broade
ning the calculations to cover also the ultraviolet part of the spectrum, the KK relations 
have been commonly used in the methods of determination of optical properties in solids.

The optical constants in semiconductor are determined in order to recognize its struc
ture as well as possible. For this purpose the knowledge of the spectrum structure, for 
instance, the virtual part of the electric permitivity or the coefficient of absorption is mainly 
needed. The values of optical constants begin to play a part in the more subtle examinations, 
when, for instance, some concrete model should be fitted to the obtained spectra. Thus, 
the basic requirement addressed to the methods of determining the optical constants is the 
demand that they give the spectrum a structure consistent with the real one.

In the case of KK analysis of the reflection spectrum this requirement is restricted, in 
a  natural way, to the interval in which the measurements have been made. The statement, 
that all the presented methods satisfy this basic condition, though not ideally, is quite 
obvious. For instance, the usage of the Philipp-Taft method may result in some deformation 
o f the structure, which precludes the correct read-out of the position of the characteristic 
points in the spectrum e2(E). It happens often that this method is very good for one type 
of reflection spectrum, while in some other case it gives worse results than other methods. 
Therefore, so many versions of the Philipp-Taft method are used in practice.
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The simplest, already mentioned, method of calculation of the KK integral is the met
hod due to R oessler [22] based on the approximation of the reflection coefficient by the 
straight line from both the sides of measurement interval, by applying the average value 
theorem for the Stielties integral.

The widely used extrapolations employing the P h il ipp-T aft  method [9] (see also [10, 12, 
14-21, 24, 26-33, 42-44]) and the second version of the R oessler [24] or R immer-D exter 
[10], take account also of the simple behaviour of the coefficient of reflection, for instance, 
of the type

R(E) =  BEa or R(E) =  Bexp(EA). (53)

These methods suffer from two shortcomings. Firstly, the constants (for instance A, B) 
are usually chosen from the conditions describing the behaviour of the phase in low ener
gies. Small error in the constant value may be negligible in the low energies, but may lead 
to great discrepancies in the region of high energies. Secondly, there exists an infinite number 
of extrapolations which fulfil one or two of the conditions usually taken into considera
tions. The choice of the unsuitable extrapolation even if undetectable in low energies, may 
cause incorrect results in the vicinity of high energy limit of the measurements.

Thus, from the theoretical viewpoint all the methods described above are insufficiently 
justified, apart from the fact that after all the optical transitions in the region of X-rays 
are exhausted, a decay of reflection coefficient of the form R(E)~E~*  is expected. Never
theless, such procedures render, as a rule, good results in the region of low energies, though 
6(E), and hence also the absorption, may take negative (and by the same means -  non
physical) values (see [45], for instance) below Eg due to the way in which the extrapolation 
parameters are determined. Analogical shortcomings are attributed to the extrapolation 
methods used to determine the phase angle 0(E) as well as to the extrapolation by power 
series, though the latter way is exploited to a slightly less degree.

Almost ideal issue from this situation is the procedure presented by Mac Rae [39]; 
unfortunately a broad range of measurements remains rarely at the disposal. Being still 
possible for the thin films it becomes very difficult for solids, if possible at all.

The L eveque method [40] gives (under the condition of the convergence of calculations) 
the values of 0(E) consistent with the absorption measurements from the low energy side 
and the value of e(E) -  from the high energy side -  consistent with the measurements of 
absorption or with Drude-Lorentz equation applied to the deep electron levels. On the 
other hand, however, this method is difficult to use as it requires some manual corrections 
of [EXP] in the cyclic calculations and, moreover, it has not been checked yet for other 
materials, except for GaTe. Wide range of measurements of R(E) and a(E) is also neces
sary for its verification.

The SKK method [38], due to its high convergence and the low demands concering the 
extrapolation, gives the results better than the other methods in the case when the values 
R(E) are available only in a narrow range of energy. On the other hand, this method suffers 
from additional computational error depending on the distance of energy E  for which the 
calculation are being performed from the point of expansion E0, which becomes visible 
at the distances between E and E0 greater than several eV.

7 — Optica Applicata XI/4
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The Philipp-Taft and Roessler methods give the better results the broader the measu
rement range. In the case, when the measurements of the reflection coefficient are available 
only in a relatively narrow energy range the Ahrenkiel methods seems to be the best one. 
Much more accurate algorithms, like those of Mac Rae or Leveque, require the measure
ment data which are difficult to achieve if possible at all. In order to recognize the behaviour 
of the optical constants outside the measurement range the method due to Leveque or the 
algorithm proposed by T ulv in sk y  and T erentev  [35] may be used. Also some versions of 
the Philipp-Taft method will be useful in this case. As far as the values of the optical con
stants are concerned, there is no method based on KK relation which would give the reliable 
results in the case, when the measurements of reflection coefficient are available within nar
row interval of few to several electronovolts.

In the part I of this work also some other methods are mentioned in which the KK ana
lysis is not employed. These methods are not more accurate or simpler in application 
which is evidenced, among others, by the fact that they are very rarely applied to determine 
the optical constants in semiconductors.

Thus, the present situation is characterized by a lack of a reliable method of calculations 
of optical constants from the measured spectrum of reflection coefficient. In the further 
parts of this work the discussion of difficulties, which appear when attempting to elaborate 
an ideal method of its solution, will be presented.

Appendix A

Derivation o f  the dispersion relations

There exist two main groups of proofs of dispersion relations, called also the Kramers-Kronig relations. 
In one case the properties of Fourier transform [1] are employed, while in the other, some properties of  
complex functions of complex variables are used [2]. In this Appendix the second way of prooving will be 
presented, since it is both more general and interesting.

The proof of the KK relation will be based on the Cauchy theorem [2]: If f ( z ) : C  -*· C is holomorphic 
in one connected region D, then

f  dz =  2 (A. l )  
J z —a 
v

holds for an arbitrary closed curve y  lying in the region D, where a — arbitrary point inside the integration 
curve. On the other hand, the function/(z):C ->  C is holomorphic in the region D, when for each z e D  
there exists a limit

.. f ( z + A z ) - f ( z )
h m -------- ----------
Ae-*-0 Az - m (A 2)

If a e  R, and the integral (A .l) is calculated only along the real axis, except for the point a which may be 
surrounded by an infinitely small half-circle to omit the singularity in (A .l), the imaginary part of the given 
function at the point a will be determined by the real part o f the same function at all the points on the real 
axis. And similarly, in order to determine the real part at one point it suffices to know the behaviour of the 
imaginary part of the function examined along the real axis.
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Let /(z ):C ->  C be holomorphic and |/(z)| -»■ 0 when \z\ -> oo and /« i z >  0. The function .
z —a

will be integrated along the closed curve y  shown in fig. A .l. The circulation of the curve is accepted by 
a respective convention. In order to perform the further calculations the integral along the path y  is splitted 
into the integrals along its particular parts, i.e.

/
m
z —a

dz — I1+ / 2+ / 3, (A.3)

Fig. A. 1. The path of integration V for the function
/(2)

-------(see formula (A .l)) presented in the Gau·
z— a

sian plane

where 7t denotes the integral from —R  to R  with the exception of straight line segment (a— <5, a -f <5), I2 — 
the integral along the semi-circle S(ô, a), I3 — integral along the semi-circle SR. Here the integrals are cal
culated at the limits R -*■ 00 and Ô -> 0. Now, the above components will be calculated consecutively

(A.4)

(A.5)

The symbol j P  denotes here the integral in the sense of principal value of Cauchy and the eq. (A.5) give 
its definition [2]. The integral in the sense of Cauchy principal value is used only when the integrand 
exhibits some singularities and the Riemann integral for it does not exist. If the function g(x) has no 
singularities along the (a, b) segment, then

b b
P  f  g(x)dx  =  f  g(x)dx. (A.6)

Taking account of the above notation w e obtain

h
x

lim P  J
R-+ 00 p

A x )
x —a

dx r A x)  
J x —a

dx. (A.7)

In the above equation “z” was replaced by ux”, since the integral (A.7) runs only along the real axis. The 
existence o f /1 is guaranteed, among others, by the assumption that 1/(*)| -1*1 0. The consecutive
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component of the integral (A.3) is I2:

h lim f  dz  =  Hm f  dz
°~>‘0 S(/,a) Z~ Q °-*° S(6, a)

/(z)-/(a)
z —a (A. 8)

From the holomorphism of /(z )  it follows that the function is also holomorphic. Hence, the
z —a

first component o f the formula (A.2) being the integral from the holomorphic function along the path, which 
is reducable to a single point, is equal to zero. On the other hand,

S(d,a) n

rei0id&

where the substitution z —a =  rei0 has been made. Finally,

(A.9)

h  =  in f  (a).

The integral I3 in (A.3) remains still to be calculated

(A.10)

/3 =  lim f  —— -  dz =  lim f  -  iReid dO, (A .ll)
R-+00/  z —a i?^oo f  Re10- a  sR 0

where the substitution z =  Reid. When R -*  00, then \f(Reid)\ 0. and \Rew —a| -> Therefore, the 
integral (A .ll)  is equal to zero at the limit R - + 0 0 . The final result of considerations is the following:

/
№
z —a

dz =  I2+ I 2+ I 3 = in f  (a )+  P  f  ——  dx. 
J x —a

—  OO

(A. 12)

But from the fact that/(z) is a holomorphic function, it follows that the equation (A.1) is valid. From (A.l), 
and (A. 12) it is obtained that

p I
/(*)
x —a

dx =  in f  (a). (A.13)

The above dependence is called the dispersion relation or the Kramers-Kronig integral (KK integral). 
Thus, when requiring that /(z): C -> C be holomorphic and disappear at infinity in the upper half-plane and 
on the real axis, tfie dependence (A.13) is obtained for an arbitrary a e R .

The dispersion relation (A.13) may be written with the help of a pair of equations:

OO

p  f  dx =  -n f r ia ) ,  (A. 14)
J x—a

— OO

p  f  dx =  n fR (a), (A. 15)
J x —a

— OO

where f(x ) =  f R (x) +  if/ (x). These equations interrelate two real functions of real variable. Each two real 
functions fulfilling the relations (A.19) and (A.20) form a pair of Hilbert transforms. Thus, instead of 
exploiting the dispersion relations, the theory of Hilbert transforms may be employed [1].

Detailed description o f the dispersion relations for optical constants of the semiconductor crystal 
is given in Appendix B.
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Appendix B

The dispersion relations for optical constants

In order to describe the interaction of the electromagnetic wave (EM) with the semiconductor a number of 
complex functions are introduced the argument of which is the frequency of the EM-wave incident on the 
sample. Most frequently these are: complex refractive index, n =  n + ik , complex coefficient of reflection 
r =  rew, and complex coefficients o f electrical permittivity e =  + ie 2 and polarizability % — Xr + íXi · 
These quantities are connected with each other and for each of them the KK integral may be written.

When a physical system (a semiconductor crystal in our case) is under an external electromagnetic 
field, then the electric compound of the latter E (t) produces a respective polarization P (t). By assuming 
that the system is linear and stationary in time we may write [2]:

00

P (t) =  f  G (t—t')E (t')d t'. (B .l)
— 00

Since the effect may not be preceded in time by its cause, the upper limit of integration in the integral 
(B .l) is t, or it should be assumed that for t —t'  =  r <  0, G(r) =  0. The integral (B .l) expresses the low of 
causality which allows to define a set of holomorphic functions, for which the KK relations occur (see 
Appendix A). The function G(r) must be restricted for all x and absolutely integrable, i.e.

OO

f  IG (x)ld<  oo. (B.2)
o

Let the perturbation be a monochromatic EM-wave of frequency

E (t) =  E0 ei~ mt. (B.3)

Then the formula (B.l) takes the form

t t
P ( t ) =  f  G (t—t')E0exp(—ia )t')d t'=  [ /  G (/-t')exp  (io>( / - / ' ) ) dt'\ E 0ex p (- ia it) , (B.4)

— 00 —00

and after substitution o f t —t ' = r ,  we obtain

t
P ( 0  =  [ /  G(T)exp(/a>T)¿rJ E 0exp(—io)t). (B.5)

o
Let

OO

e0x((°)’· — J  G(r)exp(/cor)dr, (B.6)
0

hence
P (0  =  e0 x(œ )E(t). (B.7)

The quality x(co) defined by the formula (B.6) is called polarizability. It is a complex function of real va
riable. The further step is to define this function in the Gaussian plane to make it holomorphic. In view of 
(B.6) x(z) is defined for any z e C :

tO
e0x(z): =  j  G(r)exp(/zT)ífr. (B.8)

o

The parameter r0 in the integral (B.8) has been introduced to assure the existence of x(z) also for z lying in 
the lower half-plane, lm (z) <  0, which is needed to carry out the proof of the KK integral given in Appen
dix A. In order to make it consistent with eq. (B.6) having a physical meaning it is assumed that t0 =  oo
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on the real axis and in the upper half-plane Im(z) >  0. From the relation (B.8) it follows that x(z) is holo-
8 y (z) 8 y (z )

morphic, since there exist— -— and— =  0, in other words, the conditions o f Cauchy-Riemann
8z 8z*

are fulfilled. For z such that Im(z) >  0 it holds

1*001 =  —  I f  G (r)cxp(irz)dr\ <  —  . (B.9)
£o \J  I e0 \z\

From the above relation it follows that when |z| -* co, then |/(z ) | -> 0. To prove it the fact is exploited that 
|G(t)| is restricted for each r. When Im(z) =  0 the Fourier transform (B.6) is obtained. From its existence 
for every w it follows that the inverse Fourier transform

G( r) =
1

/
—  OO

£o X 0») exp ( —icar) dco. (B.10)

also exists. Hence we obtain |£(<y)| -> 0, when \a>\ -> oo. Thus the holomorphic function x(z) which fulfils 
the assumption of KK relation given by the formula (A. 13) has been defined.

It the causality law was not satisfied, x(z) would be defined as follows

¿ox(z): =  J  G (r) exp (itz) dr,
ri

(B .ll)

where r t <  0, and r 2 >  0. It may be easily seen that when |z| -> oo, then |/(z ) | -> oo. Here |^(z)| increases 
so quickly that the function x(z) may not be transformed, even to such form that the condition o f disappea- 
rence of \x(z)\ at infinity be fulfilled. Thus, if the function described by the formula (B.6) disobeys the 
causality law the KK relation may not be written for it since it does not satisfy the respective assumption. 
Hence, it may be said that the KK relation reflects the physical law of causality.

On the other hand, the polarization vector is connected with the charge and polarization current in 
the following way

Qpol------V-P, (B.12)

When considering the crystal as a uniform and isotropic medium in which the EM-wave is connected with 
the macroscopic fields B  and E  the Maxwell equations take the form

V x P
8B
~ 8t' V E = · ^ ,

£o

8E
e0c2\ / x B  =  jpo i+ E o-— , S /B  =  0. 

8t

(B.13)

By taking advantage of the connection (B.12) o f gpoi and ypoi with P, and after simple rearrangements 
the following relation may be obtained from eqs. (B.13)

1 82E  1 1 82P
v 2£~ — = — V ( v m — j~ T T mc2 8 t2 e0 e0c2 8 t2

Assuming the solution of the eq. (B.14) in the form

E =  E 0exp i(o

(B.14)

(B.15)

and employing the formulae: P  =  e0xE  and ^pol =  0 (due to assumed homogeneity of the medium) the 
following relations is obtained

n 2: =  l + X . (B.16)
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Let it be a definition o f the complex index o f refraction h . The physical meaning of this quantity follows 
from the formula for the EM-wave (B.15):

E  =  EJ0exp£—io) — n j j  =  JE?0exp /<w — n jj  exp —  rj, (B.17)

where h =  n +  ik. The real part o f n has the meaning of an ordinary index of refraction describing the phase 
velocity of light vphase =  c/n, while the imaginary part of h describes the damping k >  0, of the EM-wave 
amplitude. Since the energy carried by the EM-wave is proportional do the squared modulus of the ampli
tude, k  describes the absorption of energy by the medium. If 7 denotes the radiation intensity, then

7 =  70exp |  —2 —  r j  =  70exp(— ar) (B.18)

defined by the above equation is called the absorption coefficient. By introducing the vector of electric in 
duction

D: =  e0E + P  =  e0( l +  x)E, (B.19)

the complex dielectric permittivity e may be defined as

ê: =  l+ X .  (B.20)

Now, the complex coefficient o f reflection r is to be derived. Here, the well-known Fresnel formulae for 
the case of reflection from the surface described by the complex coefficient of reflection are employed. Let 
a0 denote the incidence angle, nQ — refrective index o f medium, from which the EM-wave is reflected, 
r jl , ?u — complex coefficients of reflection for the light polarized perpendicularly and parallelly to the inci
dent plane, respectively. Then

x —n0cos a0
r i — ----------------- ,

« o C O S C to + X

(B.21)
A n2 cos a0—n0x
r\\ =  ------- ~̂ rz----------,n0x + n 2 cos a0

where x 2 =  hz —n^sin2 a0 . In the particularly simple case, when a0 =  0 and n0 =  1 we obtain

= h = '± =
1 —it 
1 +n '

(B.22)

Generally we may write 

r =  rexp(/©), (B.23)

where r denotes the amplitude reflection coefficient and 0  denotes the phase change during reflection.
Now, the conditions may be considered which must be always fulfilled by the spectral characteristics 

of the optical constants o f semiconductors. From the fact that k, as well as the absorption coefficient a, must 
be positive (since the sample material is a medium absorbing EM radiation) it follows that 0 (E ) >  0, for 
each energy E =  hco. This conclusion may be obtained by transforming the eq. (B.22) to the forms

1-7?

1 - 2 Æ os0 + 7 î ,

21/7?sin© 

1—21̂ 7? cos 0+ 7?

(B.24)

(B.25)

here 7? =  |r|2 == r2. When the vibration frequency increases the phase difference between the excitation and 
oscillator reaction increases until it reaches the maximal value equal to n. Thus, by applying the harmonic
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oscillator model we get 0(oo) =  n. This condition, in face of the dependences (2) and (11) from [41], leads 
to the conclusion that with the increase o f energy R(E) must tend to zero like E~*.

The fact that R(oo) =  0 follows also from the lack of photon-electron interaction at high energies. If the 
contribution to the optical constants coming only from the interband transitions is taken into account, then 
for E <  Eg(Eg — energy gap in semiconductors)

k(E ) =  0, a(E) =  0, e2(E) =  0, &(E) =  0 (B.26)

should hold. Hence, if follows that in the region below the energy gap no interband transitions occur. Due 
to the lack o f basic absorption this region is called the transparence region.

As it has been already shown, the function £(z) satisfies the assumptions of the KK relation (A.13) 
Thus it holds

P f— oo

x(<o) ,  . - ,  ,----------dco -=
CO — COq

(B.27)

After having exploited the relation x*(z) =  %(—z*) (following directly from the formula (B.8)), which for 
(oe R  takes the forms Xr ( co)  =  X r ( — co) ,  x i ( co)  =  — x i(—co), we obtain

2coop r Xr (°>) 
71 J  CO2 COq

dco =  x/(co0),

2_p  Xi((d)Qi 
71 J  CO2 — COq

do) =  Xr ((o o ) .

(B.28)

The interval o f both the complex dielectric permittivity ê(to) and complex refractive index «(co) are 
broadened to cover the Gaussian plane by using the results of such procedure carried out earlier for £(co), 
since the relations (B.16) and (B.20) hold. Moreover, the functions n(z) and e(z) obtained in this way are 
holomorphic,since the function %(z) is holomorphic. But \n(z)\ and |e(z)| in the upper half-plane and on the 
real axis do not disappear at infinity as it is required by the KK relations. This requirement is fulfilled 
first by the functions

/i(r ):  =  n (z)~  1, / 2(z): =  e ( z ) - l . (B.29)

The KK relations are written for just these functions, which after taking account of the conditions: 
e(z) =  e*(—z*) and n(z) =  n*(—z*), take the forms:

2COq p f  6i (ft)) 
71 J  0 )2 - ( 0 2

dco =  e2(co0),

2_p  p  e2(co)co
71 J CO2 — CO2 0 0

dco =  £i(co0)—1,

and
OO

2co0 r  n(co)
71 J CO2 — CO2  n 0

dco =  k(co0),

2

71 ' I0
k{co)co

— ------2 dco =  « (coo )-l,
—  CO q

oo
where the dependence J  

o

dco
co2—co2

=  0

(B.30)

(B.31)
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has ben employed. It is still the complex coefficient of reflection r to be determined. The KK formulae will 
be not written for r, but for lnr, which is justified by the later practical application of these relations. There 
is no greater problem -  as it was the case in the previous situations -  connected with the satisfaction of the 
condition of holomorphism (see the formula (B.22)) by the function to which the dispersion relations are 
to be applied. On the other hand, the limiting condition is not fulfilled since r(°°) =  0. Thus, the function 
|lnr(oo)| =  oo must be transformed so as to obtain the holomorphic function disappearing at infinity. This 
is possible, for instance, by creating the function

<*>(*): =
In r(z)—In r(o ')

Z— Oi
(B.32)

where o ' is an arbitrary point on the real axis. The KK relation (A.13) written for the function 0 (z )  from 
the eq. (B.32) will have the following form

CO a.
„ , f  lnr(co)

in ln r(o0) =  inlnr(co )-j-(co0—co ) P  I --------- —------- — d(o,
J ( o —o 0) ( o —o )

— OO

but lnr(—a)) =  Inr*(eo) and lnr =  lnr-H©, hence

0 ( o o) =  © (a /)—
2(co0 —co')

/
In r (to) (co2+ co0 co')

lnr(£»o) =  ln r (a /)+
2 (o 0—o ') I

(o 2 — o%)(o2 — o '2) 

& (co) (coco o+coco')

d o ,

(co2—oh (o2—o'2)
do.

(B.33)

(B.34)

By taking advantage of the physically justified fact that for o ’ -> 0 and 0 (o ')  -> 0 the eqs. (B.34) is simpli
fied to the forms

o

In r(co)

ft)2 —  O q
d o  =  — 0(ft)o),

©(«))
ft) (ft)2 — COq)

do — lnr(o)0) —lnr(0),

(B.35)

(B.36)

respectively. When in the formula (B.35) the light frequency is replaced by the quantum energy E — ho  
and the modulus o f the amplitude reflection coefficient by the energetic coefficient o f reflection R =  r2 the 
most frequently used form of the KK integral is obtained which connects the modulus of the reflection coe
fficient with the change of phase during reflection

?  In R(E)
zi J  E l-E 2

d E = 0 ( E o), (B.37)
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Определение оптических констант полупроводников Zn3As2 и Zn3P2 с помощью 
соотношения Крамерса-Кронига.

Часть I. Обзор методов расчёта

Работа состоит из пяти частей и посвящена главным образом результатам исследований оптических 
констант Zn3As2 и Zn3P2 двух соединений типа Нз-У2 с большой энергетической щелью. 
Результатом анализа существующего до настоящего времени состояния в области применения
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метода анализа Крамерса-Кронига (КК) для комплексного коэффициента отражения оказалась 
необходимость развития работы в дополнительных направлениях, описанных в трёх первых частях.

В I  части представлен критический анализ применяемых до настоящего времени методов расчё
та, основанных на дисперсионных соотношения Крамерса-Кронига. Обсуждена общая идея методов 
экстраполяции, а затем описаны четыре метода экстраполяции коэффициента отражения, два мето
да экстраполяции фазового угла, а также три оригинальных (недавно разработанных) метода рас
чёта, использующих соотношения КК. Обсуждены также три метода расчёта оптических констант, 
в которых не используется интеграл КК. Показаны и обсуждены преимущества, а также недостат
ки применяемых до сих пор методов.

Во II и Ш  частях описаны предложения эффективных улучшений методов расчёта, основанных 
на применении интеграла КК. Дополнительно в обеих этих частях представлены результаты рас
чётов для ваАв, который послужил (в качестве полупроводника со сравнительно хорошо известными 
оптическими свойствами) для проверки улучшенных нами методов расчёта. Анализ ошибок 
и точности этих методов очень подробно проводится в IV части. Пятая часть содержит результаты 
расчёта оптических констант Ъа.ъ и г п 3Р2, произведённых с помощью усовершенствованных 
методов расчёта, а также на основе наших результатов измерений оптических свойств этих полу
проводников.


