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Linear formulation of nonlinear propagation 
of optical beams and pulses
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A new method of scaled complex rays is introduced to treat the nonlinear propagation in Kerr 
media. The analytical solution is made possible by assuming an appropriate parabolic variation of 
the refractive index and a Gaussian shape of a beam cross-section. Then, a proper scaling of the 
propagation distance, phase-front curvature and the beam amplitude reduces the soliton-like 
propagation to the well-known problem of Gaussian linear propagation. The Scaled Complex Ray 
Method is able to treat the propagation of higher order solitons in terms of higher order 
Hermite—Gaussian beams.

This communication presents basis of the Scaled Complex Ray Method (SCRM) 
invented [1] to treat the nonlinear propagation as the appropriately scaled linear 
process. It is shown that soliton [2] and Hermite —Gaussian (HG) [3] beams are 
interrelated through the complex ray equation [4], and that SCRM can be made [1] 
equivalent to the reduced variational calculus [5], [6].

In a nonlinear Kerr medium, a balance between the nonlinearity, diffraction 
and/or dispersion is described by Nonlinear Schrodinger Equation (NSE) [2]

{/dx +  (l/2)32 +  \V\2(x,z)} V(x,z) =  0. (I)

The key point of SCRM is to properly scale the independent and dependent 
variables. A suitable preliminary scaling leading to Eq. (1) and adequate notation has 
been introduced elsewhere [3], [4], [7]. The transverse variable x  =  x/ww is scaled 
by the beam (or pulse) radius vvw at the waist (z =  0) and the propagation direction 
variable z =  z/z^ is scaled by the (Rayleigh or Fresnel) diffraction length zD ~  kLw2, 
kL being the wave number in the low power limit [3]. A Gaussian beam

V(x,z) =  jl(z)exp[—(l/2)(x/o(z))2], (2)

A — aexp(i<p), provides a presumed form of a solution to NSE (1). The complex 
half-width v of the beam is defined by the real beam spot-size w normalized by ww 
and real radius R of phase front curvature normalized by zD [7]

u -2(z) =  w -2(z) —i/R(z). (3)

A nonlinear index distribution is modeled by a parabolic approximation

\V(x,z)\2 *  (l/2)w ~2(z ){ [l—y(z)]- [ 1  - f(4)
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in which the scale factors i\ and y are introduced [ 1] to indicate the nonlinear 
[t] 7* 1 ^  y) and linear (rj =  1 =  y) cases and will be specified later. A factor (1/2)w"2 
anticipates a field averaging effect in the transverse cross-section of the beam. 
Inserting Eqs. (2) —(4) into NSE (1) gives the nonlinear complex ray and complex 
amplitude equations ( ,2 means d/dz):

-  iv~A(z)[(v2(z)),z -  i] +  [1 -  i72(z)] w~ 4(z) =  0, (5)

2i(\nA{z)),z -  iv~2(z) +  [1 -  y(z)]w“2(z) =  0. (6)

An essence of SCRM is to recast the nonlinear problem (5), (6) into the adequate 
linear problem:

(v(z-)2),: - i  =  0, (7)

2i(lnA(z)),2—v~2(z) =  0, (8)
by scaling x and z to x and z, v and A  to v and A, and w0 and zF to w0 and Zp, 
respectively [1]. Solutions to Eqs. (7), (8) are well known from the linear theory and 
have the form of HG beams [3], [8]. Therefore, knowing a proper scale transfor
mation, one is able to use these functions as the scaled solutions to the nonlinear 
problem at hand.

In Equations (5), (6), the scale transformation has to incorporate t] and y into 
expressions of the new beam parameters v and A. To this end, let us scale zD by
rj what implies also the scaling of z:

zD = Mz))"1 (9)

and scale the phase front curvature and the beam phase

R(z) =  r](z)R(z), (10)

<p(z) =  (p{z)t](z)/y(z), (11)

with x, ww and a remaining unchanged. The scaling (9) —(11) transforms the 
nonlinear problem (5), (6) into the linear problem (7), (8) in a new, scaled space (x,z). 
The result [1] of the scaling is the solution to the linear problem

V(x,z) =  fl(z)exp[(l(y/^)^ (£)] exp[(l/2)x2(z7/R - 1(z) — w” 2(z)], (12)

with the imposed scaled effects on z, R and (p, recognized as the self-shortening (9), 
self-focusing (10) and the phase self-modification (11), respectively.

In general, the factors rj and y slowly vary with z. It can be proved [9] that 
SCRM is valid when f / ^ l ~ y o r z ~ 0 .  The first case takes place in the linear limit 
when \V\2 ^  0, while the second condition means r\ ~  0, z'.e., the self-trapped soliton 
case when the equation of the straight complex ray (7) is exactly fulfilled [9]. For the 
case of nonzero radiation contribution to the total field, z/ only approximates zero, 
ray equation is satisfied approximately and the SCRM works only in a sufficiently 
thin, transverse to the propagation direction section of the medium [9]. In each 
section the complex ray is straigth but, as scaling factors rj and y change with z, the
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ray in the whole medium is curved. In both cases the numerical implementation of 
SCRM is straightforward [9].

All that is left to find is a proper specification of tj and y. One such a specification 
can be found [1] on the grounds of the variational analysis of the problem [5], [6]. 
From the Euler — Lagrange equations for the reduced problem [5] and for w, R, a, 
(p as dependent variational variables, Eqs. (5), (6) appear with:

r/2(z)=  1 — w/ws, (13)
y(z) =  1 —(5/2)w/ws, (14)
wa=  21/2a0 2w0 (15)

w0 being initial values of a and w at z =  z0, respectively. The field distribution (12)
is now completely determined. Equations (13) —(15) are the compatibility conditions 
between the SCRM and the variational approach. The parameter ws has a meaning 
of the beam or soliton width. Indeed, if w is constant, then w =  w0 =  ww =  w5 =  1, 
a =  a0 =  aa =  21/4 and Eq. (12) exhibits the self-trapped soliton beam in variational 
approximation [5]

V(x,z) =  21/4exp [(3/4) iz] exp [ —(1 /2)x2] . (16)

The soliton field, as given by Eq. (12) fits well to the exact solution, as it has been 
shown elsewhere [6].

The variational specification (13)-(15) of the factors rj and y is by no means 
unique and other procedures could, in principle, be applied here as well (e.g., see 
estimations in [10] —[13]). In spite of that, the variational approach is clearly 
compatible with the complex ray description. Both methods can be applied in 
analysis of other propagation phenomena like soliton propagation in multi
dimensions [2], [6], [9], beam interactions with nonlinear interfaces [3], [4], [7], 
[14] or propagation of higher order (N  >  1) optical solutions.

In general, the scaled Equations (7) and (8) have solutions in the form of HG 
beams of an arbitrary order, built from the fundamental Gaussian (2) times the 
Hermite polynomial of n-th order

H n(y) =  (—  i)Hexp(y2)(dn/dyn)exp(— y2),

with the argument and beam amplitude properly chosen [3]. For even HG beams 
the parabolic approximation (4) is still valid and the complex ray equation (7) 
remains unchanged. Therefore, SCRM can treat the propagation of the higher order 
HG beams as well. The question immediately arises as to whether the higher order 
HG beams model the higher order (iV >  1) solitons. The first, preliminary attempt to 
verify this thesis has been made [15].
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