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ANDRZEJ KOTOWSJQ 

DERIVATION OF EQUATION OF MOTION 
IN CHANNELS WITH SIDE WEIRS  

Using the differential form of the Bernoulli equation and the principle of conservation of momentum, 
an analysis of the one-dimensional description of flows of Newtonian fluids in prismatic channels with 
side weirs was carried out. A new form of the equation of motion — with a correction in the mass decre-
ment term and an added momentum-variation term — has been derived from the principle of conservation 
of momentum. The modified dimensionless equation of motion is applicable to the computation of flows 
over side weirs, i.e. the determination of the free-surface profile on the weir and the volumetric flow rate. 

DENOTATIONS 

A — surface area of flow section, m2, 
6 — width of flow section, m, 
Fro  — Froude number in channel at beginning of weir (1=0), 
g — acceleration of gravity, m/s2, 
G — body force, N, 
H — elevation of free-surface in channel (filling), m, 
H,, _ channel filling at beginning of overflow chamber (1 = 0), m,  
i — bottom slope of channel (overflow chamber), 
J — hydraulic gradient, 
k — ratio of coordinates of vectors U and S (k = Ulu), 

K0  — shape number of channel at beginning of weir (1=0),  

Ź  — unit vector having direction of local velocity vector v, parallel to mean velocity vector 5, 

1 — axial coordinate parallel to channel bottom, m, 
! _ length of overflow edge, m, 
1,0  —  relative length of overflow edge (Lo  = 1plНР), 
m — mass, kg, 
N — force of hydrostatic thrust, N, 
OZ  _ wetted perimeter of flow section, m, 
p — elevation of overflow crest above channel bottom, m, 
Po  — relative height of overflow edge (P0  = p/НP), 
q — dimensionless volumetric rate of flow in overflow chamber (q = Q(1)lQd), 
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qь — unit volume flow over side weir, ma(s m), 
q, — coefficient of separation of flows on weir (q, = QIQa), 

— volumetric rate of flow over weir, ma/s, 
Q(1) — volumetric rate of flow in overlow chamber in section with abscissa 1, m3/s, 
t — time, s, 
T — friction force, N, 

— coordinate of longitudinal component U of velocity 5,,  of side stream along direction of velocity 
vector 13,  m/s,  

v — local velocity stream filament,  mis,  
— mean velocity of main stream in channel,  mis,  
— mean velocity of side-discharge stream,  m/s,  
— volume, m3, 

z — elevation above datum level, m, 
a — kinetic energy (Coriolis) coefficient, 

— momentum (Boussinesq) coefficient, 
4% — side-discharge stream momentum coefficient, 

— dimensionless ordinate of free-surface elevation in channel (C= WIP), 
r1 — experimental coefficient (q= 2/1 — kO,,), 

— angle of inclination of channel invert, °, 
/t — weir discharge coefficient, 

— dimensionless abscissa of length (= 1/l,), 
— momentum of liquid mass, kg/s, 

p — liquid density,  kg/ma,  
— shear stress on channel wall, Pa. 

1. INTRODUCTION 

The problem of the calculation of water flows over conventional side has been in-
vestigated since thе  end of the last century but as yet no satisfactory, full analytical 
solution of the problem has been found. For practical purposes the formulas estab-
lished for front weirs (e.g. the  Poleni  formula [1]) were adapted and later simple em-
pirical formulas, based on experiments covering usually a narrow range of variation in 
the geometric and hydraulic parameters of side weirs (e.g. the Engels, Colemann and 
Kotowski formulas [1]) or derived theoretically (the lager and Schaffernak formulas 
[2]), were used. Further development of methods of calculating flows over side weirs 
consisted in combining the description of the water—surface profile along the weir by 
means of differential equations of motion, with formulas (of the type mentioned 
above) for the volumetric flow over the weir (De MARCH [3], PIETROV [4], 
FRAZER [5], VISCHER [6], SMITH [7]—[9], ISшKAWA [10] and HAGER [11], [112]). 

Most of the researchers dealing with free flows in open channels base their theo-
retical analyses on differential equations of motion derived (assuming that the specific 
energy is invariable) from the Bernoulli theorem, while few others use a differential 
equation of motion derived from the principle of conservation of momentum. Re-
gardless of the approach, the following initial assumptions are usually made for pris-
matic channels having conventional side weirs: 
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The volumetric rate of complete side overflow can be described by the follow-
ing formula: 

dQ _ 2 
- 

dl 3 
іЈ  2g(н  — Р)

з iг (1) 

Friction-induced hydraulic slope J in any cross-section of the channel is the 
same as for the uniform flow at a depth H, equal to the actual depth of the flow in a 
given cross-section, and it can be calculated for a nonuniform flow by using the 
Chezy group formulas (acc. to VISHER [6], SMITH [7], HAGER [11]) or the Manning 
—Stricter formulas (acc. to ISHIKAWA [ 10], NOUGARO [ 13]) or it can be assumed as 
equal to the slope of the channel bottom (J =  i),  but it is usually neglected (acc. to De 
MARCHI [3], PIETROV [4] and KURGANOV [14]). 

(Coriolis) kinetic energy coefficient a and (Boussinesq) momentum coefficient 
/3 can be treated as constant along the weir, usually a = p = 1.0 is assumed (acc. to De 
MARCHI [3], DALMAYRAC [15], NOUGARO [13], ISHIKAWA [10]). 

The last of the above assumptions is physically incorrect since, by definition, 
a~ /3and a>ДΡ> 1 as: 

 

Jv
3dA 

A (2) 
v A 

(3) 

According to BIGGIERO and PINESE [16], /3= 1.05 should be assumed for unilat-
eral side weirs and 6= 1.10 for bilateral side weirs. VIII [ 17] estimated, on the basis 
of the results of BUFFONI's studies [18], the value of the Coriolis coefficient at 
a 2.0. Whereas EL-KHASHAB and SMITH [8] showed that coefficients a E < 1.1; 
3.0> and /3 E <1.0; 1.3> vary along conventional side weirs in trapezial channels, as 
did KOTOWSKI [2], [19]: a E < 1.1; 3.4> and /3 E <1.0; 1.6> for rectangular and 
cylindrical channels having nonconventional side weirs (with throttlig pipe). 

Equality between the coordinate of the longitudinal component U of the velocity 
vector Ub  of the separating itself lateral stream and the coordinate of the mean veloc- 

ity (v) vector at any cross-section of the overflow chamber (figure 1) is assumed when 
deriving an equation of motion from the Bernoulli equation. Thus it is assumed the 
flow over the side weir does not affect the total energy of a unit of the liquid mass 
remaining in the channel. Total energy head E, in the flow section of the channel is 
given by the Bernoulli equation in the following differential form: 
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Fig. 1. Application of the principle of conservation of momentum to flows in channel with side weir 

дЕс  = dz дН  d (  aQ 2   \ 

dl dl + dl + dl \2gA2  ) 

where: Q = Q(l) is the volumetric rate of flow in the overflow chamber. 
The slopes of the particular lines relative to the datum level stand for: dE'/dl = J 

— the hydraulic gradient; dz/dl =  i  — the slope of the channel bottom; dН/dl = i Z  — the 

free-surface slope. The last term of equation (4) is written as follows (a =  idem):  

d  г  aQ2  \ _ a ( 2Q dQ 2Q2  dA"  aQ dQ aQ 2 ('9А  óA dH\  
. (5) 

2gA2 )  2g 0  A2 dl А3 dl 2  gА2  dl gА3  gl + óі  dl dl 

For prismatic channels (дА/д/ = 0, &A/WW = b), by introducing the above relations 

into equation (4), we get (after ordering): 

, (4) 
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i-J -  aQ dQ 

dl  gA2  dl  

dl 
1  aQ2b  ' 

(6 ) 
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From the principle of conservation of momentum one can derive an equation of motion 
in which the coordinates U and v can be related freely: U < v (acc. to KURGANOV and 
FEDOROV [14]), U= v (acc. to HAGER [11]), and U> v (acc. to EL-KHASHAB and 
SMITH [8]). Thus, if the energy is taken into account, this method is more general. The 
following forces act on the liquid volume contained between two channel cross-sections: 
the liquid weight GsinO, the hydrostatic thrusts N1  and N2 and the friction force T. Thus the 
initial equation for the side overflow (acc. to [8]) can be written as follows: 

/3p(Q+AQ)(v+Ov)—p ~QAIU—ДpQv=GsinO +N1 —N2 —T. 

For an infinitesimal length of the interval Al on the weir we get: 

Gsin 0 = pgAiAl , 

N1- N2 = -pgAAl, 

T = pgAJAl. 

Using these relations and the equation of continuity of motion we get (after appropriate 
transformations) for prismatic channels with a side weir (/j=  idem)  the following equation:  

i —J— 
(2/эv — U)dQ  

dl_ gA dl (9)  
dl 

1 Qg А3  

Expression (9) is a differential equation for the overflow swelling or swelling or 
depression curve in the coordinates  Н  and 1. Since the axis 1 is assumed to run along 
the invert line, dlldl is the water-surface slope relative to the channel invert. Equation 
(9), derived from the principle of conservation of momentum, enables a wider analy-
sis of theoretically possible lateral outflow liquid-surface profiles than equation (6) 
derived from the differential form of the Bernoulli equation. 

2. DERIVATION OF EQUATION OF MOTION 

It follows from the principle of conservation of momentum in Newtonian continu-
ous-medium mechanics that a change in momentum over time is equal to the sum of 

the body forces G and the surface forces F: 
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fpdU dV= fpGdV+fFdA.  
v  dt v А  

Thus momentum change over time dt  —ł  0 is equal to the sum of forces acting on 
the infinitesimal control liquid volume  л  V contained between cross-sections I and II 
and the side edge of the weir. First, momentum will be balanced for this volume of the 
liquid and then the sum of forces acting on liquid will be calculated. On this basis, 
using the volume flow continuity and balance equation, an equation of motion of a 
liquid in a channel with flow a side weir will be derived (figure 1). 

Momentum balance. The momentum brought in a liquid mass flowing through an 
element having the area dA in the time dt  —ł  0 is: 

д(mv) = (pvdAdt)v, (11) 

where v denotes a local velocity vector perpendicular to the area dA cut out from the 
flow area A. 

Thus the total momentum brought in the liquid mass flowing through a flow sec-
tion having the area A in the time dt is: 

dЙ, =pdt fvvdA = ipdt f v2 dA, (12) 
A A 

where a means a unit vector, whose direction is the same as that of the local velocity 
vector v, parallel to the mean velocity vector 5. 

Momentum (12), expressed by the mean liquid flow velocity, can be written as: 

дПI=Д(pиAdt) v = Д(pvAdt) va = ДpAU 2dta, (13) 

where Q  is a dimensionless (corrective) coefficient of momentum. 
It follows from equations (12) and (13) that: 

a pdt 
J  v

2dA = ДipAv2dt, . (14) 
A 

and hence the momentum coefficient „, also known as the Boussinesq coefficient, can 
be expressed by formula (3). It should be noted that the solid of velocities varies along 
the path 1, similarly as the mean velocity does. This means that the coefficient /3 is 
constant only for uniform flow. Here it varies from section to section. This observa-
tion is based on the results of experiments carried out by the author [ 19] on noncon-
ventional side weirs in rectangular and cylindrical channels. 

The total momentum dfгI  introduced into the control space  л  V with a liquid 

flowing through a flow section of the area A in the time dt -* 0 is given by the fol-
lowing value: 

(10) 



Equation of motion in channels with side weirs 

дПI  = ДpAu Z dta = ДpQudta, 

where Q = Q(l) is a volumetric flow rate in section A: Q = Au. 
The momentum of the liquid leaving the interior of the control space through 

a flow section of the area A + AА  in time dt -> 0 is: 

d?'11  =  (/3  + А/3)р  (А  + AA)(u + Лu)2  dt т  

= (Д  + A/3)p  (Q  + AQ)(u + Аи)dta.  (16) 

Equation (16) written for the section  П  is similar to equation (15) except that the 
quantities having the values /3, A, u, Q have been replaced with the quantities having 
the values Q  + AЈa, A + AА, v + Au, Q + A Q, differing in their increments (generally, 
positive or negative) from the former in the interval Al. 

At the same time (dt -> 0) a mass of liquid flows out from the control space, 
flowing over the weir length Al at the mean velocity ub. The velocity changes its 
value and direction along the overflow edge. The momentum of the liquid mass 
flowing over the length Al of the overflow edge is: 

diib = Pb pAlq,, dtL b , ( 17) 

where: 
Дь  - a lateral stream momentum (correction) coefficient, 
qь - a unit volume flow over the side weir (per length of the overflow crest). 

The coefficient /3,, relates here to the velocity U/, and it can be calculated using 

formula (3) and integrating along the elevation h of the layer of liquid above the weir. 

Thus it refers to the profile of the velocity u,, at the place indicated by the abscissa 1, 

and not to a solid of velocities as in the sections I and  П  (figure 1). 
It follows from formulae (15), (16) and (17) that the following change in momen- 

tum will occur in the time dt: 

d?'11  + dii,, - d?'1  = dii, (18) 

which, after ordering and neglecting the terms containing products of two quantities 
having infinitesimal values, can be written as: 

dii = p (ДоАиа  + ДAQua' + AДQui + ДьgьАlйь ) dt. (19) 

Surface and body forces. The unit surface forces here are: 
the hydrostatic pressure, increasing linearly towards the inside of the liquid, 

acting perpendicularly to the areas of the flow sections I and u; 
the shear stress f acting on the wetted surface of the channel's walls and the in-

vert between the sections I and  П.  

137 

(15) 
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The vector of a unit body force is the gravitational acceleration vector g. The total 

force, called thrust, produced by the hydrostatic pressure in the sections I and II can 
be calculated on the basis of diagrams of thrust exerted on the walls of the area A and 
A + AA. The numerical value of this force is equal to the weight of the diagram thrust 
solid. As it follows from figure 1, this force for the weir swelling curve is: 

AŃ  =—CAНA+ 2 AН 
 2ь) 

 pgź  , (20) 

where the unit vector a has the same direction as that of the mean velocity гΡЭ, and the 
minus sign is due to the fact that the depth of the liquid in the chamber in the section  
П  is the sum of the elevatiom  Н  in the section I and the increment (generally, positive 
or negative) AI. If the surface of liquid lowers along the weir (the depression curve), 

the direction of AN agrees with  i,  and the coordinate —(АНА  + АН2b12)pg of the 

force AN is positive. 
The body force acting on the liquid mass considered in the central area assumes 

the following value (figure 1): 

AG = AAlcos O + 1  AlAlcos Ob pg. (21) 
2 

The shear stresses  ź  amount to the following resisting force: 

AT = (0,A/cos I + 
2 

 AlAlcos O I  т, (22) 

where OZ  is the wetted perimeter in the section I. Thus the /resultant of the surface and 
body forces can be expressed as follows: 

AW = — AAl pg a + AAlcos Opg — OZ Alcos O?, (23) 

where the summands incorporating the products AIAl and АН2  are neglected as mi-
nor (in comparison with the minor first-order terms) second-order terms. 

Equation of motion. The vector of momentum variation in the time dt, calculated 

using formula (19), is equal to resultant vector (23) of the forces AW acting on the 
infinitesimal liquid volume AV considered. This means that the projection of these 
vectors onto the axis 1 satisfies the following equation: 

p [(,BQAv + /3AQv + A/3QI) cos I + )6~gbАlU cos O] 

= — AAlpgcos I + AAlpgsin  Bios  I — OZ Alгcos O, (24) 

where U is a coordinate of the longitudinal component U of the velocity vector ~b  of 

a lateral stream along direction of the mean velocity vector ŭ  of the main liquid 
stream in the channel. 
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Dividing both sides of equation (24) by the product Apg Al  cisi  we arrive at: 

1  ( ~Qдv ДAQv+4ДQu+ U\=_4н+sine 
охт  

(25) 
gА» Al / 

Al pgA 

where: 
sine=  i  — bottom slope of the channel, 

oz  г  /pgA = J — a hydraulic gradient (the magnitude of the energy loss due to fric- 

tional resistance per unit length) at  г  

Ву  introducing the above notations and performing lim operations at Al—k 0 we obtain: 

 

It follows from the equation of the continuity of motion that v =  Q/A,  and hence: 

du _ d (Q _ 1 dQQ dA 

dl dl \ A A dl A2  dl' 

where dA/dl = bdH/di, i.e. the area increment  ДА  along the path Al occurs as a result 

of an increase in the height by AI, while the width of the overflow chamber is b (to 

be exact,  ДА  = b4I, and after a limit transition we get dA/dl = b dH/dl). Thus: 

b---- 
dl  A dl A2  dl 

and after inserting it into (26) and ordering we have: 

1 (2QQ dQ Q2 dД+QgьU   ь  
dl 

t — J_ 
 gА  A dl + A dl / 

dl 

The volume flow over the length Al of the side crest is: 

AQ = 3,иА /cos e Ј2g(Н  —  р)312  = ,ИАlcosej2gh3/2, (30) 

where: 
— a weir discharge coefficient (generally dependent on 1), 

h — the height of the layer of overflowing liquid measured on the channel axis 

relative to the elevation p of the overflow edge: h = 1 — p. 

If we assume that cose= 1 (e.g.  i  <_ 10%o cose>_ 0.99995) and that the limit 

transition Al —a 0 we get (similarly as in equation (1)): 
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dQ =9
ь  = 2

dl 

/2
у

h 3i2 ~ з
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 2
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From the volume flow balance it follows that  

г  

Q= Qd - J qьdl'  
0 

where Qd is the volume flow in the channel at the beginning of the overflow (1 = 0). 
Thus dQ/dl = — qb  and after inserting it into equation (29) and ordering we get: 

i—J —
(2 ьИ) dQ  Q2   d/.3 

dl  g  A dl  g  А2  dl 
dl 

1 
 Д  Q2b  

g  A 

Equation (33) differs significantly from the equations of motion known so far, e.g. 
(9), in the momentum coefficient j4 next to U and in term 

Q2  d/3 

gA2  dl ' 

which expresses the influence of the variation in the momentum coefficient /3 along 
the overflow chamber on the value of the kinetic energy of the main liquid stream in 
the channel. 

3. DIMENSIONLESS FORM OF THE EQUATION OF MOTION 

The equation of motion in dimensionless form is convenient because its dimen-
sionless coefficients constitute similarity numbers of the modelled and actual phe-
nomena. If dimensionless variables in the form: 

4-_  Н   , = 1, q= ~l) ,  Нp lP  

are introduced, the appropriate derivatives, from formula (33), expressed as the new 
variables can be written as follows: 

дН  _ Нv д' dQ _ Qd dq  
dl l P  d' dl lP  d 

(36) 

The area A of the overflow chamber's flow section can be transformed into a di-
agónal form in order to generalize the description, thus it is applicable to any shape of 
a cross-section. Therefore, it is assumed that the overflow chamber above the weir edge 

 

 

 

 

 



Equation of motion in channels with side weirs 141 

(crest) has a constant width equal to the width b of the inlet channel (or to its diameter 
D = b if the channel is circular in shape), which agrees with the practice. Thus 

А=Ао +b(Н —НР )=Ао  1 Ь~ + н  ('-1)  =Аo[кoŚ— (ко -1)],  (37) 

   

where: 
Ao — the surface area of the chamber's flow section at the beginning of the weir 

(1 = 0), 
Ko  — a coefficient which can be defined as a shape number (Ko  = 1 for a rectan- 

gular channel, whereas for other typical shapes of the channel Ko  > 1): 

bH 
(38) 

After inserting (35)—(38) into (33) and ordering them we ultimately obtain the 
following dimensionless form of the modified equation of motion of a liquid in 
a channel with a side weir: 

dq  2 d/31   Fró  
+ 9  

д' _ д~ d~ [Ко5 - (Ко  -1)]2  
д~ - 1 QFró коg2 

 

[Ko' —  (K0  —  1)]3  

where: 
Lo  — a relative length of the overflow edge: Lo  = lv/HН, 

— a substitute coefficient whose value should be determined experimentally (for 
a given weir and shape of the channel and set of motion parameters, r/ = 

(40) 

q — a dimensionless volume flow of a liquid in the overflow chamber: 

q = 1- 3

1  Н  .J2ХН  n 

pQ~ 

n 
 r(' — Лo )

з '2 d (41) 
o 

— a weir discharge coefficient: 

9г  
stz   L0  

2 Р   
y  
~I2у  (~- — Po )з i г dŚ  3  Qd 

J  

for = l/Нp  and E < 0, Lo>; qr = Q/Qd [20], 

(39) 

(42) 

o 



142 A. Котошвкг  

Fro  — the Froude number in the initial section of the overflow chamber (l = 0): 

2 Qd  Fro=
А0 gН  P 

Fig. 2. Regression of coefficient /3 versus гг(02/Fг02  along overflow chamber [2] 
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Fig. 3. Dimensionless elevation of free surface (C) along weir overflow chamber ( e < 0; 1>), 

calculated (—) using equation of motion (39) and measured in the model (}) with marked measuring error [ 19] 
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In the case of subcritical flow over the side weir (the swelling curve), the dimen-
sionless variables and coefficients (similarity numbers) in equation (39) satisfy the 
following relations: 

>_ 1 for 1 >_ ( = l/') >_ O at 1 >_ q >_ 1— qr  and Fro < 1. 

The suitability of equation (39) for the description of liquid flows in channels 
having side storm overflows with throttling pipe from the overflow chamber has been 
verified experimentally. Studies of local velocity distributions in overflow channels 
and chambers of different cross-sectional profiles have shown [2], [19] that the mo-
mentum coefficient 13 varies markedly, which applies both to f3 (figure 2) and the 
value of its derivative d/3/dl, along the weir. This means that the new form of the 
equation of motion is not merely justified but necessary. Model studies on a scale of 
1:5 have proved that equation (39) describes d'/d accurately, i.e. dН/dl is within the 
measuring error of the elevation H in physical models (figure 3). A mathematical 
model describing the behaviour of weirs of this type and a numerical procedure for 
the hydraulic dimensioning of them have been developed [19], [21]. 

4. CONCLUSIONS 

Hydraulic calculations of side weirs, i.e. the volumetric flow rate and the free-
surface profile along the weir, still encounter difficulties since theoretical considera-
tions lead to differential equations which cannot be solved analytically. One-dimen-
sional equations of  non-uniform  flow with mass variation along the weir are an im-
plicit function of the depth 1(l) and the volume Q(l) in the channel and thus the direct 
integration of them for any shape of the overflow chamber's cross-section is practi-
cally impossible. The numerical solution of sućh problems has become attainable with 
the advent of high-speed computers. 

Starting from the principle of conservation of momentum, a new form of the equation 
of motion (33) describing the free-surface profiles on the side weir has been derived. It 
differs significantly from the equations of motion known so far in the corrected mass dec-
rement term and in the added momentum variation term (Q2/g02)(дД/d ). The equation has 
originated from experimental proof that the value of the momentum coefficient )6 of the 
main stream varies markedly along the overflow chamber (].? E <1.0; 1.6> [2], [19]). 

The dimensionless form of the modified differential equation of motion (39) con-
stitutes a generalization of theoretical considerations concerning one-dimensional 
description of liquid flows with variation in mass and momentum and it is applicable 
to the hydraulic dimensioning of side weirs, including weirs with throttling pipe [21]. 
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WYPROWADZENIE RÓWNANIA RUCHU W KANAŁACH Z BOCZNYMI PRZELEWAMI 

Przeprowadzono analizę  znanych postaci równań  ruchu cieczy niutonowskich w kanałach pryz-
matycznych z bocznymi przelewami, wyprowadzonych z rб±niczkowej postaci równania Bernoulliego 
oraz z zasady zachowania pędu. Wychodząc z zasady ilości ruchu, wyprowadzono równanie ruchu nowej 
postaci z korektą  w członie ubytku masy oraz dodatkowym członem zmiany pędu. Zmodyfikowane, 
bezwymiarowe równanie ruchu znajduje zastosowanie do opisu przepływów na przelewach bocznych, tj. 
do określania kształtu swobodnego zwierciadła cieczy oraz objętości przepływu. 
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