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Computer modelling of three-dimensional Fresnel-diffraction 
pattern at circular, rectangular and square apertures
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1. Introduction

Fresnel diffraction of various apertures has been a subject of interest in laser 
physics, in optics and in the antenna theory. Circular, rectangular, square 
apertures and Fresnel number play an important role in these related pheno
mena. This aspect has been dealt by many authors with different parameters 
of interest. But only few authors have tried to study the effect of diffraction 
dependence on Fresnel number. In  the past few years Fresnel number played 
an important role in defining the region of the diffraction field. For example, 
three regions can be defined as follows (Fig. 1):
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Fig. 1. Block diagram indicating the different regions and the boundaries of diffracted 
field for circular aperture * 7

* The author is on long leave at the following address: Ashoo Industries Ltd., Fari- 
dabad-121001, India.
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i) Near field region: region with the Fresnel number much greater than 
unity, i.e.,

ii) Fresnel region: this is the region where the Fresnel number is of the order 
of unity, i.e., F  '--i 3.

iii) Fraunhoffer region: in this region the Fresnel number is much smal
ler than unity, i.e., F  < 1.

Therefore it is of great importance to know the structure of the Fresnel 
diffraction produced by these apertures, the Fresnel number being a parameter. 
This communication describes analytically the generation of such 3D-intensity 
patterns. The algorithm used here involves the exact solution of the Fresnel- 
Kirchhoff diffraction integral in terms of the Fresnel-integrals and Lommel 
functions and is much faster and more accurate than the direct numerical 
solution of the wave equation [1].

2. Analysis

Considering the first order approximation, the field diffracted by an aperture 
in the Fresnel region can be approximated by [2, 3]

’  + 0 °  i  ‘ k  \

UP = - ~ e x p (jkz) j j  UAexp {(x1—x0)I 2 + (y1—y0)2}jdx1dy1 (1)
-  OQ

where: UA = UA(cq , ^ )  is the field in the aperture plane,
z =  \zx — z0\ is the distance between the two planes, 
ixu  îfi)î (xoi Vo) represent the coordinate system in the plane of the 

aperture and in the plane of observation, respec
tively,

k = 2njX (?. -  the wavelength of radiation).
For simplicity we have assumed a uniform illumination of the apertures, 

i.e., UA = 1

2 .1 .  C irc u la r  a p e r tu r e

Writing the integral (1) for a circular aperture of radius B  as

lTciIC = ^  exp (jkz) j  J  exp {(:r1-3 ;0)2-Hyi-2/o)2}} dx1dy1, (2 )
circ

and transforming it into polar coordinate system [3] its solution can he writ
ten in terms of normalized intensity in the following form [4]:

I  = U-^eirc <circ ^ c irc

i l  l u < r  " I  ^ 2 u = v  : 1 3 Iu >h  lu>v !u = 0 *
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Fig. 2. Normalized intensity in arbitrary units vs. normalized coordinates (g0/B) along 
*- and y-axes for circular aperture with respective Fresnel numbers: F =  1 (a), F  = 2 (b), 
F =  3 (3), F = 4 (d), F = 5 (e), i 1 =  6 (f), i 1 =  7 (g) and F = 8 (li)
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Here Z1? Z2 and Z3, Z4 are the intensities corresponding to the four different 
boundaries of the diffraction field, as shown in Fig. 1:

— for geometrical shadow

I i  =  F\(u,  v) + TJ22(u , v),

— for boundary of geometrical shadow and illuminated region

I i  = -7- [ l - 2 J 0(it)cos(M)+Jj(M)J,
4

— for illuminated region

— for optical axis 

Z4 =  sin2(w/4)

where u =  2nF, v = 2tzF ( q0IB), q0 =  + (F =  B i jL · -  Fresnel number),
H,, U2 and F 0, Vi are the Lommel functions.

Figures 2a-h show the computer-generated 3D-Fresnel diffraction pat
tern of the normalized intensity vs. normalized coordinate (q0IF) for circular 
aperture with Fresnel number F  = 1 ,2 ,3 , . . . ,  respectively. I t  is observed 
from these diagrams that the intensity becomes maximum for odd Fresnel 
number, and minimum for even Fresnel number. I t  is seen, moreover, tha t 
the number of peaks is equal to the Fresnel number. These results agree very 
well with the results of Campillo [1], who generated the 2D-curve numerically. 
The latter procedure requires more computational time than that employed 
here which uses exact solution, consumes less computational time for generating 
3-D intensity patterns and gives more information.

2 . 2 .  R e c t a n g u l a r  a p e r tu r e

Applying the above integral (1) to a rectangular aperture we get

This integral can be solved. Its solution for the normalized intensity is given 
by G o o d m a n ; [5]

(3)

rect

(4)
X {[G(m) ~  C'(’h )]2 +  tS(Va) -  $(>?i)]2}
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Fig. 3. Normalized intensity in arbitrary units vs. normalized coordinates (x0/a, y jh ) along 
x- and y -axes for: square aperture rvitb respective Fresnel numbers: F — 1 (a), F =  2 (b), 
F  —. 3 (c), F =  4 (d), and for rectangular aperture with respective Fresnel numbers: 
F, =  1, F2 =  3 (e), Fx = 2, F 2 =  3 (f), Fj =  2, F2 =  4 (g), Fx =  3, F2 = 4 (b)
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m  =  - ✓ 2 î ’2( i  +  -^ J ,  Vt =  )/2F2( l - ~ ) ,

C and S  are the Fresnel integrals, (Ft = a2jXz, F 2 — b2l?.z being Fresnel numbers 
for rectangular aperture).

This is the general relation to calculate the intensity distribution of the 
rectangular aperture. For x0 — y0 — 0, bja = 0.5 and F, = 1,2,  20, ... the
same Eq. (4) can be used for determining the intensity distribution along the 
optical axis.

2 .3 .  S q u a re  a p e r tu r e

This is a special case of a rectangular aperture for a =  b, i.e., F 1 — F t =  F ,

ŝquare ! 1 rccfc 1 ^^r (X =  b.

Figures 3a-h show a computer-generated 3D-plots of the normalized intensity 
vs. the normalized coordinates (x0/a, y0/b) along the two axes of the square 
and rectangular apertures for different values of the Fresnel numbers. I t  is 
interesting to observe that the number of peaks is equal to the product of the 
Fresnel numbers F 1 and F 2. Furthermore, the position of the peak can be 
ascertained with the element (p , q), wherep  —1, 2 , F 1 and q =  1, 2 , . . . ,  F 2,
respectively. Besides, alternative minima and maxima are found in the centre 
of the square of rectangular pattern for an even or odd product of F 1 and F 2.

3. Conclusion

We have presented the results which demonstrate the systematic effect of 
the Fresnel number on the 3D-Fresnel diffraction patterns at circular, rec
tangular and square apertures. These results show that for circular aperture, 
the number of maxima is equal to the Fresnel number, whereas for rectangular 
or square apertures, these peaks are represented through the matrix elements 
of the two Fresnel numbers.
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