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The paper deals with the properties of H ilbert transform s realized by  application, 
of coherent optical processor and an incoherent optoelectronic system . The properties 
of transform s performed optically have been compared with the ideal transform  by 
using three kinds of criteria : i) comparison of realizable kernels of transform ation 
w ith the ideal one, ii) comparison of Fourier transform s of each transform ation, and 
iii) comparison of the transform s obtained. The usability of coherent and incoherent 
kind of H ilbert transform ation in special cases has been shown.

1 . Introduction

Hilbert transformation is a useful instrument in those cases where quanti
ties are described by complex amplitude signal. For example, in physical 
optics and in description of the current rush [1] it is convenient to handle 
with complex, so-called analytical signal instead of real physical quantities. 
An ingenious set-up which is able to realize Hilbert transformation of current 
function was invented by Gabor (see paper [2]). Conception of the two-dimension
al Hilbert transformation realization, by using the coherent optical proces
sor, is presented by Soroko [3]. The possibility of using the Hilbert transfor
mations in one-dimensional optical system for achieving the effect of super 
resolution is also mentioned by Papoulis [4].

Before starting our considerations on optical possibilities of the Hilbert 
transformation realization, let us briefly present the properties of this trans
formation that will be useful in further part of this paper.

Hilbert transform g(x') of complex function f (x )  is determined by integral 
transformation

(1)

* This work was carried on under th e  Research P ro ject M .R . 1.5.
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The result of Hilbert transformation is identical with that obtained from the 
convolution of the function f(x') with the function

k(x') =  — l/nx', (2)

that is why theorems concerning convolution may be applied to the analysis 
of the properties of Hilbert transform.

If, in particular, by F(co'), G(co') and K(co') we denote the Fourier trans
forms (FT) of the respective functions f(x'), g(x') and k(x'), then by virtue 
of the convolution theorem of FT [1] we obtain

g(x') =  f(x')*k(x'),G(w') =F(co')E(a>'). (3)

Based on the formula (2) we can show that

K(co') =  — ¿/7rsgn(co'). (4)

Thus Eq. (3) may be written in a form

G(oj') = —i/7rsgn(a)')F(co'). (3)

From the relation (5) applying an inverse FT to the function G(a>') we obtain 
the following, alternate to the formula (1), form of the Hilbert transformation 
of the function f(x'):

g(x’) =  -il7i&r- 1{sgn(a>')&r[f(x')~]} (6)

where &  and -  symbols of FT and inverse FT, respectively. In the sequel 
we shall analyse the possibilities of analogue realizations of Hilbert transfor
mation in incoherent and coherent processors, according to the formulae (1) 
and (6), respectively.

2 . Realization o f  Hilbert transformation  
in an incoherent processor

The application of an incoherent space-variant optical processor [5] is justi
fied in cases, where the signal which is to be processed appears in a form of 
a one-dimensional distribution of incoherent light, or it may be easily trans
formed to such a form (e.g., variable electric runs).

Let f(x) denote a one-dimensional incoherent optical signal. Its Hilbert 
transform g(x') is determined from the formula (1)

9 ( F )
— oo

f(x)
(x — x')

dx. (7)
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In the sequel the result of the above mathematical operation will be called 
an ideal Hilbert transform of the function f(x). As far as an optical realization 
of formula (7) is concerned, the version of incoherent processor (shown in paper 
[5]) performing convolution of the function of one variable could be applied. 
A direct application of this system to the realization of an ideal Hilbert trans
formations is, however, not possible due to three following reasons:

i) kernel of transformation possesses positive and negative parts,
ii) values of transformation kernel in the vicinity of zero tend to infinity,
iii) integration limits are infinite.
The two first conditions cannot be satisfied due to the limitation of the 

transmittance of photographic material, on which the distribution of trans
formation kernel must be registered in the interval (0,1). The third condition

DETECTION
PLANE

Fig . 1. Schem e of a two-channel incoherent optical processor for realization of H ilbert tran s
form ation: 8(y)—model of an input function, K +, K_ — positive and negative parts of the 
kernel, respectively, g+, g_ -  positive and negative parts of the result, respectively, CL1, 
CL2 -  cylindrical lenses, f'c -  focal length of the cylindrical lenses
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is not realizable because of the limited transversal dimensions of the optical 
system and the filter. First limitation may be omitted by constructing a two- 
channel system in which the positive and negative parts of transformation 
are performed parallelly and the difference between the results of these ope
rations are measured on the exit (Fig. 1). The choice of a kernel, resembling 
in shape the ideal one, but with values limited to the interval ( —1,1) gives 
us possibility of neglecting the second limitation and obtaining the results 
approximating the ideal ones.

Four curves representing filters used for the transformations, and com
pared in further part of the paper with an ideal kernel, are shown in Fig. 2.

Fig . 2. Transm ittances an ideal and real 
filters

These curves are described by functions:

a) k^x) =  —1/10®,

b) k2(x) =  -l/ 10® [l-n (5® )],
( 8 )

c) k3(x) =  —1/10®[1 — n(5®)] — n(5®)sgn(®),

d) kA(x) =  —1/10® [1 —n(5®)] —10n(5®)®.

Properties of the filters were examined by calculating numerically the 
transform shapes of the functions: [~\(x/2), ®2p(®/2), (1 — ®2)n(®/2) obtained 
with the application of those filters. Results are presented in Figs. 3a, b,c. 
In each of these figures the curve corresponding to the filter ks(x), (c) is nearest 
to the ideal transform. The above examples show that the filter, the transmit-
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tance of which differs from the value of an ideal kernel for \x\ <  0.1, well re
produces the shape of Hilbert transformation of functions, the details of which 
have the dimension orders of unity.

Another way of estimation for real filters is an analytical comparison of 
special frequencies in real and ideal transforms. Performing a real convolution 
of the function f(x) with each of the functions of the formula (8) we obtain 
an ideal g^x') and real g2{x'), g3(x') and g^x') transforms, respectively. Accord
ing to the numeration used in formula (8), we shall denote the Fourier trans
forms of the kernels of those transformations by Z^eo'),..., Z 4(ti>'), and the 
Fourier transforms of the results, by O^co'), . . . ,  6r4(ct/). Analogously to the 
estimation of the imaging systems based on the optical transfer function of 
frequencies, we shall compare the real transforms, assuming as a standard 
the frequency spectrum in ideal transforms. Thus the estimation will be based 
on the fuction

F N<(°>) =  7iy ^ , t = 2, 3, 4.  (9)

By virtue of the theorem on the Fourier transform of the convolution

G^o/) = F ^ Z ^ o / ), i =  1, 2, 3, 4 (10)

where F(a>') is the Fourier transform of the object f(x), and substituting (10) 
into (9) we get

KAa>')
FN<{co') =  ~ K ^ J ) ’ i = 2 ’ 3> 4· (11)

Thus we have obtained a criterion which is independent of the transformed 
function f{x) and depends solely on the shape of the filter Jc{(x) to which the 
function Z f(ci>') is uniquely related. The shapes of functions F N are shown 
in Fig. 4. This criterion is also the one to show that the transformation realized

Fig. 4. Normalized frequency spectrum in  real transform s to ideal spectrum, ijv (co ') ratio
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by the filter (c) is closest to the ideal transformation, and that high fidelity 
of the transform can be obtained for the objects the frequencies of which are 
lower than 1.

When the integration is limited by the boundaries of the filter to x( —a, a) 
the values of F N(oS) decrease tending to zero within the interval |eo'| <  1/a. 
Thus, the condition iii) may be satisfied approximately by ensuring the inte
gration limits a Ss 1. In order to verify the realizability of Hilbert transfor
mation in a noncoherent processor realizing the convolution, the functions 
n(#/2), xi r\(x/2) and (1 — x2)n(®/2) were recorded experimentally. On this 
purpose a photographic filter has been produced (Appendix), which corresponds 
to the case (c), the best one of those examined analytically. This filter was 
introduced into a mask plane in a two-channel noncoherent processor (Fig. 1). 
Light intensity distribution was measured in each channel by two, mechanically 
coupled, detectors, the signal of which was transferred on the “plus” and 
“minus” inputs of the differential amplifier. The results recorded by an X -Y  
plotter, and presented in Fig. 5, are similar to those obtained numerically. 
During the measurements the two-channel processor applied to the realization 
of Hilbert transformation showed a high sensitivity to the deviations from 
an ideal adjustment of the system. This sensitivity is due to the operation 
principle of a two-channel system, where a small value of the Hilbert transform 
is a difference between two high values of positive and negative parts.

Fig. 5. Results of measurements: for p(a;/2) -  a, 
for ( l —* 8) n(*/2)-b, and for x2f](x/2) -  c
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3 . Hilbert transform ation in imaging system

Hilbert transformation according to the formula (6) may be realized when 
using a classic optical coherent processor (realizing two Fourier transformations 
one after another) with a phase plate in the plane of a spatial filter. I t  may 
be also realized in a one-dimensional imaging system with a pupil function 
TH(i) — sgn(f). In practice, the pupil area is limited by the aperture function 
P(|). For an arbitrary imaging system such a normalization of coordinates 
in the planes of object, pupil and image is possible that P (f) = 0  for |f| >  1, 
the linear magnification /? being equal to unity and propagations of light signal 
from the object plane to the pupil and from the pupil to the image being describ
ed by simple and reverse Fourier transformations (in far-field approximation).

When the coordinates are chosen in this way the amplitude of the complex 
signal A'(x') of a coherent object A (x) has the distribution

+  oo

A ’(x') =  J A (x) h(x'— x)dx (11)
— CM

where h is the Point Spread Function (PSF) depending on the shape of pupil 
function P(f)

+ oo
h(x) =  j  T(f)exp[ — (12)

— oo

For a pupil function described by P (f)

&'(*) = * - ,{P ( f ) } .  (13a)

The image distribution has the form

A'(x') =  A(x)*h'(x). (13b)

Let us notice that the introduction of a phase filter of the transmittance TH( |) 
into the pupil plane is equivalent to the multiplication of the function P(£) 
by the function sgn(£). The “antiphase” pupil function T”(g) obtained in 
this way determined a new form of point spread function h”

h"(x) = * F{T"{t)} =  ^ F{P( £)}*#>{sgn(f)} =  -  — h\x)*~  = i& H{h'(x)}.
71 X

(14)

Point spread function of the system with an antiphase pupil is thus a Hilbert 
transform of the point spread function with a pupil function P (l).

Thus, using the properties of commutation of the convolution operation, 
it may be also shown that the amplitude A"(x) in a coherent image of the 
object A (*), obtained by application of an antiphase system is a Hilbert trans
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form of the amplitude distribution A'{x') in the system without a phase shift

A ”(x) =  a \x)*1i”(x) =  — i/nA(x)*[h'(x)*llx'\

=  —i ¡7% [A (x)*Ti'(x)]*llx =i&H{A'{x)}.
(15)

By applying the Hilbert transformation the relations describing the ampli
tude distribution in the image of a coherent object for a system with a semiap
erture or with the so-called Faucault knife edge [3] may be simplified to such 
a one in which the function P  (f) is multiplied by the Heaviside function H( f ). In 
this case it may be shown that the point spread function hlti{x) has the form

*i/i(*) =  y  *'(®)+ - j  (16a)

which results from the linearity of Fourier transform and from the relation

1 1
H(£) =  y  + y sg n (f) . (16b)

Similarly, the amplitude distribution All2(x) (in a system with a semiaperture) 
in the image of the object A(x) obtained from the formula (15) and based
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on linearity of Fourier transform, is described by the formula

A ,t (x) +  (17)

The relations (16) and (17) may enable the determination of Fourier transforms 
of some types of functions. Some examples are given in the Table.
, By introducing a phase shift in the aperture the PSF of the system is trans
formed into its Hilbert transform, but -  as shown on the example of the object

F ig . 6. Im ages of slits in the system  with a pure (1) and antiphase (2) apertures. Edge 
of the slit is signed by broken vertical line
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Pig. 7. Im ages of a  pair of slits in  the system with a pure (1) and antiphase (2) apertures 
Edges of the slits are signed by  broken vertical line

Pig. 8. Transfer function of antiphase aperture (1) contrasted to the pure aperture O TP
( 2 )
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in forms of a single slit (Fig. 6a-d) and a pair of slits (Fig. 7) -  such an operation 
does not improve the imaging properties of the system (decrease of contrast 
and resolution). This conclusion is confirmed by the course of contrast transfer 
function for an antiphase aperture (Fig. 8).

The fact that phase objects may be visualized with the help of a system 
with an antiphase aperture, is its advantage. If the amplitude distribution 
on the input has a phase character, i.e.,

A(x) =  A0vx.-pi<p(x) (18)

then, assuming <p(x) <  1, the function A(x) may be written in the following 
form

A{x) A0|l + ̂ ( ® ) - ^ ^ J .  (19a)

The Hilbert transform of this function has the form

&H{A(x)} =  i^ a {<p(x)-^· &H{<p*(x)}. (19b)

According to the formula (15) the amplitude in the image in antiphase system 
has the distribution

A"( x)  =  i ^ H {A(x) *h' (A)}  =  A 0 | - . F H {< p (a ? )}* ft'( ir) +  y  t  f a 1 (or)} (a?) j .

(20)

Light intensity distribution is

' (*))*]· (21)

Thus, the light distribution in the image contains information about the 
object phase.

»  =  A l[ (F B {<p(x)}*h\x))* +  ^-{<p*(x)}*h

4 . Conclusions

The approximate Hilbert transformation is realizable both in coherent and 
noncoherent optical processors. Incoherent processor may be helpful, for instance 
in analysis of electric transients in non-steady states [1]. Its advantage is 
that the exit signal which has the shape of Hilbert transform may be detected 
directly. In a coherent system only the square of exit signal modulus may

5 — Optica Appllcata XIV/4/84
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be recorded, hence, a great uncertainty as to the shape of the transform it
self. The application of an antiphase system to visualization of phase object 
gives the effect described by the formula (21). It is however, worse than that 
obtained in the method of phase contrast.

Appendix

Photographic recording of the Hilbert transform kernel

The kernel of Hilbert transform is a function of two variables:

B(at, x') =  1 · (Al)
7t ( X  — X  )

In the system of coordinates (SS') turned by —tt/4 we get, however,

(x -x ')  =  /2 8 '  (A2)

and the two-dimensional function H  depends practically on one variable

H(SS’) =  1//2toS\ (A3)

Due to the limitation of intensity transform to the interval t e (0,1) the 
experiment is realized in a two-channel system, applying in each channel an 
adequately oriented positive part of the function (A3) with constraints of 
values corresponding to the case (c) discussed in this paper. Thus the transmit
tance distribution of the positive part of the kernel should be the following

tH+(88')

0 S' <  0
1 0 <  S' <  0.1
0.1

S' >  0.1
/2 tcS'

(A4)

The transmittance distribution dependent on one variable may be recorded 
photographically, applying the system with a cylindrie lenses. To this end 
a non-transparent screen with the aperture of h( —S') width is placed in object 
plane. After illuminating the screen with a scattered light, the intensity dis
tribution obtained in image plane of the cylindrie lens is

I { 8 ’) ~ h ( —S'), at the magnification of /? =  —1.
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The negative photographic process introduces some deformations described 
by the function r characterizing the photographic material and processing 
t = t(Q), where t -  slide transmittance, Q -  illumination. The effect of function 
r may be included by introducing suitable corrections to h (-S ')  and main
taining constant conditions of the slide recording. In our experiment OEWO 
NP20 films were used, their characteristic t was first tested and then a pattern 
of h (-S ')  made. By employing this pattern in the system with a cylindric 
lens a filter corresponding to the function (A4) has been recorded. Such a filter, 
when turned by jr/4, was placed in the channel realizing the positive part of 
the transform, and by —3/4:t in the negative channel (see Fig. 1 -  mask plane).

A parallel application of both the filter and two oppositely polarized de
tectors results in reconstruction of the variant (c) of the Hilbert transform 
kernel.
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Оптические методы реализации трансформации Гильберта

Анализированы свойства трансформации Гильберта, реализуемой аналогово в когерентной опти
ческой системе, а также в некогерентном оптоэлектронном процессоре. Произведенные оптичес
кие трансформации сопоставлены с идеальной трансформацией при применении трех критериев: 
сравнения формы ядра реализуемой трансформации с ядром идеальной трансформации, сравне
ния функции передачи частоты для обоих трансформаций, сравнения форм получаемых трансфор
мант. Указано, кроме того, на полезность трансформаций Гильберта, реализуемых или когерен
тно, иля некогерентно, в зависимости от применения.


