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Pupil effect in nonrotation-symmetric gradient-index 
material*
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The effect of the transmittance function in nonrotation-symmetric gradient-index 
material due to a circular pupil is studied and this material is characterized by its ef
fective transmittance function.

1. Introduction

Kecently, fibres and lenses with rotation-symmetric gradient-index profiles 
have begun to be used in imaging systems, and these imaging capabilities of 
graded-index materials hold considerable promise for a wide variety of applica
tion [1-6]. In earlier papers [7,8], the authors have studied imaging and transform
ing in nonsymmetric gradient-index material and obtained image and transform 
conditions. In the recent paper [9] the authors have also studied pupil effect 
in symmetric gradient-index material. In this paper, we study the effect on 
the transmittance function in nonsymmetric gradient-index material, when 
a circular aperture in situated in the input plane. We assume that the refrac
tive index is given by [8]:

n*(a3,y ,2) = n\(z) =  n20h1{z)x +  h2{z)y-g1t(z)(x2+ y2) (1)
where n0 is the index at the central axis, and nlt g, hl and h2 are arbitrary func
tions of z.

2. Pupil effect

Let us consider an inhomogeneous medium with the refractive index given 
by Eq. (1), limited to planes z = 0 and z = d, surrounded by a vacuum and with 
a circular aperture of radius r0 on the input plane 2 = 0  (Fig. 1). When this
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Fig. 1. Pupil effect in nonro- 
tation-symetric gradient-index 
material

medium is illuminated from the left by a monochromatic plane 'wave of unit 
amplitude and wavelength A, the complex amplitude distribution at a plane 
z >  0 within the nonrotation-symmetric GBIN material can be expressed as [8]

t------  z
a ( g , z )  =  1 / V"·- exp (tfc f  n ^ z ' j d z ^ e x p ( i k n o l n  ( z ) [ g - y  ( r )]r n1(g) \ J ! \ V

i T ť  2a r°+y/'L̂T̂TDx f I Q0, T)Q0dQ0dd,
n ” a n

(2)

where

t(z) = «o
r dz'

j  «1 (*') 1

and 0 is Green’s function defined as

G =
ikn0 exp 11

I. kn0
2 n H 1 (z) \ 2 H 1 (r)

- 2[g-ii(r)]g0eos 9}j,

{¿■1(r)[e- }?(T)P+if2(T)e?

with

e-y(z) = (x-r)i(T), y - r j2(r)), Qo = V«o + 2/?,

»?(*) =  (Vi(r),V 2 (r)), L(r) =v l+v l  + K'i1i + KVi-gl(Vi + VÎ), 

=  9 o[r{z)] ~g(z),

and Hia(r) are two independent solutions of the équation 

-^1,2(T) 9o(T)ïïi,i{r) ~  O»

(3)

(4)

(5)

( 6 ) 

(7)

(8)
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with the initial conditions

¿MO) = F 2(0) = 0 , 6,(0) = F 2(0) = 1 (9)
where the point denotes the dérivative with respect to r, and the Wronskian 
is equal to 1, that is

= 1 .  (10)
In a similar way, r]l2(r) are two solutions of the following equation:

h0 /
??i ,2(t) + ^ ( t)??i|2(t) -  * '^T , (11)

with the initial conditions:

*71,2(0) — */1,2(0) — 0 . (12)
Prom Eqs. (8), (9), (11) and (12), the functions r\ and H are related by

*7i,a(r) = j  f  [H1(T)E2(T')-Hl(r')H2(x)]hl2(r')dr. 
0

(13)

On the other hand, this medium is characterized by its transmittance function 
t(g, d) at the output plane z = d and this function has been defined without 
aperture by [8]:

t(e, d) =
/J n* ' r r , T(d) 1\

exp |* * |jni(z’) d z ' + £(r')drjjV ni(d) F 2[r(d)]

xexp t - i  i/2[r(d)])
\ m 2[r{d)i /
( 7inatlo\T(d)'\ T
1 w ^ m F 2[r(d)] ]■). (U)

Equation (14) indicates that the transmittance function may be regarded as 
first-order approximation to a spherical wave. The wave is converging toward 
(or diverging from) a point which does not lie on the z axis. The location of 
this point is given by [10]:

r ■ r •H ’ï [ T (d )]
=  i / i [ r ( d ) ]  >7i [*(<*)] . , 

H2[r ( d ) ]
(15a)

y4 - i j 2[r(d)'\-ri2['T(d)'] . ,
E 2[t (d)]

(15b)

H2[r ( d ) ]
(15c)zi ~  .V
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where and y{ are the off-axis coordinates of the focus, and the z coordinate 
is the distance from the focus to the output plane z = d; when 0, the focus 
is situated to the left of the plane z = d; when z,· < 0, the focus is situated to the 
right of the plane z = d, as shown in Fig. 2. From Eqs. (15) it follows that the 
coordinates of the focus depend on the output plane location.

Fig. 2. Transmittance function

If we introduce dimensionless variables

r0
(16a)

r , „  kn0H2[T(z)] 
“[,(,)1“  *,[„*>] r-

(16b)

(16c)

“ [rW1 = r" H.ltW), 
®[t (*)] e-j?[r(2)]

(16d)

Equation (2) may be written as

a{g,z) =  ----s t t ! exp (ik f nt(z')dz')
[e’ ’ V %(*) H2[t(z)] y \ J ' 1

xexp [t(«)][g -^][r(«)] + yjX[r'(«)]dT'|j (17)

/. *[»(*)]&![t(*)] re-i)[r(«)]-]2\ r r . _ . .. . 
XH ’ ÜH,[.(.)] 1 r.

(< · « · » ' ) *

where the integration has been performed on 0 and J0 is the zero-order Bessel 
function of the first kind.
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The earlier diffraction integral may be evaluated in terms of the Lommel 
functions [11, 12]:

■ «)]

x

% /  fh
aie,»)  = < ( g > s ) +  JJ , ,  y  +

-“ 2 J r  nAz)

exp ^(s'Jdte'jexp \ikn0 jw [t(z)] [g ->?[t(s)]] + y  Ji[r'(«)]dr'|| (18a)

___ /. «[*(»)] |#i[*(*)] T g-»?[t(«)]
M

for 0 ~»?[t(z)] < ř*ff,[r(z)],

X

a{Q,z) =  -  g  ^(g)j r) + tP'l(tł, p)]exp(ifc j*

xexp(ifcn0 jif [r(z)] (g -?? [r(«)]] +  y  J i[r '(2 )]d r j |

exp v — 2—  \^7 Ï^ )Ï L— ^— J +1l r  fore- , W.)] > rA[TW]|

(18b)

Z71>2 and F01 being the Lommel functions:

v~i / u  \ n+2s
^»(«»«) = ^  (-!) ·(—) Jn+ 2 .(«), (19a)

2*~i / v \”+2s
( - 1 ) ' -  J,+„(®). (19b)

s=o ' " '
Setting in Eqs. (18) z = d, we obtain the complex amplitude distribution at 

the output plane. Consequently, when q — < r0ff2, i.e., when the point of 
observation is in the geometrically illuminated region of the output plane, 
a(g,d) may be regarded as the sum of the transmittance function and another 
term due to diffractional effects of the entrance pupil. In a similar way, when 
q — t]>  r0Ht, i.e., when the point of observation lies in the geometrical shadow, 
a(g, d) may be regarded as due to diffractional effects; that is, luminous points 
appear within the geometrical shadow.

For optical wavelengths (k sufficiently large) kr0 > 1, so ®[r(d)] > 1 when 
points of observation in the output plane are situated not far from the point 
»?[r(d)]. For this reason, a good approximation to the Lommel functions is 
given by [13]

V0(u,v) cos(tf — jr/4)
1 + (W«)2 ’

(20a)
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Vx(u, v) c* "j, / 2 vju cos(v —3 /̂4), (20b)V 7IV 1 + (»/«)*

U^U, v) CZL j, / 2 ujv cos (v —3tt/4), (20c)
T 71V 1 + (ujv)2

V2(u, v) ~  j (ujv)2 cos (v + 37iji). (20d)
Y JIV 1 + (u/v)2

The complex amplitude distribution at these points can be approximated by

a(ç, d) ~  t(g, d) + o|-^=j, for q- t) < r0H2,

a(Q, d) ~  0 + 0 for g — rj
\Vv I

Q-Tj> V0H2

(21a)

(21b)

where 0 (1/Vv) denotes the terms whose power is higher than or equal to ljVv.
From Eqs. (21) it follows that when Q—rj> r0H2, a(g, d)->0 no slower than 

IjVkg, while when q —r) < r 0H2, a(g, d)-+t(g, d) as expected. Thus, when an 
entrance pupil of radious r0 is situated on the plane z = 0 we have on plane 
z = d an exit pupil of radius r given by the boundary of the geometrical shadow

u =  v, 

that is
( 2 2 )

r = /vff2[>(d)], (23)

and centred at the point (ĵ C7^)]» ^C7^)]) as shown in Fig. 1. Note that the 
presence of linear terms in the refractive index indicates that the exit pupil 
is off-axis.

From Eq. (23) it follows that the radius of the exit pupil depends on the 
output plane location. In other words, we characterize now the inhomogeneous 
medium by its effective transmittance function defined as

te(Q, d) = t{Q, d) cyl ( e -q l> W ] \ 
\ 2r0H2[r(d)] J (24)

where cyl is the cylinder function centred at the point rj [r(d)] and 2raE 2[r(d)] 
is the diameter of the exit pupil [14].

For points in the neighborhood of the point »?[*(<?)], ®[r(d)] <̂ 1, and the 
Vn function up to second-order terms in v can be approximated by:

v2
VQ(u, v) ~  cos----hO(v4) (25a)

2 u

V1(u, v) ~  sin---- |-0(fl4
2 u ), (25b)
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and taking into account Eqs. (18a) and (10), the complex amplitude distribu
tion is given by

a(g, d) ~  t(g, d) <1 — exp

and the intensity can be written as

I (q, d) ~  I0sinca| <* ^ d- |  (27)

where

0 m \[x (ip)]ni(zp)

is the intensity at u = v =0, that is, for points on the Fourier planes z = zp, 
where p is an integer, which coincide with the centre of the spectrum, since 
jff2 (zp) = 0 is the Fourier transform condition [8].

For points q = rj[T(z)], v[r(z)] = 0, and the two Vn functions entering Eq. 
(18a) reduce to

70(«,0)=1, F1(*,0)=0. (29)
Hence the complex amplitude distribution is given by

«(>?[*(*)],*) = <(«?[T(g)]>g) jl-exp (i Û ZR )|. (30)

Equation (30) is similar to Eq. (26) apart from terms in 0(u4). Thus the inten
sity I  = [a |2 at these points is characterized exactly by the function 
sine2 (w[t (z)]/4), and the zeros of intensity are given by

2 m?. ,
JT.I>(*)] = --- (m = ±1» ± 2» ···>)· (31)n0r0

On the other hand, for image planes z = zp, H1 [r (zp)] =  0, so that H2[t(zp)] — 0 
[8]. Hence the intensity distribution becomes

Ke, V -  We, ».)l‘°y1( ^ , [ TT(f f ]) “ We, %M· (32>

where the fact that cyl is a binary function of unit step (equal either to unity 
or to zero) has been used to replace cyl2 by cyl.

From Equation (32) it follows that the effective transmittance function 
defined by Eq. (24) is valid and correct at every paraxial image plane. For 
Fourier planes z = Sp, H2[r(zp)] = 0  or u [t (zp)] = 0, and taking into account 
Eqs. (16a), (16c) and (17), the intensity reduces to

j  / 2J 1(o[r(gp)]) y 
° \  «[*(*,)] I

(33)
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where J x is the first-order Bessel function of the first kind. Eq. (33) is just the 
Airy pattern centred at the point 17 [t («*)]. Thus the first minimum (intensity 
zero) in the Fourier planes is given by

Q ~ VIX**)] = V(x-r,, [t(5*)])2 + (y-^[T(5p)])J = 0.61 — -[y p-] . (34)
no~ a

3. Conclusions

In this paper, we study the effect on the transmittance function in nonrotation- 
symmetric gradient-index material due to a circular pupil, and we characterize 
this material by its effective transmittance function defined as the transmit
tance function without pupil multiplied by the cylinder function. We also de
termine the intensity in image and transform planes. Therefore the complex 
amplitude distributions in the geometrically illuminated region and in the 
geometrical shadow have been evaluated in terms of the Lommel functions.

This work was supported by the Comisión Asesora de Investigación Científica y Técnica, 
Ministerio de Educación y Ciencia, Spain.
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