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Resonance structure of the M ie scattering

Chatar Singh , R. N. Singh

Physics Department, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016, India.

A simple way to define resonance in the Mie scattering and a rule to check the resonance positions 
are suggested.

The problem of scattering of a plane monochromatic wave by a spherical particle has 
been solved by Mie and Debye [1]. The dimensionless normalized scattering, extinction 
and absorption efficiencies, radiation pressure and specific turbidity are given by the fol
lowing expressions, respectively:
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where an and bn denote the complex partial wave amplitudes; x  is the particle size par
ameter which equals the ratio of circumstance of the sphere to the light wavelength. Theore
tical works [2, 3] on complex partial wave amplitudes and experimental studies on op
tical levitation [4j, variation of radiation pressure [5] with wavelength of light and particle 
size parameter, and turbidity [6, 7] show that ripple structure in physical quantities given 
by eq. (1) is caused by the resonance in partial wave amplitudes an and bn. For example, 
it has been shown [2, 3] that for dielectric spheres there is a resonance in the partial wave 
amplitude and in scattering efficiency if *

x  >  1 and n ~  x  (2)

and

Re a„ =  1, Re bn =  1, 

Iman =  0, Imbn =  0.

(3a)

(3b)
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However, it has been observed that: (i) there is no unambiguous way to define res
onance [2], and that (ii) the fact that lman or lmbn changes its sign at the centre of a res
onance peak is a convenient check to find all the resonances [4]. The purpose of this paper 
is (i) to define resonance structure unambiguously without rereference to the resonance 
in partial wave amplitude, and (ii) to show that the fact that Im a„ or Im b„ changes its sign 
is not a sufficient condition to find all the resdhances.

Scattering efficiency <9sca, as given by eq. (la), may also be written as
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where q" and q„ represent the contribution of n-th electric and magnetic multipoles [1] 
and Cem and Cmm represent the contribution of all the electric and magnetic multipoles, 
respectively.

A program for computer ICL 2960 was written to calculate qne, q„, Re a„, Re bn, Im an> 
Im bn, Cem, Cmm and Qsca. x was varied by 0.05 steps and real refractive index was chosen 
to be 1.5.

Figures la  and lb  show the variation of q" and qnm with particle size parameter x, for 
n =  1 to 15. Fig. 2 shows the variation of Cem, Cmm and Qsca with x. It is difficult to show 
all Re an, Re bn, Im an and Im bn curves against x, because of their large number, and full 
qne and qnm curves because of their overlapping. Therefore, some important observations 
from these graphs have been produced in the tabular form. Tables 1 and 2 show the po
sitions of peaks in qne and qnm curves (the values of x  for which these quantities are maxi
mal) and the values of x, where Re an and Re bn are unity and Im an and Im bn are zero. 
From these figures and tables, the following observations can be made.

Firs·;, for a given n, both que and qnm curves show a number of peaks for discrete values 
of x such that

<xT2 ... ,

and

x[n <  x?  <  x f  ... ,

where x? is the position of i-th peak in q" curve and x "  is the position of i-th peak in the q„ 
curve.

Second, since <2sca is a superposition of all q” and q%, curves we may expect all the peaks 
in q” and qnm curves to show themselves in the Qsca curve. However, it may be seen from 
Figs. 1 and 2 that not all the peaks in qne and qnm appear in Qsca curves. There are two ty
pes of peaks in q" and qnm curves which do not do so.

First type comprises the peaks for low values of n. For example, first peaks of q] to 
q* curves corresponding to x =  3.30, 4.00, 4.70, 5.45, 6.15, 6.90 and 7.65 are not seen 
even in Cem curve. Similarly, first peaks in q^ and q„ curve corresponding to x =  2.20 
and 2.95, though easily identifiable in Cmm curve, are not so in Qsc& curve. Thus, for real 
refractive index 1.5, in the Qsca curve, whatever peaks up to x =  8.000 are only due to 
magnetic multipoles.
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Fig. 1. a. Variation of q” with particle size parameter x, refractive index -  1.5. b. Variation of qnm with par
ticle size parameter x, refractive index -  1.5
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Fig. 2

Fig. 2. Variation of Cem, Cmm and Qsca with particle size parameter x, refractive index -  1.5;-------- Qsca>
' ' ' Onffl) Cem
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Table 1. Positions of peaks in an and q£ curves against x

n
Value of x when Re an — l  and Im

an =  0

Value of x when a peak 
q" curves

occurs in

I-st
position

II-nd
postion

Ш-rd
position

I-st
position

II-nd
position

IH-rd
position

1 3.15 9.40 15.70 — — —

2 3.75 9.95 16.20 3.30 8.75 15.10
3 4.30 9.50 15.70 4.00 9.35 15.65
4 4.85 10.05 16.30 4.70 10.00 16.25
5 5.50 10.65 16.25 5.45 9.60 15.75
6 6.25 11.00 16.35 6.15 10.25 16.30
7 6.90 11.15 16.95 6.90 10.80 16.90
8 7.65 11.55 17.45 7.65 11.40 16.55
9 8.40 12.10 17.30 8.40 12.00 17.10

10 9.20 12.70 17.70 9.20 12.55 17.65
11 9.95 13.25 18.30 9.95 13.15 18.20
12 10.70 13.85 18.85 10.70 13.75 18.80
13 11.45 14.45 19.35 11.45 14.35 19.20
14 12.20 15.05 19.80 12.20 15.05 19.55
15 12.95 15.75 20.20 12.95 15.75 20.00

Table 2. Positions of peaks in bn and ̂ cu rves against x

n
Values of x  when Re bn =

bn = o
= 1 and Im Value of x when a peak occurs in qnm 

curves

I-st
position

П-nd
position

m-rd
position

I-st
position

H-nd
position

Ш-rd
position

1 3.75 9.90 16.10 2.20 8.75 15.10
2 3.25 9.45 15.70 2.95 9.35 15.65
3 3.75 10.05 16.30 3.65 8.70 15.10
4 4.45 10.50 15.75 4.40 9.35 15.65
5 5.15 10.05 16.35 5.15 10.00 16.30
6 5.90 10.70 ' 16.95 5.85 10.65 15.75
7 6.60 11.40 16.40 6.60 11.35 16.30
8 7.35 12.05 16.95 7.35 12.00 16.95
9 8.10 12.70 17.65 8.10 11.30 17.60

10 8.85 13.05 18.30 8.85 11.95 17.00
11 9.60 12.70 18.60 9.60 12.60 17.65
12 10.35 13.30 18.30 10.35 13.30 18.25
13 11.10 14.00 18.90 11.10 14.00 18.85
14 11.85 14.70 19.56 11.85 14.70 19.60
15 12.60 15.45 20.30

--------#----------
12.60 15.45

Second type includes the second and higher order peaks in qne and qnm curves which 
do not appear in QSCSL curve. The reason why these peaks are missing in the 0 sca curve 
is that their widths (or full width at half maximum) are relatively very large, so that a super
position of such peaks contributes to smoothly varying background in the Q^  curve. 
Having made these observations, all the peaks in q" and qnm curve may be called as res
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onance peaks, irrespective of whether or not they show themselves in the curve. Be
sides, the resonance peaks in the q" or qnm curve corresponding to yf[ or x", respectively, 
may be called first order resonances. Similarly, the resonance peaks in the q" or qnm curve 
corresponding to x^ or jcJ , respectively, may be called second order resonance. This may 
be generalized to define higher order resonances. If we define the resonance in this way, 
it is physically meaningful too. For example, x \  means the lowest value of the particle 
size parameter, where the third electric multipole will scatter the incident radiation more 
strongly. Similarly, x \  represents the next higher value of x  for which the third electric 
multipole will again more strongly scatter the light.

It is interesting to note from the tables that first zero positions of Im an and Im bn for 
low n do not coincide with the first resonance positions in q" and qnm curves. This differ
ence, however, diminishes as n decreases. This leads to the conclusion that the conditions 
given by eqs. (3a) and (3b) may be used to check the resonance positions only when the con
dition given by eq. (2) is satisfied.

Thus, for x >  1, the condition (3b) implies the change of sign of Im a„ or Im bn through 
the centre of the resonance position. Figures 3a and 3b show the plots of q™, and Re bl0 
and Im b10 against x. It may be seen from these figures that Im b10 =  0 for x  — 8.85, 
11.45 and 13.05. There is a resonance peak in the qx„ curve for x  =  8.85 and 11.95 but 
no resonance peak occurs for x  =  11.45, either in the partial wave amplitude or in q^0 
curve. In fact, from such graphs it may be seen that between any two consecutive res-
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onance positions in qne or qnm curve there is at least one value of x  for which Im an or Im bn 
becomes zero and for which there is no resonance. It may be seen from the tables that 
the second resonance positions in partial wave amplitude and q* or g* curves coincide 
only when n and x  are much larger than 1.

Thus, to check the resonance positions, the condition (3b) alone is not a sufficient 
condition, though it becomes the necessary one for large values of n and x. A careful 
examination of Figs. 3a and 3b show that as x  increases, Im an changes its sign at res
onance positions from the positive value to the negative one. Also, this is a necessary and suf
ficient condition which unites both the conditions given by the eqs. (3a) and (3b). Because 
the only effect of a complex refractive index is to reduce the heights of the resonance peaks 
[2], this may be used, as a rule, both for real and complex refractive indices. Since the res
onance positions in Qsca, Qext, Qabs, Qpr and r/c depend only on a„ and b„, as seen from

Fig. 3. a. Variation of q™ with particle size parameter x, refractive index -  1.5, b. Variation of Re bl0 and 
Im bio with particle size parameter x, refractive index -  1 .5 ,------------- Re biQ, ---------- Im bi0
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eqs. (1), the above discussion is expected to be valid for resonance structure in all 
these physical quantities.

This work is a part of research work on resonance structure in Mie scattering, going 
on in Physical Department, Indian Institute of Technology, Delhi, India.
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Резонансная структура в дисперсии Ми

Предложен простой способ определения резонансов в дисперсии Ми, а также приведено 
правило проверки положения резонансов.


