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ANALYTICAL AND NUMERICAL SOLUTION OF EQUATIONS 
OF THE MATHEMATICAL MODEL 

OF TRADITIONAL RESERVOIR 

The results of the tests of traditional reservoirs have been completed with a method for determining 
the maximal level of sewage storage; this method has been based on the assumption that there is a time in 
the storage phase after which the nonlinear functions describing fluctuations of sewage flow in the reser-
voir reach their maximum. Identifying the computational dependence of the coordinates of this charac-
teristic point on the curve makes it possible to determine the essential design parameters for a given sew-
age inflow. 

DENOTATIONS 

AP — horizontal cross-sectional area of a flow chamber in a multichamber reservoir, m2; 
Fzr — reduced urban drainage basin area, ha; 
h — sewage fill height in a traditional reservoir calculated from the outflow channel axis, m; 
ho, h i , h2,.., hk  — assumed values of possible maximum fill for a designed reservoir in the range 3.6 > 

h;  >_ 0.8 m, but most commonly 3.0 >_ h;  > 1.2 m;  

hm — standard fill height of a traditional reservoir, m; 
hp — sewage fill height in overflow chamber measured from outflow channel axis to overflow 

edge position in dual chamber reservoir, m; 
H — sewage height in reservoir storage chamber measured from outflow channel axis, m; 
QA — sewage inflow to reservoir, dm3/s; 
QA(TM) — maximum sewage inflow to reservoir from design storm for sizing a conventional ZK res- 

ervoir at Td = TМ, dm3/s; 
QA(t) — instantaneous sewage flow in channel at time t, dm3/s; 
QO — sewage runoff from reservoir, variable over time, dm3/s; 
t — time, s;  
Те — time after which reservoir is completely filled, corresponding to maximal sewage storage 

in reservoir, s; 
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Тр — rainfall duration equal to inflow from the furthest basin point used to size the system by the 
method of maximal intensity, min; 

ТМ — design storm duration for sizing a traditional single-chamber reservoir, min; 
— required capacity of reservoir relieving hydraulic conditions determined by a given method, 

m3; 
V,, V, — capacities of a given reservoir chamber for analytically determined fill heights  Н, 1-і,,  m3; 
VK — capacity of single-chamber traditional reservoir, m3; 
c — frequency of storm design for the purpose of sizing the sewage system, years; 
C, D. K, u, uo, u;, u2  — constants of differential equations for describing sewage storage in traditional 

single-chamber reservoirs;  
В,  B1, B2, Cl, C2, Сб, C8 — constants óf differential equations for sewage storage in traditional res- 

ervoirs; 
— acceleration of gravity, m • s 2; 

H — mean annual rainfall, mm; 
n — exponent for formulae used to calculate design storm runoff to sewage system; 
o4., a,,, — correlation coefficients; 

- sewage flow reduction factor in reservoir, 13 = QO max • QA(Тр)-I  ; 
— factor for sewage runoff to outflow channel. 

1. INTRODUCTION 

Theoretical foundations that have been developed to describe sewage accumula-
tion in storage reservoirs reflect different levels of complexity of mathematical proce- 
dures. The analytical and numerical solutions of the equations that describe the filling 
and evacuation of sewage in traditional, single-chamber reservoirs have been pre-
sented in a number of publications [1]—[4]. 

Sewage flow balance in the overflow chamber during the filling phase is estab-
lished in a way similar to that of sewage accumulation in traditional reservoirs, but it 
is created as long as the sewage level does not exceed the height of the overflow bar-
rier. The overflow chamber controls sewage flow inside the chambers of multicham- 
ber reservoirs. The level of the sewage in this chamber determines the conditions of 
the outflow from the reservoir as well as the participation of various components in 
the system during the filling and evacuation of individual chambers in multichamber 
storage reservoirs. 

2. ANALYTICAL SOLUTION OF FLOW BALANCE EQUATIONS 

The analytical solution of differential flow balance equations for traditional reser-
voirs makes it possible to obtain a particular non-homogeneous equation representing 
the first range of variation in the sewage inflow when QA2 > QA1 and to solve gen-
eral equations (2) and (3) in the form of implicit functions [5]. Referring to the results 
of the test conducted so far, a general solution has been obtained for equation (1) that. 
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describes sewage flow balance during the first phase of filling the overflow chamber 
in a multichamber reservoir [5]: 

=  С1  • t — C2 • h °.5  for QA2 > QA1 (figure 3b) , (1) 
dt 

dh 
= Сб  — C2 • h ° 5  for QA2 = QA1 (figure Зс) , (2) 

dt 

dh 
= C8 — Cl • t — C2 • h° 5  for QA2 < QA1 (figure 3d) . (3) 

dt 

Equation (1) should be included among ordinary non-homogeneous first-order 
equations and it has been reduced to an equation of distinct variables [6], [7]. This 
equation allows a precise description of the filling levels in the overflow chamber of 
multichamber reservoirs for the initial condition h = 0 at t = 0 and t(0, Tpp) in the 

filling range of h <_ hp, where Tpp denotes the time it takes for the filling level in the 

chamber to reach h = hp. Equation (1) is solved by reducing it to simple fractions and 
by making some necessary transformations. The final form of the equation being 
solved is: 

dh 

~1гos — u  
и  

_ (Ј  0.5  - И0 )и0 • В  ,  (4) 

where: 
u =0.5[(C2 +4• Cl)05 —С2],UI =-0.5[(СZ +4• С1)0.5 +C2], 

C = QA (2  АР  Трт1, D = (2 g)05f  Ј2  (2 АР °5. 

Equation (4) has the form of an implicit function and is valid for the first 
range of inflow variation when QA2 > QA1 for the filling levels hp >_ h >_ 0, i.e., 
up to the edge of the highest level of the lowest overflow barrier in a multicham-
ber reservoir. It is possible to establish an integration constant B from the condi-
tion that should be fulfilled in order to obtain an extreme function value, while 
a necessary condition for the existence of the extreme value of the implicit func-
tion is as follows: 

F'(t) = 0 and F(h0-5, t) = O. 

Because of their complexity, the other differential flow balance equations that de-
scribe sewage accumulation in multichamber reservoirs have been solved numerically. 
The methods used for solving equations and sets of differential equations can be 
found in the mathematical library BLCKDQ [7]. Appropriate methods turned out to 
be extrapolation—interpolation procedures with error check [7], [8] combined at the 
beginning with the Picard method [6]. 
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3. METHOD FOR ESTABLISHING MAXIMUM SEWAGE FILL 
IN TRADITIONAL RESERVOIR 

In order to determine the coordinates of the point M, at which the function de-
scribing the storage capacity of the reservoir reaches the maximum filling level, we 
have to establish the extreme limits of the function, taking into account the complex-
ity of the inflow conditions. Sewage accumulation in the range of inflow variation 
when QA2 < QA1 is described by two different equations [1], [2], depending on an 
algebraic sign of the expression D2  — 4C. 

The coordinates of the point M1 correspond to the extreme value of function (5) 
when D2  — 4C > 0  
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and they can be determined from the condition that should be fulfilled in order to 
obtain the maximum extreme value of this function in the form of equations (6) and 
(7):  
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Similarly, the coordinates of the point M2 can be determined from the condition 
that should be fulfilled in order to obtain the maximum extreme value of function (8) 
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We arrive at these coordinates in the form of equations (9) and (10) after some 
transformations: 
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The constants B1 and 82 that appear in equations (5)—(10) can be determined from 
already developed equations [9], depending upon the character of the sewage inflow 

and the duration of rainfall after the filling levels ho , hó , ho have been reached for 

D2  — 4C > 0, and levels hir, hi , h;" for D2  — 4C < 0 at characteristic discrete ranges of 
the variation QA. 

4. DISCUSSION OF NUMERICAL SOLUTIONS 

Hydraulic models have been developed for multichamber reservoirs on the basis 
of the model designed for traditional reservoirs, in such a way as to permit theoretical 
experimentation and mathematical analysis of the characteristic filling and evacuation 
phases of sewage storage. These models have been solved numerically, using algo-
rithms and computational programs; an extremely large number of tasks have been 
defined and solved over a wide range of variation in model parameters. 

The results of the numerical solutions made it possible to conduct a complete 
analysis of the sewage accumulation process in reservoirs that relieve hydraulic con-
ditions. Against a background of additional detailed research on sewage accumulation 
in traditional reservoirs, we have highlighted the distinctive and specific character of 
this phenomenon in the proposed physical models of multichamber reservoirs for the 
adopted method of determining the variation in sewage flow into a reservoir. 

The resulting solutions have been evaluated on the basis of the analysis of the 
course of the process under examination. Theoretical importance of solutions ob-
tained which are considered as a novelty of our research has been emphasized. 

Theoretical bases and computational programs that have been developed make it 
possible to conduct a thorough examination of the dynamics of the changes in the 
filling stage in the chambers of traditional and multichamber reservoirs and to deter-
mine the curvilinear hydrograph of the outflow for any given function of sewage in-
flow ińto a reservoir. 

The proposed mathematical model of a storage reservoir in a stormwater drainage 
system [1] has been based on the method of extreme intensities being applied in the 
description of variation in the inflow of stormwater sewage into a reservoir. This 
model can be used for designing traditional reservoirs in a stormwater sewer system. 

Keeping in mind the limited utility of this model, a universal mathematical model 
of a traditional reservoir has been developed on the basis of a description of sewage 
inflow into a reservoir in the form of any given function being transformed into 

Те2 = 

U.5 

113 

(10) 
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a series of elementary linear functions. The computational program UNO makes it 
possible to investigate the process of sewage accumulation for any given shape of 
inflow hydrograph. 

The hydrograph of industrial sewage inflow given as a curvilinear function has 
been transformed into a series of linear functions (figure 1). In the twenty-four hour 
period being investigated, the function reaches three local maxima, two flow minima, 
and a region of zero inflow. Using the inflow hydrograph prepared and the computa-
tional program developed, it is possible to determine the dynamics of variation over 
time in sewage flow into a reservoir, as well as the curvilinear function of the outflow 
(figure 1). This function definitely determines the resulting maximum and minimum 
flows into a municipal wastewater system. The geometry of the reservoir can be se-
lected so as to ensure its complete evacuation at the most appropriate moment in the 
process of sewage storage (figure 1). 

Based on the results obtained due to solution of more than two hundred multicrite-
rial tasks, whose number greatly exceed the range encountered in practical applica-
tions, it has been proved that the design rainfall and the required reservoir geometry 
are directly dependent on the flow reduction factor (figure 2). The surface layer and 
the filling height affect the calculated capacity of a traditional reservoir for a given set 
of outflow conditions. 

Additional detailed research has made it possible to determine typical retention 
ranges, depending upon the value of the flow reduction factor, by examining the rela-
tionship between the changes in the intensity of flow into and the outflow from a ZK 
reservoir at different levels of reliability in reservoir operation (figure 3). Disregard-
ing the extreme case that occurs when sewage is stored with no outflow, i.e. QO = 0 

and P = 0, it is possible to distinguish three characteristic ranges of slow, medium, 
and rapid sewage accumulation, depending on the value of the coefficient $. A limit-
ing and characteristic moment is the termination of the storage process, which occurs 
when QO= QA(ТМ ) for/3= 1.0. 

Differentiation between the retention ranges occurs at [3 = 0.67. Then, regardless 
of the values of the model parameters, the standard time ТМ  is equal to Тр  and the 
time necessary for designing traditional reservoirs is the same as that necessary for 
designing sewage system cross-sections. Rapid sewage accumulation occurs within 
the range of 1.0 > $> 0.67, and design rainfalls last for a very short time at ТМ  < Тр  
and are very heavy. The range of medium sewage accumulation has been adopted for 

ТМ  > Тр  at the flow reduction of 0.67 > $> 0.50. The range of slow sewage retention 
for flow reduction of 0.50 > $> 0.0 involves a prolonged rainfall of low intensity at 
ТМ  > Тр. 
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5. CALCULATING THE APPROXIMATE INDIVIDUAL CAPACITY 
OF TRADITIONAL RESERVOIRS 

A comprehensive analysis (with the use of the program UNO) of the model pa-
rameters that characterize the sewage accumulation process in traditional reservoirs 
allows us to establish how the unit capacities that arё  necessary for the accumulation 
of excess sewage flowing from a reduced drainage basin Fzr = LO ha and design rain-
fall ТМ  depend on the value of the coefficient /3. 

Based on the analysis of the numerical solutions, quantitative relationships have 
been defined which makes it possible to calculate the approximate individual capacity 
of a traditional reservoir VКj(Fzrx, 5) for any given size of reduced drainage basin 
Fzr,- and for an assumed level of flow reduction upstream of the reservoir /3 

VK;(Fzrx,$)=FZгТ •FZгг 1  •V~(/3)=FZг  -1  •V~. (11) 

The capacity of a traditional reservoir can be defined as follows: 

VK = VK,(Fzrx, `3) • Fzr, . (12) 

The force value m = 1.145 has been adopted, and it is independent of the time of 
standard inflow Тр  for sizing the cross-sections of the sewage system. Thus the final 
equation of approximate capacity of a traditional reservoir takes the following form: 

VK = F.zrx.145 . v~ . (13) 

The capacity VK of a traditional reservoir can be calculated based on formula (13) 
and the table. The latter has been presented in a limited range for c = 2,  Н  = 600  nim,  
and n = 0.67. It is possible to extend considerably equation (13), considering the de-
sired effect of the parameters c, 1, and n, to the unit capacity. Then the values of the 
correlation coefficients  а  a»  and an  can be introduced and defined, hence formula 
(13) takes the following form: 

VK(Fzrx ,/3,с,Н,п)=Fzrx'д5  V  •а , а»  •ап : (14) 

This form of the formula allowing calculation of the required capacity of 
a traditional reservoir can have a practical value, since it reduces the complicated 
process of investigating sewage accumulation to a form in which the basic design 
parameters can be quickly determined. This form of calculation is useful when 
analyzing design variants and determining the economic effects of multichamber 
reservoirs in regulation, averaging, and control of sewage outflow in wastewater 
systems. 
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Table 

Traditional reservoir unitary capacities V~(/3) necessary for storing sewage from reduced basin 
Fzr, = 1.0 ha and qualified rainfall duration TM depending on flow reduction rate /3 

for t=2, H= 600 mm and n=0.67  

Д  
TM Vj  for 

Fzr = 1.0 ha 
Vj5 for 

Fzr = 5.0 ha 
Vjzo for 

Fzr = 20 ha 
Vj50  for 

Fzr = 50 ha 
V iоо  for 

Fzr = 100 ha 
V/500 for 

Fzr = 500 ha 

min m3/hа  
0.100 356.4 116.2 146.7 179.4 204.9 226.6 286.1 
0.125 319.5 93.4 117.9 144.2 164.7 182.1 230.0 
0.150 252.9 86.3 108.9 133.2 152.2 168.3 212.5 
0.175 200.7 78.6 99.2 121.4 138.6 153.3 193.5 
0.200 168.3 71.5 90.3 110.4 126.1 139.4 176.1 
0.250 123.7 62.3 78.7 96.2 109.8 121.5 153.4 
0.300 99.0 55.3 69.8 85.4 97.5 107.8 136.2 
0.350 82.3 48.6 61.4 75.0 85.7 94.8 119.7 
0.400 69.7 43.1 54.4 66.5 76.0 84.0 106.1 
0.450 61.2 37.5 47.4 57.9 66.1 73.1 92.3 
0.500 55.3 32.7 41.3 50.5 57.7 63.8 80.5 
0.550 50.0 28.8 36.4 44.5 50.8 56.1 70.9 
0.600 47.7 25.1 31.7 38.7 44.3 48.9 61.8 
0.650 45.0 21.0 26.5 32.4 37.0 40.9 51.7 
0.700 43.2 17.5 22.1 27.0 30.8 34.1 43.1 
0.800 42.2 10.6 13.4 16.4 18.7 20.7 26.8 
0.900 41.4 4.8 6.1 7.4 8.5 9.4 11.8 
1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

6. CONCLUSIONS 

The method proposed makes it possible to determine in an analytical manner the 
values of the coordinates of the point on a curve that represents the variations in fill-
ing levels in a single-chamber reservoir at the moment when the reservoir becomes 
completely filled. 

This method should be applied in practice, since it makes it possible to calculate 
the standard height of the filling level in the reservoir and the time it takes to fill 
the reservoir for any given rainfall duration. This calculation can practically be 
made for any value of the parameters that characterize the drainage basin, sewage 
system, geometry of the reservoir, and hydraulic capacity of the outflow channel. 
The method can be adapted for any sewage inflow hydrograph that is composed of 
a series of elementary linear functions representing variation in the sewage flow 
into a reservoir. 
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ANALITYCZNE I NUMERYCZNE ROZWI4ZANIE RÓWNAŃ  
MODELI MATEMATYCZNYCH ZBIORNIKA KLASYCZNEGO 

Mając na uwadze ograniczony zakres stosowania modelu matematycznego, opartego na metodzie 
granicznych natężeń  w określaniu zmienności dopływu ścieków deszczowych do zbiornika, opracowano 
uniwersalny model matematyczny funkcjonowania zbiornika klasycznego. Podstawą  modelu jest opis 
dopływu ścieków do zbiornika w formie dowolnej funkcji, przekształcanej w ciąg elementarnych funkcji 
liniowych. Jego praktyczne wykorzystanie z utyciem opracowanego programu obliczeniowego sprowa-
dza się  do określenia dynamiki zmian w zbiorniku klasycznym napełnionym ściekami w czasie oraz 
krzywoliniowej funkcji odpływu ze zbiornika. Geometrię  zbiornika można dobrać  tak, aby zapewnić  jego 
całkowite opróżnienie w zadanym momencie retencjonowania ścieków. Wyniki badań  teoretycznych 
pozwoliły także wyznaczyć  charakterystyczne obszary retencji w zależności od poziomu redukcji prze-
plywu. 


