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We review the theoretical work done to date on the lateral mode structure of broad area lasers. 
Emphasis is placed on the differences between the two main approaches to this problem. We also 
suggest areas of further investigations.

1. Introduction

There are many semiconductor laser applications, such as solid-state laser pumps or 
free-space optical communications, that require high output power in stable 
diffraction-limited single-lobed beams. However, increasing the output power of 
conventional single-stripe semiconductor lasers by increasing the pump level, is 
limited by the catastrophic optical damage of the resonator facets. In addition, 
increase in the lasing volume may lead to degradation in the spatial coherence across 
the output facet In particular, increasing the width of the injection stripe results in 
appearance of higher-order lateral modes or even causes filamentation, giving rise to 
unpredictable incoherent near-field patterns and far-field divergencies that are 
several times the diffraction limit Both near- and far-field patterns can be also 
unstable with respect to injected current density. Many schemes have been employed 
in an attempt to overcome these deficiencies. One of the widely investigated concepts 
is the fabrication of monolithic layer arrays, including passively phase-locked arrays 
of antiguided lasers, that are capable of attaining diffraction-limited powers in the 
watt range [1]. On the other hand, a number of alternative techniques have been 
proposed, that incorporate simple broad-area lasers (stripe width of 50 pm or more) 
with cavities modified to favour the oscillation of their fundamental lateral modes. 
These include laser structures with unstable resonators [2], tilted mirrors [3], 
periodic gain sections [4], or modal reflectors [5].

Recent experiments have revealed that very uniform broad area lasers can 
produce stable nearly diffraction-limited single-lobed far-fields without additional
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mode control [6] — [8]. These results would suggest that those devices operated in 
their fundamental lateral modes, but the corresponding near-field patterns, consis
ting of a flat-topped distribution with a periodic ripple superimposed on in, imply 
lateral modes of higher order or even superposition of them. This behaviour was 
explained by Mehuys et al [9] in terms of self-stabilized nonlinear modes. Using an 
asymptotic analysis of the nonlinear complex Helmholtz equation they have found 
that broad area lasers driven to high injection levels are dominated by the nonlinear 
effects. However, CHANG-HASNAIN et al [10] have reported similar near-field pat
terns that upon spectral resolution proved to be superpositioned of several longitud
inal modes with different lateral profiles typical for linear modes of a regular gain- 
guided laser. It has to be pointed out that optical power levels in their devices could 
be insufficient to set the nonlinear effects predicted by Mehuys et al Nevertheless, the 
theoretical results provided by Mehuys et al., supplemented by recently developed 
analysis of LANG et al [11], do not predict such behaviour of broad area lasers. It is 
expected that this behaviour could be described in terms of the simple, linear 
waveguiding theory of gain-guided lasers provided by Thompson in 1972 [12].

The aim of this paper is to discuss the basic concepts used to analyse the lateral 
mode structure of broad area lasers, with emphasis on the assumptions used and the 
corresponding limits. In particular, we compare the main approaches developed by 
Thompson and by Mehuys et al We also summarize progress to date and identify 
areas of further investigations.

2. Theory of lateral modes
Figure 1 shows a typical broad area laser with representative optical modes in both 
transverse and lateral direction. The transverse mode is an index-guided mode of 
a multilayer system (single-quantum well separate-confinement heterostructure in 
this particular case), whereas the lateral modes are related to the gain and index 
profiles introduced by the steady-state carrier distribution and the temperature 
distribution within the current stripe. In general, to analyse the lateral modes we 
have to solve the nonlinear Helmholtz equation of the form

V2E(x,y,z)+£(x,y,z,|E|2)k§E(x,y,z) =  0, (1)

with appropriate boundary conditions. c(x,y,z,|£|2) is the complex dielectric 
constant Note that, especially in the high power regime, one has to include the light 
intensity dependence of the carrier density and the resulting changes in the dielectric 
constant In regions of high light intensity, the local gain is depressed by the 
depletion of the injected carrier density. The free carrier effect and the band-to-band 
interaction lead to a local increase in dielectric constant, which further confines the 
light and increases the local light intensity. Hence, in order to solve Eq. (1), we need 
to know an analytical form of the dielectric constant in dependence on optical field.

2.1. First approach
The first attempt to establish a physical basis for self-focusing phenomena in broad
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Lateral mode

Fig. 1. Broad area laser with coordinate system used throughout the paper (a). Fundamental index-guided 
transverse mode of the laser heterostructure (b). Lateral mode profile with gain and effective index 
distribution (c) [9]

area lasers has been made by T h o m pso n  [12]. He noticed that dielectric constant is 
affected by the injected carriers by virtue of the absorption/photon-energy charac
teristics. Using the Kramers—Kroenig approach and analytical expressions for gain 
in terms of injected carrier density and photon flux, he calculated the change in the 
real part of the dielectric constant

e' =  —Co
l + */*o  J

(2)

where J  is the injected current density, c'0 is the value of the perturbation at zero 
photon flux {<P =  0) and at threshold current density $ 0 is the photon flux 
required to double incremental recombination rate, q =  1—(14-(/cT/£0)2)_1/2 
(k — Boltzmann’s constant, T  — temperature, and E0 — band tail half depth). By 
replacing the photon flux with the electromagnetic potential $/<Z>0 =  \A/A0\2 and 
assuming that the transverse field profile in the transverse direction y is determined 
mainly by the heterostructure geometry and that it does not depend on the lateral 
dimension x, Thompson obtained the following characteristic waveguide equation:
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(J/Jd,-^Xl+|rlI)|^/X0p) 1
l+ ( l + |r |2)MM„|2 j (3)

where k0 is the free-space vector, ^ is the propagation constant, and r is the ratio of 
the forward to reflected wave at any point in the direction of propagation z, that is 
assumed to be a slowly varying function. With a normalized field amplitude a and 
the normalized lateral position coordinate (  Eq. (3) becomes

d2a f 2\a\2
<fi2 + (l + |a/ao|2 ■}a =  0 (4)

where the normalized quantities are given by

i 2 =  ^ - k lc + k l+ k K J /J J e 'o lx 1, (5)
a2 =  k tiJ /J ^ -q V o iA /A o f/I t f -k le + k l+ k ttJ /J J e 'o ] ,  (6)
a§ =  kl(J/Jih -  ?K /2  VI* -  /c$£+fc,2+ k20(J/J + |r|2). (7)

In order to solve Eq. (3), one needs to define appropriate boundary conditions. In 
Thomson’s approach, solutions involve no transverse propagation of energy and can 
be terminated in planes perpendicular to the x-axis on each side of the structure by 
interfaces to semi-infinite passive lossless regions of appropriate dielectric constant 
The matching conditions at the boundary for the laser mode in the x direction for 
a small step in the dielectric constant is that the parallel y components of the field 
and their gradients with respect to x should be continuous.

Typical solutions of Equation (4) are shown in Figure 2. For the small signal case 
(a0 »  IX a set of solutions can be found that differ only in transverse scale for 
different signal amplitudes. With increasing the current the sequence of solutions

Fig. 2. Normalized field amplitude a vs. normalized transverse position coordinate { [12]
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runs from a plane wave with no transverse variation (curve 1) through a range of 
periodic solutions with steadily increasing modulation depth (curves 2 and 3) to 
a single filament (curve 4). This again is followed by a multifilament solution (curve 
5) and a series of nearly sinusoidal high-order transvere modes of decreasing period, 
which is not illustrated here.

22. Second approach
A serious limitation of the first approach is the restriction to real refractive index 
variations and matching solutions to the lossless boundaries. A more sophisticated 
approach to modelling of lateral modes of broad area lasers has been introduced by 
MEHUYS et al [9]. They performed a theoretical analysis that included the effect of 
nonlinearities upon both gain index variations. Their studies were restricted to 
travelling waves of the form

E(x,y,z,t) =  E(x) F(x, y)expi(fiz—(ot) (8)

where at is the frequency. F(x,y) describes the transverse mode field distribution and 
E{x) is the unknown lateral mode profile that satisfies the Helmholtz equation

^ ^ + M » i f M - i 2)£W  =  o (9)

where neit(x) is the usual effective index of refraction determined by solving the 
transverse eigenmode problem at each value of x  [13], and rj =  fi/k0. It is worth 
noting that, in contradiction to the Thomson approach, the transverse mode field 
distribution F(x,y) as well as neff(x) depend also on the x  coordinate. To include the 
carrier-induced variations in the effective index nef{, they considered the following 
one-dimensional steady-state rate equation

where J{x) is the injected current density, F — optical confinement factor in the 
transverse direction, N(x) — carrier density, P(x) — photon density in lateral mode 
£(x), g(x) — spatial gain profile in the quantum well, — spontaneous lifetime, 
and D — lateral diffusion coefficient By introducing a normalized saturated gain 
profile

_ g {x )-g (N J
g(N J

9 th
g (N J

CN { x ) - N J , (1 1 )

Eq. (9) can be expressed as a second order linear ordinary differential equation in y(x)

w dx2 
where

P(x) J M - J * ( 12)

L% =  D t.p, (13)
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Weff/c

r  fifth *th
eN ,th

ut
e g jN J

(14)

(15)

(16)

0a, is the differential gain at threshold, L,p is the diffusion length when the carrier 
lifetime is determined solely by spontaneous emission and J*  is the threshold current 
density. By using a WKB approximation for Green’s function of the left-side 
diffusion operator in Eq. (9), the saturated gain profile was found as

y (*) =  7oW
d2y0{x) 

P(x) dx2
1+ 7 T

(17)

where

?<>(*)

P(x)
«at •at

P .

(18)

The second term in Equation (17) represents the effect of diffusion that causes some 
of the carriers to shift from regions of high gain to regions of low gain, whereas y0(x) 
is the solution when the diffusion is neglected. Supposing that y(x) oscillates about 
zero with a periodicity defined by transverse wave vector fct, one can find that the 
diffusion term is of the order of kt2L?p/(1+ (P(x)/Pmt)). If ktLtp < 1, then diffusion 
correction is small and with power increasing over Pmt becomes even smaller. 
Mehuys et al. restricted their analysis to the high power regime where the gain profile 
is heavily saturated and by neglecting the diffusion effects wrote the effective index of 
refraction as

n2„(x) =  n l - ^ r g i N J i b  + iM x) (19)

where n0 is the effective index corresponding to the threshold gain level, and b is the 
antiguiding factor. Note that in the present approach both real and imaginary parts 
are perturbed by the light intensity, whereas in the previous one only changes in the 
real part have been taken into account To establish the dependence of neff on the 
field E(x), they used the following relationship:

|E(x)|2 2hco r  P(x) 
nl Ly

(20)

where hco is the lasing transition energy and Ly is the thickness of the active layer. By 
combining Eqs. (14) and (20), one can find the field strength at saturation
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2ha> n,eft 1
nl c g'thLyTq,

The effective index neff(x) can then be written as

HeffW =  ni + Et 

where
sat (-0

•\ \E(x)\2- E i J ( x ) - J *
'sat

\E(x)\2+ E l

*« = f b r g ( N j
Ko

(21)

(22)

(23)

is the maximum local increase in dielectric constant that occurs in the saturated limit 
I E(x)l2 »  E i t. As one can see, both real and imaginary parts of n2[f(x) increase with 
increasing |£(x)|2. In fact, the gain decreases while the refractive index increases. 
Now, the complex effective index of refraction (22) can be incorporated into the 
Helmholtz equation (9), which leads to the following nonlinear complex eigenvalue 
problem for lateral modes of a broad area laser

1 d2E(x) 
kn dx2

„2 „2nO~V +£,
- H)

• '•a t

\E(x)\2+ E L
E(x) = 0. (24)

In their analysis Mehuys et al. assumed that the effective index of refraction outside 
the gain stripe satisfied the following criteria:

1. nt{{ =  n0 at the edge of the gain stripe.
2. neff rolls off smoothly to its full absorption value in the adjacent regions.
Thus, these boundary conditions are more precise than those used in Thompson’s

approach. By taking the solution in the form E =  E0exp(a +  i$) and linearizing 
Eq. (24) with respect to a, Mehuys et al. have solved it analytically and found that 
for small change in ne[f at the edge of the gain stripe the phase front can be 
approximately parabolic over the width of the device, whereas with a large value of 
this change it can quickly approach a linear asymptote on either side. Consequently, 
in the former case the far-field pattern will be single-lobed, while in the latter case 
double-lobed far-filed pattern will appear. Another important result was that 
characteristic field patterns were flat-topped with a periodic ripple of a period 
approaching a saturation limit at high optical powers given by

W ‘  [/</?[ai,+ln(l/K)]] (25)

where L is the laser length, R  — the facet reflectivity, and a — the distributed loss 
constant The close qualitative and quantitative agreement with experimental data of 
[7] and [8] seems to validate the above theory. The numerical solution of 
Eq. (24) presented in [11] also confirms this analytic theory. However, the theory is 
restricted to the high power range and further analysis is needed in order to check its 
validity in the linear regime near the threshold.
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Moreover, a stability analysis would be of great importance to complete this 
approach. In fact, in the case of nonlinear systems, the lasing modes are determined 
by the stability analysis rather than that of modal gain.

3. Summary

We have presented the current status of research in the field of broad area lasers, 
concentrating on the theoretical approaches to the lateral mode structure. Theory 
provided by Mehuys et al is more comprehensive than that of Thompson, since it 
takes into account variation in both real and imaginary parts of dielectric constant 
Moreover, the boundary conditions assumed are more accurate, because they 
involve optical losses in the region outside the injection stripe.

However, to be more rigorous in the analysis of the operation of broad lasers, 
one should also consider the field evolution along the length of the laser. This 
includes the variations in the material gain that could favour different lateral modes 
in different regions of the resonator. Moreover, the boundary conditions in the 
longitudinal direction defined by the amplitude and phase of the end reflectivities 
should be taken into account In addition, the effect of the carrier diffusion, omitted 
in both the approaches presented, may be of some importance for small pumping 
levels of the laser structure. Moreover, the thermal effects, especially those resulting 
from optical absorption, are expected to affect the laser operation and should be 
incorporated into the model.
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