Minimizetion of the second moment of the image intensity distribution*

anna Magiera

Inatitute of Yhysics, Technical University of Kroc Kaw, "̆ybrzeże Wyspianskiego 27, 50-370 Wrociaw, Poland.

1. Introduction

Minimization of the second moment of the image intensity distribution produced by a point object leads to an improvement of the imaging quality (telescopes, microscope objectives, mirrors). In order to minimize the second moment of the intensity distribution in the image it is necessary to deflne an apodizing pupil function which may be done basing on the variational method (1-3]. In this paper an algorithm is given to determine a generalized pupil function minimizing the second moment of the intensity distribution in the image for a fixed value of energy transforred through the optical system with spherical aberration.

2. Theory

The complex amplitude $U\left(x_{0}, y_{0}\right)$ in the image plane is a Fourier transform \mathcal{F} of the generalized pupil function $T\left(x_{1}, y_{1}\right)$ [4]s

$$
\begin{equation*}
U_{0}\left(x_{0}, y_{0}\right)=c \approx\left\{T\left(x_{1}, y_{1}\right)\right\} \tag{1}
\end{equation*}
$$

Here, the pupil function is a product of the pupil function $U\left(x_{1}, y_{1}\right)$ and the phase factor

$$
\begin{equation*}
T\left(x_{1}, y_{1}\right)=U\left(x_{1}, y_{1}\right) \exp \left[\frac{i k}{2 s}\left(x_{1}^{2}+y_{1}^{2}\right)+i \Phi\left(x_{1}, y_{1}\right)\right], \tag{}
\end{equation*}
$$

where x_{0}, y_{0} and x_{1}, y_{1} - the coordinates in the image and pupil planes, respectively, 3 - the distance of the oxit pupil froa the image plane, k - the wave number, Φ - the wave aberration, C - the coefficient of the form

$$
\begin{equation*}
c=\frac{1}{i \lambda_{z}} \exp (i k z) \exp \left[\frac{i k}{2 z}\left(x_{0}^{2}+y_{0}^{2}\right)\right] . \tag{2}
\end{equation*}
$$

The pupil tunction is ascured in the form

[^0]\[

U\left(x_{1}, y_{1}\right)= $$
\begin{cases}U_{0}\left(x_{1}, y_{1}\right) & \text { in the pupil, } \tag{3}\\ 0 & \text { beyond the pupil, }\end{cases}
$$
\]

which may be also written as follows

$$
\begin{equation*}
U\left(x_{1}, y_{1}\right)=U_{0}\left(x_{1}, y_{1}\right) P_{0}\left(x_{1}, y_{1}\right), \tag{4}
\end{equation*}
$$

where $P_{0}\left(x_{1}, y_{1}\right)$ is an aperture function.
After simple rearrangements we obtain from (1)
$\int_{-\infty}^{+\infty} \int_{-\infty}^{\infty}\left\{\left|\frac{\partial T\left(x_{1}, y_{1}\right)}{\partial x_{1}}\right|^{2}+\left|\frac{\partial T\left(x_{1}, y_{1}\right)}{\partial y_{1}}\right|^{2}\right\} d x_{1} d y_{1}=\int_{-\infty}^{+\infty}\left(\left(x_{0}^{2}+y_{0}^{2}\right)\left|u\left(x_{0}, y_{0}\right)\right|^{2} d x_{0} d y_{0}=\sigma\right.$
The right hand side of the equation (5) is an expression determining the second moment of intensity in the image.

If we restrict our attention to a point object positioned on the axis and to the system with circular aperture of the radius a, then it is convenient to write the aperture function (5) in the polar coordinates

$$
\begin{equation*}
\int_{0}^{\infty}\left|\frac{\partial T(r)}{\partial r}\right|^{2} r d r=\int_{0}^{\infty}|U(s)|^{2} e^{3} d s \tag{6}
\end{equation*}
$$

After substituting (1) and (4) into (6) we obtain

$$
\begin{align*}
\sigma= & \int_{0}^{\infty}\left|\frac{\partial T(r)}{\partial r}\right|^{2} r d r=\left\{\int_{0}^{a}\left|\frac{\partial U_{0}(r)}{\partial r}\right|^{2}+U_{0}^{2}(r)\left[\frac{\partial}{\partial r}\left(\exp \left(\frac{i k r^{2}}{2 z}+i \Phi(r)\right)\right)\right]^{2}\right\} \\
& +a U_{0}^{2}(r)_{r a a} \delta(0)+\left(U_{0}(r) \frac{\partial U_{0}(r)}{\partial r}\right)_{r=a}^{2} \operatorname{arc}(0)+\frac{a}{2} \frac{a}{\partial r}\left(U_{0}^{2}(r)\right)_{r=a} \tag{7}\\
& +a U_{0}^{2}(r) \frac{\partial}{\partial r}\left[\exp \frac{i k r^{2}}{2 z}+i \Phi(r)\right]_{r=a}^{2}
\end{align*}
$$

Since σ must take a finite value, condition necessary for the pupil function resulting from (7) is

$$
\begin{equation*}
U_{0}(a)=0 \tag{8}
\end{equation*}
$$

Vihen assuming the passivity of the system we get

$$
\begin{equation*}
\left|u_{0}(r)\right| \leqslant 1 \tag{9}
\end{equation*}
$$

After applying the Parsevel theorem to equation (1) the expression for energy passing through the aperture has the form

$$
\begin{equation*}
E=\int_{0}^{1}\left|U_{0}(r)\right|^{2} r d r \tag{10}
\end{equation*}
$$

The apherical wave aberration is well approximated by the polynomial

$$
\begin{equation*}
\Phi=\sum_{i=1}^{4} a_{21}^{0} r^{2 i} \tag{11}
\end{equation*}
$$

Finally, from (7) and (11) we obtain

$$
\begin{equation*}
\sigma=\int_{0}^{1}\left[\left|\frac{\partial U_{0}(r)}{\partial r}\right|^{2}+U_{0}^{2}(r)\left[2 a_{2} r+4 a_{4} r^{3}+6 a_{6} r^{5}+8 a_{8} r\right]^{2}\right] r d r \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{2}=a_{2}^{0}+\frac{\pi}{\lambda_{2}}, \quad a_{4}=a_{4}^{0}, \quad a_{6}=a_{6}^{i}, \quad a_{8}=a_{8}^{0} \tag{12a}
\end{equation*}
$$

Thus, the problem is reduced to finding a function $U_{0}(r)$ satisfying the conditions (8) and (9) for the specified value F minimizing the moment σ.

From the variational calculue [5] it follows that the function

$$
\begin{align*}
F= & \frac{1}{2}\left\{\left(\frac{a U_{0}(r)}{\partial r}\right)^{2}+\frac{1}{2} U_{0}^{2}(r)\left[\left(2 a_{2} r+4 a_{4} r^{3}+6 a_{6} r^{5}+8 a_{8} r^{7}\right)^{2}-\lambda\right]+\mu_{1}(r)\left[1-U_{0}(r .)\right]\right. \\
& \left.+\mu_{2}(r)\left(1+U_{0}(r)\right)\right\} r \tag{13}
\end{align*}
$$

(where $\lambda, \mu_{1}(r), \mu_{2}(r)$ are Lagrange factors). satisfies the Euler-Lagrange equation

$$
\begin{equation*}
\frac{a r\left(r, U_{0}(r), U_{0}^{k}(r)\right)}{\partial U_{0}(r)}-\frac{d}{d r} \frac{\partial r\left(r, U_{0}(r), U_{0}^{\circ}(r)\right)}{\partial U_{0}^{\circ}(r)}=0, r \neq r_{0}, \tag{14}
\end{equation*}
$$

where $U_{0}^{0}(r)=a U_{0}(r) / a r$, except for the boundary point r_{0}.
At the point r_{0} the boundary condition

$$
\begin{equation*}
\lim _{r \rightarrow r_{0}+0}\left|\frac{\partial F}{\partial U_{0}^{\prime}}\right|=\lim _{-r_{0}-0}\left|\frac{\partial F}{\partial U_{0}^{\prime}}\right| \tag{15}
\end{equation*}
$$

mumt be fulfilled. The lagrane factors must satisfy the following relations:

$$
\begin{align*}
& \lambda \geqslant 0, \\
& \mu_{1}(r) \leqslant 0, \quad \mu_{1}(r)\left[1-U_{0}(r)\right]=0, \\
& \mu_{2}(r) \leqslant 0, \quad \mu_{2}(r)\left[1+U_{0}(r)\right]=0, \tag{16}
\end{align*}
$$

Let us consider the following casess
High energy losses in the system
When the total energy passing through the system is snall, then $\mu_{1}(r)=0, \mu_{2}(r)=$ $=0$, as it follows from the condition (16), and the disturbance $U_{0}(r)$ fulfils the following difforential equation

$$
\begin{equation*}
r^{2} U_{0}^{\prime \prime}(r)+r U_{0}^{0}(r)-\left[\left(2 a_{2} r+4 a_{4} r^{3}+6 a_{6} r^{5}+8 a_{8} r^{7}\right)^{2}+\lambda\right] U_{0}(r)=0 \tag{17}
\end{equation*}
$$

The solution of this equation is given by the following pupil function

$$
\begin{equation*}
U_{0}(r)=A U_{1}(r)+B U_{1}(r)\left[\ln r+\sum_{V=1}^{\infty}\left(\left(-\frac{1}{2 V}\right) \frac{1}{c_{2 v}} r^{-2 V}\right)\right], \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{1}(r)=\sum_{v=0}^{\infty}\left(k_{2 v} r^{2 v}\right), \quad k_{0}=1 \tag{18a}
\end{equation*}
$$

and the expansion coefficients are of the form

$$
\left.\begin{array}{l}
k_{2}=\left\{\begin{array}{l}
\frac{1}{(2 v)^{2}} \sum_{i=1}^{v}\left(b_{2 i} k_{2(v-i)}\right), 2 v \leqslant 16, \\
\frac{1}{(2 v)^{2}} \sum_{i=1}^{8}\left(b_{2 i} k_{2(v-i)}\right), 2 v>16,
\end{array}\right. \\
b_{2}=-\lambda, \quad b_{4}=4 a_{2}^{2}, b_{6}=16 a_{2} a_{4}, \quad b_{8}=24 a_{2} a_{6}+16 a_{4}^{2}, \quad b_{10}=32 a_{2} a_{8}+48 a_{4} a_{6}, b_{12}= \\
=64 a_{4} a_{8}+36 a_{6}^{2}, b_{14}=96 a_{6} a_{8}, b_{16}=64 a_{8}^{2},
\end{array}\right\} \begin{aligned}
& c_{2 v}=\sum_{i=1}^{v}\left(k_{2 i} k_{2(v-i)}\right),
\end{aligned}
$$

The second solution of the equation (18) tends to ∞, when $r \rightarrow 0+$, and thus the solution of the equation (17) within the intervel $0 \leqslant r \leqslant 1$ is the pupil function

$$
\begin{equation*}
U_{0}(r)=A \sum_{v=0}^{\infty}\left(k_{2 v} r^{2 v}\right) \tag{19}
\end{equation*}
$$

The constant A is calculated from the energy conditions, and is equal to

$$
\begin{equation*}
A=\sqrt{\frac{E}{\pi \sum_{v=0}^{\infty}\left(c_{2 v} \frac{1}{(v+1)}\right)}} \tag{19a}
\end{equation*}
$$

From the formula (19) it follows that $U_{0}(r)$ changes within the limits

$$
\begin{equation*}
0=U_{0}(1) \leqslant U_{0}(r)<U_{0}(0)=\sqrt{\frac{E}{\pi \sum_{v=0}^{\infty}\left(\frac{c_{2} v}{v+1}\right)}} \sum_{v=0}^{\infty}\left(k_{2 v}\right)<1 \tag{20}
\end{equation*}
$$

thus the energy will be changed within this interval as follows

$$
\begin{equation*}
0 \leqslant \boldsymbol{E}<\frac{2 \pi \sum_{v=0}^{\infty} \frac{c_{2 v}}{2 v+2}}{\left(\sum_{\nu=0}^{\infty}\left(k_{2 v}\right)\right)^{2}} . \tag{21}
\end{equation*}
$$

It remains to find the solution for the onergy interval
$\frac{\pi \sum_{v=0}^{\infty} \frac{c_{2 v}}{i+1}}{\left(\sum_{v=0}^{\infty}\left(k_{2 v}\right)\right)^{2}} \leqslant E<1 / 2$.

Low energy losses in the system
Let us choose the following representation of the pupil function
a. $0<r \leqslant r_{0}$, where $U_{0}(r)=1$,
b. $r_{0}<r<1$, where $\left|U_{0}(r)\right|<1$.

In the interval $0 \leqslant r \leqslant r_{0}, U_{0}^{\circ}(r)=0$ and for the equation (16) we have
$\mu_{2}(r)=0$,
$\frac{d}{d r}\left(r U^{*}(r)\right)=\left\{-\lambda U(r)-\mu_{1}(r)+\mu_{2}(r)\right\} r$,
$\mu_{1}(r)=-\lambda$.
At the point $r=r_{0}$ the right hand side of the equation (15) is equal to zero, i.e.
$\lim _{r \rightarrow r_{0}-0}\left(\frac{\partial F}{\partial u_{0}^{\bullet}}\right)=0$.
From the equation $U_{0}(r)=1$ it follows

$$
\begin{equation*}
\lim _{r \rightarrow r_{0}-0} \quad U_{0}(r)=1 \tag{23}
\end{equation*}
$$

In the interval $r_{0} \leqslant r<1$ the pupil fumetion fulfils the passivity condition $\left|U_{0}(r)\right|<1$, and the lagrange variables are equal to $2 \theta r 0$. The solution of the Eulerlagrange equation gives then the following expression for the pupil function

$$
\begin{equation*}
U_{0}(r)=A U_{1}(r)+B U_{1}(r)\left[\ln r+\sum_{\nu=1}^{\infty}\left(\frac{1}{c_{2 v}} \frac{r^{-2 V}}{(-2 v)}\right)\right], \tag{24}
\end{equation*}
$$

where

$$
v_{1}(r)=\sum_{v=0}^{\infty}\left(k_{2 v} r^{2 \nu}\right) .
$$

Now, the constants A, B, and λ must be determined.
From the condition $U(1)=0$ we obtain

$$
\begin{equation*}
A \sum_{v=0}^{\infty}\left(k_{2 v}\right)-B \sum_{v=0}^{\infty}\left(k_{2 v}\right) \sum_{v=1}^{\infty} \frac{1}{2 v c_{2 v}}=0 . \tag{25}
\end{equation*}
$$

From the condition

$$
\lim _{r \rightarrow r_{0}+0} \frac{\partial F}{\partial U_{0}^{\circ}}=\lim _{r \rightarrow r_{0}+0}\left\{r U_{0}^{(}(r)\right\}=0
$$

it follows

$$
\begin{gather*}
\text { A } \sum_{v=0}^{\infty}\left(2 v k_{2 v} r_{0}^{2 v-1}\right)-B\left\{\sum_{v=0}^{\infty}\left(2 v k_{2 v} r_{0}^{2(v-1)}\right)\left[\ln r_{0}+\sum_{v=1}^{\infty}\left(\frac{r_{0}^{-2 v}}{2 v c_{2 v}}\right)\right]\right. \tag{26}\\
\\
\left.+\sum_{v=0}^{\infty}\left(k_{2 v} r_{0}^{2 v}\right)\left[\frac{1}{r_{0}}+\sum_{v=1}^{\infty}\left(\frac{r^{-2 v-1}}{2 v c_{2 v}}\right)\right]\right\}=0 .
\end{gather*}
$$

By letting the determinent of the expressions (25) and (26) be equal to zero the value of $\boldsymbol{\lambda}$ may be determined

$$
\operatorname{det}\left|\mid=0 \rightarrow \lambda_{.}\right.
$$

The condition

$$
\lim _{r \rightarrow r_{0}+0} U_{0}(r)=1
$$

gives

$$
\begin{equation*}
A \sum_{v=0}^{\infty}\left(k_{2 v} r_{0}^{2 v}\right)-B \sum_{v=0}^{\infty}\left(k_{2 v} r_{0}^{2 v}\right)\left[-\ln r_{0}+\sum_{v=1}^{\infty}\left(\frac{1}{2 v c_{2 v}} r_{0}^{-2 v}\right)\right]=1 . \tag{27}
\end{equation*}
$$

From the system of equations (25), (26) and (27) the coefficienta A and E in the equation (24) may be determined. They are equal reapectively toz

$$
\begin{equation*}
A=\frac{\tilde{N}_{1}}{\tilde{J}_{0} \tilde{N}_{1}-\tilde{J}_{1} \tilde{N}_{0}}, \quad B=\frac{\tilde{J}_{1}}{\tilde{J}_{0} \tilde{N}_{1}-\mathcal{J}_{1} \tilde{N}_{0}} \tag{28}
\end{equation*}
$$

where \tilde{N}_{1} is the aberrational Neuman function of first order equal to

$$
\begin{equation*}
\tilde{N}_{1}=\sum_{v=0}^{\infty}\left(2 v k_{2 v} r_{0}^{2 v-1}\right)\left[\ln r_{0}+\sum_{v=1}^{\infty}\left(\frac{r_{0}^{-2 v}}{2 v c_{2 v}}\right)\right]+\sum_{v=0}^{\infty}\left(k_{2 v} r^{2 v}\right)\left[\frac{1}{r_{0}}+\sum_{v=1}^{\infty}\left(\frac{r_{0}^{-2 v-1}}{2 v c_{2 v}}\right)\right] . \tag{28~s}
\end{equation*}
$$

\tilde{J}_{1} denotes the aberrational Bessel Punction of firat order
$\tilde{J}_{1}=\sum_{v=1}^{\infty}\left(2 k_{2 v} x^{2 n-1}\right)$.
\tilde{N}_{0} and \tilde{j}_{0} denote, reapectively, the aberrational Meuman function and aberrational Bessel function both of zero order, i.e.

$$
\begin{align*}
& \tilde{N}_{0}=\sum_{v=0}^{\infty}\left(k_{2 v} r_{0}^{2 v}\right)\left[=\ln r_{0}+\sum_{v=1}^{\infty}\left(\frac{r_{0}^{-2 v}}{2 v c_{2 v}}\right)\right] \tag{280}\\
& \tilde{J}_{0}=\sum_{v=0}^{\infty}\left(k_{2 v} r_{0}^{2 v}\right) \tag{28d}
\end{align*}
$$

r_{0} is determined by the energy expression
$E=\int_{0}^{r_{0}} r d r+\int_{r_{0}}^{1} v_{0}^{2}(r) r d r$,
for $U_{0}(r)$ given by the equation (24) with the coefficients determined by the equation (28). Thus we obtain

$$
\begin{equation*}
E=\frac{1}{2} \frac{\frac{x_{3}}{J_{1}} \tilde{N}_{1}-\tilde{\mathbb{N}}_{1} \tilde{J}_{1}}{\tilde{J}_{0} \tilde{N}_{1}-\tilde{J}_{1} \tilde{N}_{0}}, \tag{30}
\end{equation*}
$$

where the constants $\tilde{\tilde{d}}_{1} ; \tilde{\mathbb{N}}_{1}$ are given by

$$
\begin{equation*}
\tilde{J}_{1}=\sum_{v=0}^{\infty}\left(2 v k_{2 v^{2}}\right) \tag{30a}
\end{equation*}
$$

and respectively

$$
\begin{equation*}
\tilde{N}_{1}=\sum_{v=0}^{\infty}\left(2 v k_{2 v}\right) \sum_{v=1}^{\infty}\left(\frac{1}{-2 v c_{2 v}}\right)\left[1+\sum_{v=1}^{\infty}\left(\frac{1}{c_{2 v}}\right)\right] \sum_{v=0}^{\infty}\left(k_{2 v}\right) . \tag{30b}
\end{equation*}
$$

A generalized analytical form of the pupil function has been obtained for the optical systom with apherical aberration. In the case of low energy transmitted by the system this function is represented by the equation (19), while for the case of high energy passing through the system it is represented by a constant pupil function $U(r)=1$ within the interval $0 \leqslant r \leqslant r_{0}$, and by a function determined by the equation (24) with the coefficients given by the equation (28) within the interval $r_{0} \leqslant r \leqslant 1$.

In the far field case of an aberration-free system with $\sum_{\nu=1}^{8} b_{2 \nu} r^{2 v}$ there remains only $b_{2}=\lambda$ and the equation (17) takes the form

$$
\begin{equation*}
r^{2} U_{0}^{\prime \prime}(r)+r U_{0}^{\prime}(r)-U_{0}(r) \lambda=0 . \tag{31}
\end{equation*}
$$

Thus the following hap been obtaineds
i) For small values of energy the expression (reported earlior by Asakura) for an optimal pupil function minimizing the second moment in the interval $0 \leqslant r \leqslant 1$ has the form

$$
\begin{equation*}
U_{o}(r)=A \sum_{V=0}^{\infty} a_{k} r^{k}=A \sum_{V=0}^{\infty} \frac{(-1)^{k}}{k!}\left(\frac{\sqrt{-\lambda} r}{2}\right)^{2 k}=\omega_{0}(\sqrt{-\lambda} r) \tag{32}
\end{equation*}
$$

From the condition $U_{0}(1)=0$ the Legendre constant is evaluated, while from the condition for energy conservation the constant A is estimated to be

$$
\begin{equation*}
A=\sqrt{\frac{2 E}{J_{1}\left(p_{1}\right)}} \tag{32a}
\end{equation*}
$$

Thus, within the interval $0 \leqslant r \leqslant 1$ the erergy changes within the limits

$$
\begin{equation*}
0 \leqslant E<\frac{1}{2} J_{1}^{2}\left(p_{1}\right) \tag{33}
\end{equation*}
$$

ii) For high onergies, i.e., for

$$
\begin{equation*}
\frac{1}{2} J_{1}^{2}\left(p_{1}\right) \leqslant E<\frac{1}{2} \tag{34}
\end{equation*}
$$

the pupil function is constant $U_{0}(r)=1$ within the interval $0 \leqslant r \leqslant r_{0}$.
For $r_{Q} \leqslant r \leqslant 1$ the pupil function is defined by the Bessel and Neuman functions of zero order

$$
\begin{equation*}
U_{0}(r)=A J_{0}(\sqrt{\lambda} r)-B N_{0}(\sqrt{\lambda} r) \tag{35}
\end{equation*}
$$

while the coefficients A and B are expressed by the Bessel and Neuman functions of zero and first orders:

$$
\begin{align*}
& A=\frac{N_{1}\left(\sqrt{\lambda} r_{0}\right)}{J_{0}\left(\sqrt{\lambda} r_{0}\right) N_{1}\left(\sqrt{\lambda} r_{0}\right)-J_{1}\left(\sqrt{\lambda} r_{0}\right) N_{0}\left(\sqrt{\lambda} r_{0}\right)}, \tag{35a}\\
& B=\frac{J_{1}\left(\sqrt{\lambda} r_{0}\right)}{J_{0}\left(\sqrt{\lambda} r_{0}\right) N_{1}\left(\sqrt{\lambda} r_{0}\right)-J_{1}\left(\sqrt{\lambda} r_{0}\right) N_{0}\left(\sqrt{\lambda} r_{0}\right)}, \tag{35b}
\end{align*}
$$

is estimated from the equations (25) and (26), which for this case give the condition

$$
\begin{equation*}
J_{0}(\sqrt{\lambda}) N_{1}\left(\sqrt{\lambda} r_{0}\right)-J_{1}\left(\sqrt{\lambda} r_{0}\right) N_{0}(\sqrt{\lambda})=0 \tag{36}
\end{equation*}
$$

r_{0} should be evaluated from the expression for energy

$$
\begin{equation*}
I E=\frac{1}{2} \frac{J_{1}(\sqrt{\lambda}) M_{1}\left(\sqrt{\lambda} r_{0}\right)-J_{1}\left(\sqrt{\lambda} r_{0}\right) M_{1}(\nu \sqrt{\lambda})}{J_{0}\left(\sqrt{\lambda} r_{0}\right) M_{8}\left(\sqrt{\lambda} r_{0}\right)-J_{1}\left(\sqrt{\lambda} r_{0}\right) N_{0}\left(\sqrt{\lambda} r_{0}\right)} . \tag{37}
\end{equation*}
$$

References

[1] JACQUINOT Po, HOIZER-DOSSIER Bo, Progrose in Optice, Vo2. 3, Fd, by E. Wolf, NorthHolland Publ. Co., Amsterdam 1964, P. 31.
[2] LIMEBURG R.K., Mathematical Theory of Optics, University of California Press, California 1964, p. 353.
[3] ASAKURA T., UNAO To, J. Optioa (Paris) 2 (1977), 89.
[4] GOODMAI I.F., Introduction to Fouriar Optice, McGraw-Hill Book Co., San Francisco 1968.
[5] COURAMF Re, HILBERT D., Methods of Mathematical Phyaice, Vol. I, Interscience Publishers, New York 1953, p. 132.

[^0]: This work was carriod on under the Research Project M.R. I.5.

