Meridional light path function and coma transfer for corrected holographic concave gratings

Reiner Güther

Central Institute for Optica and Spectroscopy, Acadeny of Sciences of the GDR, 1199 Berlin-Adlershof, Rudower Chausee 5, GDR.

Abstract

The general form of the light path function for corrected holographic concave gratings in the moridional cut up to the third order in thn transverse grating coordinate, using both aspheric vavofronts and asphoric grating supports for grating record is calculated. From this light path function one obtains a formula which describes the change of the third ordor part (comatic part) of the incident wavefront by the greting. Together with the focussing propertios of the grating this gives the possibility for treating optical systems containing gratings.

1. Introduction

In optios the paraxial approximation is a useful first step for the treatment of a system. An interesting possibility for suoh a treatment is the formalism of the $A B C D-m a t r i x$ in the resonator theory [1]. In the framework of this theory the local transformation of the para axial properties (curvature) of the wavefront by an optical surface is followed by the transformation of these properties in a homogeneous medium to the next optioal surfaoe and so on.

If the optical surface is a oncave grating the transformation of the paraxial properties can be derived from the focussing formulae given for classical conoave gratings by BEUTLER [2] and for holograph ic concare gratings in [3]. In the paper [6] the formulation in the framework of the $A B C D=m a t r i x$ was given.

Practical experiences in the correotion of holographio gratings show that the paraxial properties of a grating are not sufiicient for obtaining good correotion, because at least comatio properties should be included. This is also valid for systems.

We follow the paraxial method "transformation by a surface-propagation in a medium - transformation by the next surfacen and try the
ame method for the oomatic part (third power of the warefront expansion).

The third-order properties of a holographio grating are determined by the third-order properties of che wavefronts nsed for producing this grating and by the third-order properties of the grating support. Therefore, we add to the usual second-order terms (parabolio wavefronts which approximate apherioal waves) the ooefficients of the third power of a coordinate perpendicularly to the propagation direction of the oentral ray of the warefront. Such warefronts can be generated by oblique passage of optical elements (for instance, correoted holographic gratings).

The idea of our caloulations is: A wavefront with paraxial and oman tic properties is given. Then we look for the paraxial and comatic properties of this wavefront after diffraction by the grating. Finally, we need the propagation of such a warefront in a medium ("free space").

Then we have the tool to construct systems. up to the third order. A simple example of a system will be the olassical Czerny-Turner-mounting.

The above explained inclusion of the third-order coefficients in the production of gratings is a further atep for the extension of the conception of "deformed wavefronts" which up to the paraxial approximation was given in [6] and in a constructive way - in [5]. The new third-order ooefficients in the light path function can be used for the correotion of the coma of a grating or of a system.

The inclusion of the mentioned deformations has another aspect. The computer-controlled ruling engine of HARADA [4] has a great flexibility because. it is able to generate the groove ourvatures by a comp puter programme. Comparing this technique with the usual holographio production we have to take into account that the two point-sources of holograpinio production offer a system of interference patterns whioh consists of ellipsoids or hyperboloids. This optically possible system of interefernoe patterns can be generalized by adding comatio parts to the wavefronts. Wo do not know to what extent a reasonable deformation of optical warefronts can offer the results given in [4]. but the point souroe is not the last possibility of optics.

As a first step we treat in this paper the meridional out of a grating, because the meridional coma is the aberration of third order whioh is oorreoted first. The more oomplicated caloulations including the asgittal coma are under investigation.

2. Formulation of the aberration expansion

The usual formulation of the light path funotion Δ is represented in Fig. 1. Two spherical wares, emitted by the point souroei C and D, interfere on the grating support and yield the grating pattern. If we illuminate the recorded grating by point source A we obtain image B which is mostly diaturbed by aberration. The usual light path finco tion is written in the form

$$
\begin{equation*}
\Delta=\overline{A M}+\overline{B M}-\frac{k \lambda}{\lambda_{0}}(\overline{C M}-\overline{D M}) . \tag{1}
\end{equation*}
$$

Pig. 1. Uaual production
and use of corrected can-
cave gratings

Equation (1) means that the optioal path from A via M to B ia to be oorreoted by the phase ohange whioh must be taken into acoount if M varies from groove to groove. Point M on the grating surface is determ mined by the coordinates Y_{M} and Z_{M} and by the surface equation $X_{M}=X_{M}$ $\left(Y_{M}, Z_{M}\right)$. If we look for the meridional part of the light path function we specify $Z_{M}=0$. This specification does not mean that we out the real spectral line beoause the sagittal ooma also contributes to the line width. Our aim is to calculate meridional fooussing and meridional coma.

In Figure 2 we demonstrate the general soheme for record and use of gratings which will be treated in the meridional out up to the third order. Between A, B, C, D and G there are optioal systems. G has an aspherical part in the $X \propto Y$ plane. Obviously, the light path funo-

tion has again the form (1), where AM means the optioal path longth.

If 18 given, the caloulation of the optical path through the general optioal syatem is difficult. Therefore, we reduce the caloulation of AM to a loonl expanaion of the warefront at point 0 . The procedure is explatned in

Fig. 2. Concave grating generated by aspherical wavefronte on an aspherical grating support

Fig. 3. If the light atarts in A it generates an aspherical wavefront W whioh contains point 0 . The optical path length from A to warefront W has the constant values $\tilde{\mathcal{l}}_{A}$ for all points A on W. This means

$$
\begin{equation*}
\overline{A M}=\overline{\tilde{A} M}+\tilde{I}_{A} \tag{2}
\end{equation*}
$$

Combining (2) and the equivalent decompositions for $\overline{B M}$, $\overline{C M}$ and $\overline{D M}$ with (1), we can omit the constant terms $\tilde{\boldsymbol{I}}_{A}$, $\tilde{I}_{B}, \tilde{I}_{C}$ and \tilde{I}_{D}, since they are constant during a variation of point M. Therefore, $\overline{\tilde{A} M}$ is the important term, i.e., a local formulation of the problem is possible.

Fig. 3. Reduction of the optical path length $\overline{\text { AM }}$ to the local path length \bar{M}

Sinoe we treat the problem to the third order only, we expand the wavefront perpendicularly to its principal ray. traversing point 0 ,

$$
\begin{equation*}
\hat{X}=A_{A} \hat{Y}^{2}+B_{A} \hat{Y}^{3} \tag{3}
\end{equation*}
$$

in the $\hat{X}-\hat{Y}$ coordinate system, the $X-a x i s$ of which is direqted from. 0 t'o A. A_{A} is called the "parabolic part" ($=1 / I_{A}^{2}$ eff" I_{A} eff - effective radius of curvature of the wavefront), and B_{A} - the ncomatio part". If we require eq. (3), we know that a ray starting from point A is located perpendicularly on the wavefront W and traverses the grating support at point M. We can oonstruot the normal to W at point A. The intersection point M of this normal with the grating surface G can be calculated. Through the inversion of the series we can express the coordinates of A by X_{M} and y_{M}. Hence, $\overline{A M}$ is available as function of X_{M} and Y_{M}. Taking into account $X_{M}=$ $=X_{M}\left(Y_{M}\right)=A_{G} Y_{M}^{2}-B_{G} Y_{M}^{3}, A_{G}=1 / 2 R$, and R the radius of ourvature of the grating support, $\overline{A M}$ is a function of Y_{M} only. Similar lengthy though simple calculations with the help of differential geometry prom vide equivalent formulae for $\overline{B M}, \overline{C M}$ and $\overline{D M}$, where (3) must be ohanged in a corresponding manner.

Then we obtain the light path funotion

$$
\begin{align*}
\Delta= & \overline{\tilde{A} M}+\overline{\tilde{B} M}-\frac{k \lambda}{\lambda_{0}}(\overline{\tilde{C} M}-\overline{\tilde{D} M}) \\
= & Y_{M}\left[-\sin \alpha-\sin \beta-\frac{k \lambda}{\lambda_{0}}<-\sin \gamma+\sin \delta>\right] \\
& +Y_{M}^{2}\left[\frac{0 s^{2} \alpha}{21_{A}}-A_{G} \cos \alpha+\frac{0 \sin ^{2}{ }_{\beta}}{2 I_{B}}-A_{G} \cos \beta\right. \\
& \left.-\frac{k \lambda}{\lambda_{0}}<\frac{\cos ^{2} \gamma}{2 I_{C}}-A_{G} \cos \gamma-\frac{\cos ^{2} \delta}{21_{D}}+A_{G} \cos \delta>\right] \\
& +Y_{M}^{3}\left[-\frac{A_{G}}{I_{A}} \cos \alpha \sin \alpha+\frac{\sin \alpha \cos ^{2} \alpha}{2 I_{A}^{2}}-B_{G} \cos \alpha+B_{A} \cos ^{3} \alpha\right. \tag{4}\\
& -\frac{A_{G}}{I_{B}} \cos \beta \sin \beta+\frac{\sin \beta \cos ^{2} \beta}{21_{B}^{2}}-B_{G} \cos \beta+B_{B} \cos ^{3} \beta \\
& -\frac{k \lambda}{\lambda_{0}}<-\frac{A_{G}}{I_{C}} \cos \gamma \sin \gamma+\frac{\sin _{\gamma} \cos ^{2} \gamma}{2 I_{C}^{2}}-B_{G} \cos \gamma+B_{C} \cos ^{3} \gamma \\
& \left.+\frac{A_{G}}{I_{D}} \cos \delta \sin \delta-\frac{\sin \delta \cos ^{2} \delta}{2 I_{D}^{2}}+B_{G} \cos \delta-B_{D} \cos ^{3} \delta>\right]
\end{align*}
$$

Except for the well known aberration terms, here there are new contributions with the coefficients $B_{G}, B_{A}, B_{B}, B_{C}$ and B_{D}. Their souroes are the oomatic parts produoed by the optical systems used and by the grating support. In (4) now parameters are available for the oorreotion of gratings. The light path funotion for ourved transmission grat. ings and for gratings produced by a "backaide teohnique" oan be easily derived from (4) by multipliying the terms of eq. (1) by the corresponding index of refraction and by ohanging some signs.

3. Transfer of the meridional coma

The tranafer (transformation) of the first order of Y_{M} of eq. (4) is giren by a change in the direction of the pripcipal ray which passes point 0 in accordance with the grating equation. The transfer of the second order in Y_{M} is given by the meridional foousaing distance $l_{\text {B2 }}$ which results from demanding that the corresponding bracket in (4) be equal to zero. This transfer can be formulated by the ABCDmatrix [6].

4 transfer of the comatic part (third order of $\mathbf{Y}_{\mathbf{M}}$) would be very useful for implementing gratings in multielement optical systems. If we know the "incident oomatio part" B_{A} we look for the oomatio part B_{B} of the wave learing the grating. This oomatic part is equal to that comatio part whioh had to be compensated by the system S_{B} in Fig. 2 in order to obtain an image with vanishing coma in B. Therefore, we demand that the bracket at \mathbf{Y}_{M}^{3} in (4) be equal to gero. This yields B_{B}.

The procedure of the transfer of the third-order aberration is equivalent to the transfer in the first and seoond orders, where β and I_{B} were oiloulated also by equating factors of powers of Y_{M} (in brackets) to zero. A control possibility for the calculation of B_{B} is a ray tracing connected with the caloulation of the new wavefront from the optical path along the rays.

The treatment of multielement systems requires the transfer of the comatio part in a homogeneous medium without optical elements.

In Figure 4 we show a wavefront which propagates from U to V with the centre of curvature in P. At U the wavefront has the shape

$$
\begin{equation*}
X^{\cdot}=A_{U} Y^{2}+B_{U} Y^{3} \tag{5}
\end{equation*}
$$

and at ∇ the shape

$$
X=A_{V} Y^{2}+B_{V} Y^{3}
$$

omitting a oonstant. From $A_{U}(=1 / 2 R, R-r a d i u s$ of ourvature) therd follows $A_{V}=1 / 2\left(R-X_{1}\right)=\left(R /\left(R-X_{1}\right)\right) A_{V}$. This is transfer of the second order. The oaloulation of B_{V} requires to atart with the ware-

Fig. 4. Tranafor of the coma
front at J and to proceed along distanoe X_{1} to V. The new warefront at V can be derived by means of differential geometry (caloulation of the normal direotion). The expansion of the new wavefront yields B_{V}. After an extended caloulation we get the equation

$$
\begin{equation*}
B_{V}=\left(R /\left(R-X_{1}\right)\right)^{3} B_{V} \tag{7}
\end{equation*}
$$

4. Example: the Czerny-Turner-mounting

For example we derive the formula of Fastie, Reader, Shafer et al.[7] for the Czerny-Turner-mounting (Fig. 5). The light starting from a silt A propagates via conoave mirror B, plane grating C and oonvare mira ror D to the receiver E, where we require the meridional coma to be equal to zero for a selected wavelength of the light, determined by the angles α_{g} and β_{g} at the grating. All the elements used are apeoial oases of corrected conoave gratings (concave mirrors order $k=0$, plane gratings all focussing distances and $R \rightarrow \infty$). From A to B inc coma results. At B the conoare mirror generates the oomatio part

Fig. 5. Classical Czerny-Turner -mounting

$$
\begin{equation*}
B_{B}^{\prime}=\frac{\sin \alpha_{m}}{2 I_{A} \cos \alpha_{m}}\left[\frac{1}{R_{1} \cos \alpha_{m}}-\frac{1}{I_{A}}\right] \tag{8}
\end{equation*}
$$

(specification of the grating generated coma) or taking into account the collimation of the leaving bundle

$$
\begin{equation*}
B_{B}^{\prime}=-\frac{\sin \alpha_{m}}{R_{1}^{2} \cos ^{3} \alpha_{m}} \tag{9}
\end{equation*}
$$

From B to C there is no change in the value of the ooma, because from eq. (7), with $R \rightarrow \infty$, we get the transfer factor 1. Specifying the generated coma for a plane grating we obtain at C

$$
\begin{equation*}
B_{B}^{\prime \prime}=-\frac{\cos ^{3} \alpha_{g}}{\cos ^{3} \beta_{g}} B_{B}^{\prime} \tag{10}
\end{equation*}
$$

From C to D there is no change in the coma again. The coma coeffioient generated at D

$$
\begin{equation*}
B_{B}^{\prime \prime \prime}=-B_{B}^{\prime \prime}+\frac{\sin \alpha_{m}^{\prime}}{R_{2}^{2} \cos ^{3} \alpha_{m}^{\prime}} \tag{11}
\end{equation*}
$$

should be equal to zero for grating no coma at E. If we combine the equations (9), (10) and. (11) with $B_{B}^{\prime \prime \prime}=0$ we obtain

$$
\begin{equation*}
\frac{\sin \alpha_{m}^{\prime}}{\sin \alpha_{m}}=\frac{R_{2}^{2}}{R_{1}^{2}}\left(\frac{\cos \alpha_{m}^{\prime} \cos \alpha_{g}}{\cos \alpha_{m}^{\prime} \cos \beta_{g}}\right)^{2} \tag{12}
\end{equation*}
$$

wherein R_{1} and R_{2} are the radil of ourvature of both oonoare mirrorg. This formula is well known from literature. Here it was very simply derived by specializing our general formulae.

5. Discussion

The derived expansion of the meridional part of the light path funom tion to the third order is the most general formula whioh describes the use of aspherical grating supports and aspherical wavefronts. By means of a practical example the usefulness of the formalism was dow onstrated for the precaloulation of optical systems to the third order containing gratings. The formalism also inoludes the generation of deformed wavefronts, which we need for the production of suoh gratinga, by mirror, gratings and other optical surfaces.

Acknowledgements - The author would like to thenk Dr. G. Schul and S. Polze for kind discussions of the above problems.

References

[1] GERRARD A., BURCH J.M., Introduction to Matrix Methods in Optios, Willey and Sons, Lond on 1975.
[2] BEUILER H.G., J. Opt. Soo. Am. 35 (1945), 311.
[3] CORDELLE J. et al., Aberration-Correoted Conoave Gratings Made Holographically. Paper at ICO 8 Meeting, Reading, July 1969. See also Jobin-Yvon, Grating Handbook.
[4] HARADA T., KITA T., Appl. Opt. 19 (1980), 3987.
[5] GÜTHER R., POLŻE S., Optioa Acta 29 (1982)
[6] GÜTHER R., Optica Applicata 11 (1981), 97.
[7] FASTIE W.G., J. Opt. Soo. Am. 42 (1952). 641. SHAFER A.D., et al. ibidem 54 (1964), 879. READER J.,ibidem 59 (1969), 1189.

МЕРИДИОНАЛЬНЫЕ ФУНКНИИ ОПТИЧЕСКО ДЛИНЫ ПIТИ, А ТАКНЕ ПЕРЕНОС КОМЫ В СЛУЧАЕ ПРОКОРРЕКТИРОВАННЫХ ВОГНУТЫХ РЕЕЕТТО ГОЛОГРАММЫ

Определен общий вид функции оптической длины пути для прокорректированннх вогнутих голографичеокдх рещеток в меридиональном оечении вплоть до третьего порядка при пспользовании поперечных координат сетки. Раочеты выполнены для случая, когда как волновые фронты, так п основанпе решетки бнли сферичеокими. Иоходя из полученных таким образом функци这 оптической длины, пути была выведена мормула, определяощая измененме члена третьего порядка (плен комы), пропсходящее на решетке для падахщего волнового фронта. Это дает, наряду с Фокусируюпими свойствами рещетки, также возмомнооть расомотрения оптических систем, содерж 廹 решетки.

