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Application of the local mode theory 
to nonlinear waveguide structures

M. A. Karpierz, J. Petykiewicz
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The local mode theory for two copropagating and two counterpropagating waves in nonlinear 
waveguides is formulated. The presented model allows us to describe the inverse effects as well as 
the propagating waves interaction in optical waveguides. The results are compared with the 
conventional coupled mode theory solution and they can be applied to the analysis of such devices 
like nonlinear directional couplers and waveguide Fabry—Perot resonators.

1. Introduction
The nonlinear guided-wave devices have been extensively studied because of their 
applications in all-optical data processing and high speed communication systems 
[1]. The propagation of light in nonlinear waveguide structures is analyzed by using 
the Coupled Mode Theory (CMT) [2] or numerical methods based on the Beam 
Propagating Method (BPM) [3]. The BPM solves the wave equation as an initial 
value problem and thus the influence of the reflected waves is taken as irrelevant and 
only the wave front is analyzed. Hence, the steady-state solution in structures 
applying the counterpropagating waves (like in Fabry—Perot resonators or dis
tributed feedback structures) is difficult to obtain. Moreover, the BPM is a relatively 
slow and time-consuming method, especially in two-dimensional cross-section 
waveguides.

On the other hand, the CMT reduces the nonlinear wave equation to the set of 
the first-order differential equations, which be can integrated easily and for some 
cases the analytical solutions have been obtained. The CMT assumes that the 
nonlinear electromagnetic field can be expressed as a superposition of linear 
waveguide modes. Using the modes of linear waveguides limits the accuracy of this 
method to low-intensity nonlinearities, which does not change the mode field profile. 
For high intensities both the propagation constant and the field distribution are 
modified by the nonlinear effect [4] and the CMT cannot be applied. It should be 
noted that mutual changes of the propagation constants and spatial field profiles due 
to the nonlinearity are expected for copropagating waves as well as for counterp
ropagating waves [5].

In several papers, the nonlinear coupled-mode equations have been improved by 
using the intensity-dependent fields instead of the linear modes [6] — [9]. It has been 
shown that such procedure gives more accurate results. In fact, the superposition 
of the nonlinear modes is not a solution of the nonlinear wave equation and study
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ing of the two-mode interaction for high intensity nonlinearities in the framework of 
the CMT may only give approximated results.

However, there is an alternative way of obtaining a coupled system of differential 
equations by utilizing the local modes [10], [11]. In nonlinear waveguides, local 
modes are the modes of a linear waveguide with the refractive index profile identical 
to that caused by nonlinearity [12]. These modes are not solutions of Maxwell 
equations themselves since their parameters are functions of propagation distance. 
They can be superimposed to yield a solution of the nonlinear wave equation that 
represents the field of the actual waveguide. Expansion in terms of local modes can 
be used for high intensity nonlinearity. Therefore the Local Mode Theory (LMT) is 
supplementary to the classical CMT and BPMs and it widens the region of the 
nonlinear guided-wave phenomena analysis.

In this paper, the LMT for two copropagating waves and for two counter- 
propagating waves in nonlinear waveguides is formulated and compared with 
conventional CMT. Approximations which simplify the obtained equations and lead 
to the conventional CMT solution are also presented.

2. Copropagating waves

The lossless waveguide aligned along the z-axis is taken into consideration. The 
analyzed dielectric regions are assumed to be isotropic and with the intensi
ty-dependent refractive index. This analysis is restricted to the two-mode waveguide 
and we neglect the radiation modes.

The transversal components of the electric field in nonlinear two-mode waveguides 
are given by

Et(x,y,z) =  A ^ E ^ x . y . z )  + A2(z)E2(x,y,z) (1)

where A l 2 are complex amplitudes. The nonlinear field distributions E i2  are 
assumed to be slowly varying with distance z and they are identified with normalized 
orthogonal waveguide modes

Ej(x,y,z) = Ej(x,y)exp(iPjz) (2)

for the electrical permittivity e equal to the local permittivity of nonlinear waveguide. 
It means that for the electrical permittivity £ dependent on a local intensity \E\2 the 
modes Ei2  are calculated from the set of nonlinear wave equations

[ & + ^ ? + J E . + A ^ 1) -  P ] \ e , = 0. (3)
Taking into consideration the transversal confinement of the electromagnetic field, 
we obtain from the Maxwell equations the set of differential equations for amplitudes 
A t and A 2 in the form:
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~ A 2 = - i( f iz + <p\Al \2)Az - i lpA1A 1A-2-i(<Pl \Al \2 + * M 2 \2H i  (4)

where the coupling coefficients are calculated from the formulas:

<P — -^H d xd y txE jE l, (5)
M B

<pj = -y^dxdyoiE lE ^ .j (6)
where p is the normalization factor of the orthogonal local modes and 
a = 3£nl/3|JE'|2. Coefficients <Pj describe the asymmetry in distribution of the 
nonlinear medium and for symmetrical nonlinearity they vanish.

For low-intensity Kerr-type nonlinearity the propagation factor P can be 
approximated by the formula Pj = Pf)-\-(pj\aj^ + q>\a2_j\2-{- ĵ{al a2-\-a\a7)  (where 
PJ0) is a linear propagation constant) and the coefficients (p and ^  are assumed to be 
constant Then Eqs. (4) are identical to that obtained in the framework of 
conventional coupled mode theory [13]. However in general, the coefficients q>, <Pj 
and Pj in Eqs. (4) are functions of the local intensity \AlE l + A2E2\1 which varies 
with distance z. In the modified coupled mode theory [6] —[9], the mentioned 
coefficients are assumed to be dependent on the total light intensity but they are 
independent of distance z and therefore the modified method leads to less precise 
results than the LMT.

Note that the presented equations can be applied to arbitrary nonlinearity (not 
only to Kerr-type) and for all types of nonlinearity the cross-phase modulation effect 
is magnified by the term (p\Aj\2. In the conventional CMT this effect cannot be 
simply taken into consideration for arbitrary nonlinearity.

3. Counterpropagating waves

In this Section, we take into consideration the single-mode waveguide and two 
counterpropagating waves with complex amplitudes A and B. Then the transversal 
components of the electromagnetic field are represented by:

Et{x,yyz) =  lA(z)+B(z)-}E(x,y,z),
Hfic,y,z) = lA(z)-B(z)-]H(xty,z) (7)

where E  is a guided mode of the waveguide with the electrical permittivity e equal to 
the local permittivity of nonlinear waveguide. The modes used are normalized and 
therefore the propagation factor p depends on I = \A + B\2 which represents the field 
intensity in the cross-section of the waveguide. Taking into consideration the relation 
v l «  p, where v — dp/dl, the amplitudes A and B satisfy the set of differential 
equations [12]:

A =  -i(P+ v\B \2)A+ivBBA',
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(8)
For low-intensity Kerr-type nonlinearity it is assumed that the coefficient v does 

not depend on light intensity p = p(0)+v{\A\2 + \B\2). Then Eqs. (8) yield the 
equations obtained in the framework of the CMT [14].

Note that only the dependence of the propagation factor p on light intensity is 
necessary for solving Eq. (8). The field profile changes due to the nonlinearity (i.e., the 
solution of Eq. (3) for a single mode) have to be calculated only to determine the 
boundary conditions at the linear/nonlinear waveguide interface. It should be 
pointed that similarly to copropagating waves Eqs. (4) the cross phase modulation 
term is greater than the self-phase modulation term.

4. Conclusions

Formulated in this paper the LMT utilizes nonlinear waveguide modes (Eq. (3)) 
which have been extensively studied for several years (see [4] and refereed herein 
papers). Applying published results the solution of LMT equations requires only 
simple integrating numerical algorithms. It should be pointed out that arbitrary 
nonlinearity e(|2s|2) can be taken into consideration. The LMT allows us also to 
adopt some analytical methods and to obtain simplified analytical solutions 
(equivalent to the CMT solutions). On the other hand, the LMT neglects radiation 
fields. However, the radiation fields do not significantly influence the guided waves 
and their existence can be taken into consideration in the boundary conditions at the 
input of the waveguide structure.

In this paper, two basic types of nonlinear interaction have been presented: 
interaction between two copropagating waves and between two counterpropagating 
waves. The presented results for two copropagating waves can be applied, among 
others, to analysis of nonlinear directional couplers or propagating light with two 
polarizations. Typically these problems are analyzed by using the BPMs. The LMT, 
however, offers simpler algorithms than BPMs and allows us to obtain ap
proximated analytical results. The LMT equations for two counterpropagating 
waves can be utilized to analyze, e.g., waveguide Fabry —Perot resonators or 
distributed feedback (DFB) structures. The BPMs cannot be simply used to 
investigation of these structures and they are usually analyzed by the CMT. 
Therefore, the conventional analysis is limited to the low-intensity nonlinearity. In 
conclusion, presented in this paper the local mode theory seems to be very useful to 
design and analyze the nonlinear waveguide structures.
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