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Apodization by a set of slits in one- and two-dimensional 
optical systems*

A nna  Mag ie ra
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50-370 Wroclaw, Poland.

In the paper [1] the influence of selected amplitude apodizers on the resolving 
power of a two-point image was analysed. The critical values of two-point reso
lution distance were determined when using the Rayleigh criterion. In this 
paper the internity distributions of slits image obtained by using apodizers in an 
incoherent optical system are analysed as a supplement to the previous consi
derations.

A stationary and linear optical systems with incoherent illuminator may 
be described as a convolution of intensity distribution I(x) in the object with 
an intensity point-spread function S(x) of the optical system

oo
I(x') =  J  I(x) S(x'—x)dx. (1)

—  OO

The relation between the point spread function S(x, y) and the pupil func
tion T (£ , r/) is given by the squared modulus of the two-dimensional Fourier 
transform. This relation may be simplified to the squared of the one dimensional 
Fourier transform in the case of a one-dimensional system

I oo

S (X') = |  J d i (2 )

* This work was carried on under the Research Project M.R. 1.5.
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and to the squared modulus of the Hankel transform in the case of rotational 
symmetry of the system

8(r')
CO

J  z w 0( - y ^ )  ede

For the amplitude apodizers of the type 
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(o | f| > a ’ 

i ( l  +  l 2 )  | f | < «
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the intensity point-spread functions take the forms [2]: 

— for the slit pupil 
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— for the circular pupil

™
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(4)

(5)

(5a)

In view of Eq. (1) the image intensity distribution for an incoherently 
illuminated slit-object of width 2b takes the forms:

— in the one-dimensional system
x'+b

I ( x ' ) = I 0 J  S2(x')dx'
x'—b

(6)
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where: x' =  (kX'a)If — normed image coordinate (the aperture a was normed 
to 1 at the edge), 8  -  the point spread function of an apodizer 

— in the two-dimensional system
r'+b

I(rr) =  I 0 f  S2(r')dr'. (7)
r'—b

The numerical results concerning the intensity distribution in the slit 
image depending on the type of amplitude apodization are shown in Figs, la -d  
and 4a-d for one-dimensional and two-dimensional systems, respectively, the 
respective slit width 2b being equal to 1, 2, 3 and 6. In Figs, le-h  the intensity 
distributions in the image of a slit of the widths: 2b =  1, 2, 3, 6 are shown for 
apodizers I, II, III in the one-dimensional system (the intensities being normed 
to the value 1 at the slit centre), while in Figs. 4e-h -  those for the two-dimen
sional system.

For the object consisting of two slits, equal in width their spacing being 
equal to the width, described by the function

m
0 \x\ <  b
I 0 0 <  \x\ <  3b 
0 \x\ >  3b

( 8 )

the intensity distribution in the image is equal to:
— for one-dimensional case

x'+Z b x'+b
I (x ’ ) =  I 0 /  S2(x')dx' —10 /  82(x')dx’ , (9)

* '—36 x ’ -b

— for two-dimensional case
r'+Zb r'+b

I (r') =  I 0 f  S2( r ' )d r ' - I0 f  82(r')dr'.
r'—Zb r'—b

(10 )

In the Figs. 2a-d the intensity distributions in the image of two slits for 
2b — 1, 2, 3 and 6 are shown for one-dimensional system and apodization I, H, 
III, for the two-dimensional system being given in Figs. 5a-d. The corresponding
ly normalized intensity distributions for the one-dimensional system are 
shown in Figs. 2c-h for one-dimensional system and in Figs. 5e-h -  for two- 
dimensional system.

The light intensity distribution in the image of three-slit object described 
by the function

I 0 \x\ <  b
0 0 <  \x\ <  3b
I 0 3b <  ja;] <  5b 
0 \x\ >  5b

I { x )  = (11 )
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Pig. 1. The light intensity distribution in the image of a slit of the width: a. 26 =  1, b. 2b =  2, c. 26 =  3, d. 26 =  6 
in one-dimensional system. Normed intensity distribution (light intensity in the slit middle being equal to 1) in
the slit image of the width: e. 26 =  1, f. 26 =  2, g. 26 =  3, h. 26 =  6. Apodization: I(---------------), I I ( — . — . — .), 3
I I I ( -------------)
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i > I

Fig. 2. The light intensity distribution in the 
image of two slits of widths and spacings 
equal, respectively, to: a. 26 =  1, b. 26 =  2, 
c. 26 =  3, d. 26 =  6 in one-dimensional system. 
Normed intensity distribution in the image 
of two slits of widths and spacings equal, 
respectively, to: e. 26 =  1, f. 26 =  2, g. 26 =  3, 

x' h. 26 =  6, in one-dimensional cases10
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Pig. 5. The light intensity distribution in the 
imago of two slits of widths and spaeings 
equal, respectively, to: a. 26 =  1, b. 26 =  2, 
c. 26 = 3 ,  d. 26 =  6 in two-dimensional 
system. Normed intensity distribution in 
the image of two slits of width and spaeings 
equal, respectively, to : e. 26 =  1, f. 26 =  2, 
g. 26 =  3, h. 26 =  6 in two-dimensional 
systems
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is equal:
— f o r  o n e - d i m e n s i o n a l  s y s t e m

x'+Sb x'+Zb x '+ b

I ( x ' )  =  I 0 J 82( x ' ) d x ’  —10 j  82( x ' ) d x - \ - I 0 J  S 2( x ’ ) d x ' ,  (12)
x’-ib  s'—36 x'—b

— f o r  t w o - d i m e n s i o n a l  s y s t e m

r'+Sb r'+3b r’+b
I(r ') =  -To J  8 2( r ' ) d r ’ - I 0 f  82( r ’ ) d r '  — I 0 }  S 2( r ' ) d r ' .  (13)

r '—5b r '—Zb r '—b

The light intensity distributions in the image of three slits of 26 =  1, 2, 3, 6 
for the one-dimensional system with apodization I, II, III are shown in Figs. 
3a-d, while those for the two-dimensional case are presented in Figs. 6a-d. 
Correspondingly normalized intensity distributions for the one-dimensional 
system are given in Figs. 3e-h and for the two-dimensional system -  in Figs. 6e-h.

From the results obtained it follows that for 26 =  1 the image of a single 
slit (Figs, la, 4a) is identical with the spread function (the object is undistin- 
guishable). For 26 =  2 the image of a single slit (Figs, lb , 4b) and the images 
of two slits (Figs. 2b, 5b) and three slits (Figs. 3b, 6b) are comparable with the 
results obtained for the point, two point, and three-point objects [1]. For 26 =  3 
the images are already distinguishable but the intensity between them is not 
equal to zero. For an apodizing filter 31 and 2b =  3, in the one-dimensional 
system the slit is recognizable (the two-point Rayleigh distance for this apodizer 
amounts to 2.8). For the two-dimensional system the limiting Rayleigh distance 
is 3.5. For 26 =  6 the shapes of images are recognizable, while from Figs. Id, h, 
2d, h, 3d, h, 4d, h, 5d, h it follows that the image is best recognizable for an 
apodizer of type H. From the earlier analysis [1] it follows that the apodization 
of this type improves the resolution. The apodizer of type III behaves opposi
tely. When analysing the graphs in Figs. 2b-d, 3b-d, 5b-d, 6b-d the contrast 
C =  (imax-Jmin)/(imax +  lmin) maY t>e determined, depending on spatial 
frequencies (a>) in the object. In particular, for a one-dimensional system we 
obtain:

to =  1.57 CO =  1.005 co =  0.52

0(1-x) <  0(l)
0(o.5(i4-x2)) >  0(i)

C(l-x) <  C(!)
C(0.5(l+X2)) >  Cj

C(l-x) 0(1) 
0(O.5(l+a:2)) <  0(1)

while for two-dimensional system:

to =  1.57 CO =  1.005 co =  0.52

0 (i-x2) ^  C(i) 
C(0.5(l + X2)) >  C(1)

0 (i-x2) <  C(i) 
C(0.5(l+cc2)) C(i)

0(1 - x 2) >  0(1)
0(0.5(1+X2)) <  0(1)

Translated by Ireneusz Wilk
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If the aperture is antisymmetric, the Fourier transform is equal to doubled 
imaginary parts of the function

H®, V) =  - < * ( - » ,  - V), Ff ->2 Im {# > }. (4)

A modified amplitude distribution in the image plane may be obtained also 
by convolving the spatial frequency distribution of the object function F(oo, v) 
with the reciprocal function ( —i/nto)

Fm(o), v) — F(co, v )®(-i ftnco)) .  (5)
By definition the Hilbert transform of the function / (x) is a convolution of this 
function f(x)  with the reciprocal function ( —ll(wx))

1_ r f(x')dx 
n J  x ' —X

—  CO

=  /(® ) ®
C>r>

( 6 )

, t v
The Fourier transform ( —nx)~l is equal to i sgn co, i.e., it is equal to + i  

for positive co and to — i for negative co. The Hilbert transform is thus equiva
lent to a special filtering in which the amplitudes of spectral components remain 
unchanged, while their phases are shifted by n/2 in the positive or negative 
direction, in accordance with the sign of co.

If, for instance, the aperture function is f (x)  — &in(ax)I(nx) its Hilbert 
transform may be produced by:

i) calculating the Fourier transform of the function f (x) ,
ii) multiplying this transform by isgn. co,

iii) performing an inverse Fourier transform

isgnw

f  sin (ax ) 1
j f l u )  ^

r h  .
Flu.) 

1  <?
I »x

M
1 ·

■ ' L\

1 f  c o t (aw l “  1

M 1 « l -  -

(7)

The result obtained is also a Fourier transform of a rectangle aperture 
function (see Table) with halves of the aperture areas being in antiphase with 
respect to each other. It is a quadrature component of the analytic spatial fre
quency distribution of the rectangle aperture function multiplied by the Heavi
side function (see Table, example 1).

The amplitude distribution corresponding to the Hilbert transform of 
a rectangle function is presented in Fig. la, the corresponding intensity distri
bution being shown in Fig. lb .

The result obtained is a quadrature component of the spatial frequency 
distribution of the aperture.function, sine (ax), multiplied by the Heaviside 
function (Table, example 3).
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Semiapertures quadrature *
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Instytute of Physics, Technical University of Wroclaw, Wybrzeże Wyspiańskiego 27, 
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This paper contains the results obtained from the application of the Hilbert 
transforms to present the diffraction patterns of real semiapertures in analy
tical form with a quadrature component of the aperture function. The mention
ed results have been compared with those obtained for the apiplitude-apodiz- 
ed optical systems.

The Fourier transform of a full aperture described by a real transmittance 
function t(cc, y) is a real distribution of aperture in the Fourier plane F(co, v) [1]

The Fourier transform of a semiaperture ts(x, y) (i.e., the full aperture func 
tion t(x, y) multiplied by the Heaviside function H(x)., i.e., ts (x, y) =  t(x, y) 
E(x))  is an analytical function in the form

Here, the real and imaginary parts (the latter being the quadrature component) 
constitute a pair of Hilbert transforms. Thus, the Fraunhofer diffraction pattern 
generated by a real semiaperture ts (x, y), distributed along the line parallel 
to the normal to the edge of the aperture semiplane, has been represented in an 
analytic form in the image plane (comp. [2]). If  the aperture transmittance 
is described by a complex function, such that the parts of aperture are sym
metric, the Fourier transform is given by doubled real part of the analytic 
function

=  F{co,v) . (1 )

^ F {t{x, y) H{x)}  =  — [F(co, v) +  iF((o , ,»)'] (2 )

t{x,y) = t * ( —x, - y ) ,  F f ->2 R e{# > }. (3 )

* This work was carried on under the Research Project M.R. 1-5.


