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ANDRZEJ KOTOWSк( 

EQUATION OF MOTION FIR LIQUIDS 
IN CHANNELS WITH SIDE WEIRS 

Using the momentum solution, an analysis of the  oni:-dimensional description of flows of Newtonian 
fluids in prismatic channels with side weirs was carried cut. A new form of the dimensionless equation of 
motion — with a corrected mass decrement term and an added momentum-variation term — has been de-
rived from the momentum solution. Following examination of relevant coefficients, the dimensionless 
form of the modified equation applies to the hydraulic design of a side weir with a high overfill crest and 
a throttling pipe, made use of in sewer systems. 

DENOTATIONS 

A — cross-sectional area flow, m2, 
water surface width in the channel (width of rectangular channel), m, 

D — channel diameter, m, 
Fro — Froude number in the channel at the inlet to the overflow chamber (x = 0), 

— acceleration of gravity, m/s2, 
H — depth of flow in the channel, m, 
Ho — depth of flow at the inlet to the overflow chamber (r = 0), m, 

— bottom slope, 
Sf — hydraulic gradient, 
k — ratio of longitudinal component U to mean Velocity v (k =  U/u),  
Ko — similarity number of channel shape at the overfall start (K0  = ЬНО/Ao), 

— length of overflow crest, m, 

Lo — relative length of overflow crest (La  = UH0), 
n — channel roughness coefficient in Manning's formula, s/m113, 
p — height of weir crest, m, 
Ph — wetted perimeter of flow section, m, 
Po — relative elevation of overflow crest (Po  = p/Ho), 
q — dimensionless discharge in overflow chamber (q = Q(х)/Qо  ). 
qг — discharge ratio of flow (q = Q/Qo), 
Q — discharge of side weir, m3/s, 
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Qo — discharge in inlet channel at the inlet to the overflow chamber (x = 0), m3/s, 
Q(x) —  discharge in overflow chamber in cross-section with abscissa x, m3/s. 
Rh - hydraulic radius (Rh  = A/Ph), m, 

— longitudinal component of velocity of spill flow,  m/s,  
Wo — relative head above overfall crest at the start of the side weir (Wo  = (Нo—PYHо), 

—  local velocity (in the x directions) of stream filament in channel,  m/s,  
— mean velocity of main stream in channel,  m/s,  

x — distance of any point on side weir from its origin (abscissa), m, 
a — kinetic energy (Coriolis) coefficient, 
$ — momentum (Boussinesq) coefficient, 
/36 —  momentum coefficient of side-discharge stream, 

— dimensionless ordinate of depth of flow elevation in the channel (C _ Н/Но), 

r1 —  coefficient of momentum variation in the mass decrement term (rl = 20—  ka),  
—  ratio of local value of hydraulic gradient Si to hydraulic gradient Sfo in the initial section of 

the overflow chamber  (Х=  Sf /SfО), 
— weir discharge coefficient, 
— dimensionless abscissa of length ( = x/L), 

Śи —  dimensionless abscissa of length for discharge coefficient (‚= .r/Но). 

SUBSCRIPTS 

0 — initial cross-section of overfall chamber (x = 0), 
1 — value normalized to the interval <0,1>,  
er — critical (depth). 

1. INTRODUCTION 

The problem of how to compute water flow over side weirs has received consider-
able attention for many decades. In spite of a large number of relevant studies, none of 
the formulas derived so far can be applied with confidence to describe adequately this 
kind of flow. For convenience, use has been made of a variety of relations. Initially, 
front weirs were considered (after suitable adaptation; the  Poleni  formula). Later, 
preference has been given to some simplified empirical formulas derived from ex- 
periments, which were mostly carried out within a narrow range of variation in the 
investigated geometrical and hydraulic parameters of side weirs (e.g. those derived by 
KOTоwSKE [1]), as well as to some theoretical expressions (e.g. those derived by 
HAGER [2]). Further approaches to side weir computation have combined the descrip-
tion of the free-surface profile along the weir (using differential equations of motion) 
with the formulas describing flow over the side weir (e.g. de  MARCIE  [3], FRAZER [4], 
EL-KIASHAB and SMITH [5], ISHIKAWA [6], HAGER [2], [7], UYUMAZ and SMITH [8], 
UYUMAz [9], котоwsкI [10]—[14]). 

Most of the investigators concentrating on free flow in open channels have based 
their theoretical analyses on differential equations of motion derived from the energy 
principle for U = v [ 13] and the energy coefficient x= constant: 
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where: 
— depth of flow, 

x — distance measured along channel, 
dQldx — discharge per unit length of weir: 

дх Зµ — ру' 2'  

where: 
µ — weir discharge coefficient, 
p — height of weir crest. 
Others have used a differential equation of motion derived from the principle of 

conservation of momentum for U ~ v [13] and the momentum coefficient ‚3 = con- 

stant: 

(2Ди —U)dQ  

dl  S
—S1 

8А  dx  

dx = 1  , 
gA3  

(3) 

where: 
v — mean velocity of main stream in channel, 
U — longitudinal component of velocity of spill flow. 
However, the investigations reported by EL-KHAsHAB and SMITH [5] and 

котоwsк  [11] revealed that the coefficients of kinetic energy (a) and momentum 

(‚3) were not constant and U> v along the length of side weirs. 

2. THEORETICAL ANALYSIS 

From the principle of conservation of momentum in Newtonian continuous-
medium mechanics it follows that the change of momentum with time is equal to 
the sum of body forces and surface forces. Thus, the change of momentum is equal 
to the sum of forces acting on the control liquid volume between cross-sections I 
and II of the channel (figure 1). Momentum was balanced for this volume of the 
liquid and then the sum of forces acting on the liquid was calculated. On this basis, 
using the continuity and momentum equations, the equation of motion for side weir 
flow was derived [ 13]: 
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where: 

k — ratio of longitudinal component U and mean velocity u (k = Ulu), 
— momentum coefficient of side-discharge stream. 

Is=2b(2Dtџ  

Fig. 1. Definition sketch for channel with discharge over side weir 
and throttling pipe: (a) elevation; (b) plan; (c) section  I—I  

Let us introduce the following dimensionless variables: 

H x Q(x) 
S =H

o
, S-L, 

~ Qo 
(5) 

where: 

4.— dimensionless ordinate of depth of flow, 
— dimensionless abscissa of length, 

q — dimensionless discharge in overflow chamber. 
The area A of the flow section in the overflow chamber can be written in a gener- 

alized form (for the adopted shape of the chamber cross-section). It has been assumed 
that — above the crest height of the side weir — the overflow chamber has a constant 
width equal to b when the channel is prismatic in shape, such as, e.g., rectangular 
channels, and a constant width equal to the diameter D = b when the channel is, e.g., 
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U-shaped. This is in agreement with the conditions encountered in sewage-
engineering (KOTOWSKI [10]: p > D/2; figure 1). Hence: 

A  = Ао+b(Н —Но )=Ао  1+  А°  ('.-1)  =Ао[КоŚ —(Ко -1)], (6)  
о  

where: 
Ao  — upstream surface area of the flow (x = 0), 
Ko — coefficient which can be defined as a similarity number of the channel shape 

(Ko  = 1 for a rectangular channel and K0 > 1 for other typical shapes of the channel, 
e.g. U-shaped channels): Ko  = bI0  іА0. 

After inserting equations (5) and (6) into equation (4) and after suitable arrangement, 
we obtain the following dimensionless form of the modified equation of motion: 

dq 2 d13]  Fró  
Lo(S — xsid 11 ,7  1Й  

_ ~Ś dŚ  [к0' — (ко -1)]`  
d 

1— 
Fro Koqг 

(7)  

[Kog  — (K0 —1)]'  

where: 
L — relative length of overflow crest (Lo  =  L/H„),  
x— ratio of local value of hydraulic gradient Si to hydraulic gradient Sfo at the initial 

section of the overflow chamber (x = Sf/Sfo), 
rl — coefficient of momentum variation in the mass decrement term which can be 

determined experimentally for set weir, channel shape and motion parameters 
(n _ іі(Ś)):   =2і3  —kpь . 

Dimensionless discharge q = q(t) in the overflow chamber 0 S  Ś  _< 1 in conven-
tional formulation is as follows: 

g =1—  2ц 
  LI  

3  

ł  
24Но   r

(' 
 _ P0)зiгd, 

Qo о  
(8) 

where Po  is a relative elevation of overflow crest at the origin of the side weir (x = 0): 
Pu = P/Ho. 

The Fronde number at the initial cross-section (x = 0) of the overflow chamber is: 

Fro  - Qo  
gH~ 

(9) 

Assuming that the hydraulic gradient (Sf) in nonuniform flow can be calculated in 
terms of the Manning equation derived for uniform flow and considering the real 
value of H in the set cross-section of the overflow chamber (n = constant), we can write: 
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Assuming furthermore that 5, = xs,o  and using equations (5) and (6), we obtain: 

2 2 2 22 
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where Sao  is hydraulic gradient at the origin of the overflow chamber. 
The wetted perimeter (P,,) in the cross-section of the overflow chamber with the 

unilateral weir can be written as:  Р,  = Р,o  +  (Н  —  Но )  = P,,о  +  Н ('  —1) . For the bilat- 

eral weir P,, = P,,o. And finally for 0 <— ' 5 1 we have 1 >_ ,~ > 0: 

= 

[Р,,0  + Но (' — l)j
аiз 

2 
x  [1  + к0(' —1)]iоiзЛ

,о
alз  q for 1 >_ g >_ 1 — q~, (12) 

where q, is discharge ratio of flow: q,. = Q/Qo. 
The dimensionless form of the equation of motion (equation (7)) is an ordinary 

first-order differential equation with the dimensionless abscissa (counted from the 
initial section of the weir; 0 <_ 5 1) as an independent variable and the dimensionless 
depth in the overflow chamber axis (generally, >_ l for the water rise curve (fig-
ure 1) and C" <— 1 for the drawdown curve along the weir) as a dependent variable. This 
nonlinear equation cannot be solved analytically, and it is necessary to use numerical 
methods. And therefore the functions that relate the coefficients x,  13,  t1 and the term q 
to the dimensionless parameters of motion (similarity numbers) q,, Lo, Po, Sfo, Frog  and  
К0,  and to the independent variable have to be known. The initial condition takes the 
form of (0) = 1. The dimensionless discharge inside the overflow chamber (q) is 
defined by equation (8), from which it follows that a formula is needed to describe the 
weir discharge coefficient (µ). 

In general, the weir discharge coefficient is affected by the abscissa x, because the 
head of free surface varies along the weir edge, and so does the contraction of the 
stream along the weir length. Practically, it is impossible to determine the behaviour 
of the value of µ along the weir edge. But the rate of flow over the side weir can be 
calculated when use is made of the following equation [12]: 

2 ~ 
Q 3 µ g J (Н  — 

where µ is the discharge coefficient (mean) calculated for a weir of a length L. 

(13) 
o 
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Incorporating the dimensionless variables from equation (5) and defining the di-
mensionless variable of the length in a different way: Śm = x/нo  yield the following 

expression which describes the derivative dQ/dx from equation (2) (0 <_ <_ Lo) as: 

5/2 

~~ 3 
µ 

QО  
2$ (' 

—
РО

)з /г  

µ 

Defining: 

2 Нв/2 
3 

Qo 
 2$=Vo, 

where Vo is dimensionless similarity number determined from the conditions of mo-
tion at the origin of the overflow chamber (x = 0), we obtain for = La: 

µ VO f (yS -РО
)3/2д
' =-=  q r 

o 

Thus: 

µ 
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VO 
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  _Р

O)
зi гd~
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0 

The usefulness of equation (7) in describing the motion of a liquid in channels 
with side weirs and throttling pipes for the adjustment of discharge from a storage 
volume located after the overflow chamber has been experimentally verified. 

3. EXPERIMENTAL STUDIES 

Experiments were conducted on a hydraulic model [10], [11]. Two basic series of 
experimental investigations into unilateral and bilateral side weirs (in six design ver-
sions) were carried out. The first series was conducted for side weirs in a channel 
with a rectangular cross-section (b = 315 mm; figure 1). The second series involved 
prismatic (U-shaped) channels: circular in the lower part (up to the height equal to 
half the channel diameter D = 287 mm) and rectangular in the upper part (above this 
height). Bottom slope was constant (S = 3.3%оо) and so was the height of the weir 

edges p > Нсr  (Qd), i.e. p = 210 mm ( = 2b/3) for the channel with a rectangular cross-

section and p = 204 mm (= 5D/7) for the channel with a complex cross-section. Such 
assumptions are based on the results obtained by the author in his previous studies [1], 
[10]. Thus, the present study was focused on the conditions of subcritical flow (water 

 

 

 

 



74 A. Котошвю  

rise curve; figure 1), as well as on the conditions of free flow over the weir crest. 
A 2.6 m long throttling pipe of diameter 152 mm was mounted at a slope of 6.6%0. 
A gate valve was used for discharge adjustment. The length (is)  of the storage volume 
downstream of the weir was assumed to be constant, 4 = 600 mm (= 2b = 2D) — after  
SAUL  and DELI [15]. The model was made of PVC characterized by a roughness 
coefficient in Manning's formula n _ 0.01 s/m113. The weir crest was 5 mm wide. 

The model studies included measurements of motion parameters in 12 cross-
sections located in the storage volume, the overflow chamber and the inlet channel: 

Variant 1 — a unilateral weir with L = 600 mm (= 2b) in a rectangular channel. 
Variant 2 — a unilateral weir with L = 900 mm (= 3b) in a rectangular channel. 
Variant 3 — a unilateral weir with L = 1200 mm (= 4b) in a rectangular channel. 

Three subvariants of discharge to the weir (Qo  = 16.9, 33.8 and 50.8 dm3/s) were 
planned for each variant. For each subvariant a different number of measurements 
were planned for the coefficient of the separation of flow on the weir: q, = Q/Qo  = 1.0, 
0.8, 0.6 and 0.5 at Qo  = 33.8 dm3/s and qr  = 0.8 at Qo  = 16.9 and 50.8 dm3/s. 

Variant 4 — L = 2x600 mm, in the range as above (bilateral weir in a rectangular 
channel b = 315 mm). 

In the second series of experiments for side weirs in a U-shaped channel (b = D = 
287 mm) the following variants were investigated: 

Variant 5 — a unilateral weir with L = 1200 mm, in the range as above. 
Variant 6 — a bilateral weir with L = 2x600 mm, in the range as above. 

The total of 36 combinations of weir design and hydraulic parameters were inves- 
tigated using the model. In the adopted range of changes of Qo  and q„ the Reynolds 
number (Re) in the throttling pipe varied as follows: 23800<Re<129500, whereas the 
Froude number (equation (9)) in the inlet channel directly before the weir fell within 
0.14<Frо<0.35 in the rectangular channel and within 0.17<Fro<0.46 in the U-shaped 
channel. 

The values of the coefficient of kinetic energy (a) and the coefficient of momen-
tum (J3) were established in terms of the following equations: 

ry  3~ 
J
A 

 
a= , 

Ј  v  

Д  - А    
v2 A 

+ 

 

where v is local velocity in the x directions and v stands for mean velocity in channel. 
Integration was carried out after the areas of partial sections between consecutive 

local velocity isolines in the investigated cross-section of the channel had been cal-
culated. (Local velocities v were measured with a hydrometric current meter). The 
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interpretation of the variability of the coefficients a and /3 was limited to three vari-
ants: 3, 5 and 6 at Qo = 33.8 dm3/s and qr  = 1.0, 0.8, 0.6, 0.5, which involved about 
5600 local velocity measurements in 88 cross-sections. In the adopted range of model pa-
rameter variations, it was the discharge ratio (q,) that had the strongest influence on the 
behaviour of a and $ along the length of the channels with side weirs (in inlet channel, 
overflow chamber and storage volume). A statistical measure for the two coefficients was 
found to be the Froude number, which — after suitable transformation — gives: 

054 

a=1.16  Fr0 
ЕУ~х) 

where 1.06 < a < 3.4 (figure 2), and: 

/3 =1.06 Fr0 
ЕУ~х)  

where 1.01 <‚3 < 1.6. For the coefficient /3, use was made of another formula, which 
related /3 to (0 <_ <_ 1; figure 3): 

/3 =0.287+0.180q  +0.116q + 0.807W0  — 3.43Wo —0.622 + 0.573 ехр'. (22) 
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Fig. 2. Regression of coefficient a versus Fг  1 /Fra 

(along channels with side weirs in variants 3, 5 and 6) 
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Fig. 3. Part of regression of coefficient ‚3 versus parameter  Ś  from eq. (22) 
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In order to calculate the discharge coefficient (µ), equation (17) was used for 36 
free-surface profiles measured along the longitudinal axis of the overflow chamber. 
The profiles were approximated by means of a third-degree polynomial as:  

г з  
(Ś  — Р0)312 =(WO+W1+W2~µ +Wз )

зiг 
 , (23) 

where W0  denotes free term of the polynomial (W0  = 1 — Po): W0  = (1 — p)/Ho. 
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The coefficient  in equations (7), (17) and (23) is a function of the dimensionless 
parameters µ = µ (q„ Vo , L0 ,W1, Fro ,K0 ).  The partial dependence of µ on particular 

motion parameters was tested and it was found that (figure 4): 

= 0.644 - 0.052q,. + 0.0088L0  + 0.035 Wo - 0.075Fro -  0.065к0, (24) 

as a result of multiple regression at the significance level of 0.05 at 0.52 5 µ <- 0.59 

and µ = 0.55 for subcritical flow (Fro<1). 

4. SOLUTION OF THE EQUATION OF MOTION 

The equation of motion (equation (7)) for the side weirs with a throttling pipe was 
solved in terms of the formulas derived in this paper. The last coefficient in equa-
tion (7), denoted as r1= 2/3 - k/3b, was calculated directly from equation (7), since the 
water-surface profiles along the longitudinal axis of the overflow chamber were 
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Fig. 6. Dimensionless elevation of water surface (‚' along overflow chamber 0 <_ 5 1, 
numerically calculated (—) using equation of motion (7) and measured in model  (ф)  

with marked measuring error (variant 5, for q, = 0.8, L.o  = 4.73, Po  = 0.803, Wo  = 0.197, 
Fra = 0.112, Кo  = 1.14, Sf0  = 0.000578 and µ = 0.552) 

measured, and the other coefficients were known. The coefficients ЈЭЭ  and k could not 
be calculated on the basis of model measurements because in the adopted model scale 
the weir layer was several centimetres thick. Thus, it was impossible to measure di-
rectly the distribution of the velocities of the side-discharge streams (/36). The values 
of ii calculated in terms of equation (7) were related to the dimensionless parameters of 
motion L01, Woi, q,., Fr01  and  Koi  was normalized to the interval <0, 1> (figure  5а-e) as 
well as to the abscissa (figure 5f). Now, it was possible to adopt appropriate classes 
of functions. After approximation, using the Chebyshev polynomials normalized to 
<0, 1>, the equation describing the behaviour of n over dimensionless overflow 
chamber length 0 S 5 1 takes the form: 

iі  = 6.46 + 5.61gr - 1.30q,2- 0.0531L0- 59.2 W0  

+ 80.4 W02  - 4.94Fro2  —  0.460К0  + 2.11' - 1.27 2 (25) 

for the following ranges of variation: 0.3_< n <_ 2.2; 0.5 5 qr  <_ 1.0; 1.8 _< La  5 5.1; 0.13 <_ Wo  
<_ 0.35; 0.65 <_ Po 50.87; 0.14 _<Fr0 5 0.46; 1.0<_K0 5 l.15; 0.0001 5Sj0 50.001. 

The accuracy (related to measurements) with which the equation is solved (and 
thus the quality of the proposed mathematical model of the flow of a liquid in the 
overflow chamber of the investigated side weirs with a throttling pipe) is illustrated in 
figure 6. The figure shows a diagram of dimensionless water surface height «(') along 
the longitudinal axis of the overflow chamber (0 <_ ' <_ 1) calculated numerically (via 
the NDSolve procedure included in the Mathematica software) for variant 5: 
U-shaped channel, L = 1200 mm, Qo  = 33.8 dm3/s and q, = 0.8. Figure 6 shows that 
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the agreement between calculated (numerically) and measured results (with a depth 
measuring error) is satisfactory. The water rise curve for the weir, calculated in terms 
of the mathematical model, describes the hydraulic model measurements within the 
water-surface height measuring error. 

The dimensionless form of the modified differential equation of motion (7) con-
stitutes a generalization of theoretical considerations of the one-dimensional descrip-
tion of liquid flows with variation in mass and momentum and it is applicable to the 
hydraulic dimensioning of side weirs, including weirs with throttling pipe [16]—[21]. 

5. CONCLUSIONS 

The one-dimensional equations of  non-uniform  flow with mass variation along the 
weir are an implicit function of the depth 1(x) and the volume Q(x) in the channel and 
thus the direct integration of them for any shape of the overflow chamber's cross-
-section is practically impossible. The numerical solution of such problems has be-
come attainable with the advent of high-speed computers. 

Using the principle of conservation of momentum, a new form of the equation of 
motion (equation (4)), which describes the free-surface profiles in the overflow cham-
ber, has been derived. It differs from the available equations of motion in that it incorpo-
rates a corrective mass decrement term (2$ — k$ь)[Q/(gА2)](dQ/dx) arid a momentum 
variation term [Q2 /(g02)](d1 /dx). 

Studies of local velocity distributions in overflow channels and chambers differing 
in cross-sectional profiles have shown that the momentum coefficient $ varies mark-
edly along the weir, as regards its value (1.01 < $ < 1.6) and the value of its derivative 
d$/dx. And this indicates that the use of the new form of the equation of motion is not 
only justified but also desired if the physics of the phenomenon is taken into account. 

The dimensionless form of the modified differential equation of motion (equation (7)) 
describes liquid flow in the overflow chamber of a defined geometry. Equation (7) 
applies to the hydraulic design of a side weir with a high crest (p > Hv, (Qo)) and 
a throttling pipe. Model studies have substantiated the accuracy of equation (7) in 
determining the value of d'/d' (and consequently the value of dН/дx which is within 
the measuring error for the height  Н  in physical models). A mathematical model, 
which describes the behaviour of such weirs, as well as a numerical procedure ena-
bling their dimensioning have been developed in a previous study [11]. 
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RÓWNANIE RUCHU CIECZY W KANAŁACH Z BOCZNYMI PRZELEWAMI 

Wychodząc z zasady ilości ruchu, dokonano analizy jednowymiarowego opisu przepływów cieczy 
w kanałach pryzmatycznych z bocznymi przelewami. Nowa postać  bezwymiarowego równania ruchu 
zawiera m.in. człon zmiany pędu oraz dodatkowy współczynnik w członie ubytku masy. Zbadano bez-
wymiarowe współczynniki tego równania, które mają  zastosowanie do projektowania przelewów bocz-
nych z rurą  dławiącą  stosowanych w kanalizacji. 


