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Optical system testing by means of first and second 
derivatives of the wavefront aberration function*
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Institute of Design of Precise and Optical Instruments, Warsaw Technical University, 
ul. K. Chodkiewicza 8, 02-525 Warszawa, Poland.

A modified method of a quantitative wavefront testing in the Talbot interferometer 
is proposed. The coefficients of the wavefront aberration function are found by inter­
preting fringes, the intensity distribution of which is proportional to the first and 
second derivative of the function. The setup with a spatial filtering for rapid 
measurements of derivatives of aberration functions is presented.

1. Introduction

The most common testing methods of optical system are the Foucault test, 
interferometry and the Ronchi test. The Foucault test is a very sensitive and 
convenient method. It is, however, rather a quantitative one, since the position 
of shadow is difficult to define. Interferometry, providing direct information 
about the shape of the tested wavefront, is on the one hand the most informa­
tive of all the methods used for testing spherical or astigmatic deviations. 
On the other hand, however, it is complex, expensive, sensitive to vibrations 
(not common path), and in order to obtain high accuracy of quantitative meas­
urements the data should be reduced.

The third technique, i.e., the Konchi test, is also a well-known and widely 
used method. Opticians willingly use it because of its simple setup parameters. 
However, the difficulty in interpreting the observed patterns quantitatively 
is its main disadvantage. Several methods for solving this problem are proposed, 
namely:

— comparison of the observed Konchi pattern with the computed patterns, 
for selected aberrations [1],

— production of special Konchi gratings with curved lines that give straight 
fringes when the wavefront is correct [2],

— purely qualitative interpretation of the Konchi test relying on experience,
— semi-quantitative technique, based on simple analytical formulae com­
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bining the values of some basic types of aberration and the parameters of fringe 
patterns [3].

In this paper a modified method is proposed for a quantitative testing of 
wavefronts in the Talbot interferometer [4] (which may be treated as a special 
case of the Ronchi interferometer). It is by interpretation of fringes, the inten­
sity distribution of which is proportional to the first and second derivatives 
of the phase function.

2. Analysis

Let us consider the optical system shown in Fig. 1. The grating is illuminated 
by a quasi-plane beam characterized by the wavefront aberration function 
exp y)] in the grating plane. The distorted self-images are formed at the
intervals z — 2d2/A behind the grating. The distortion of the grating due to the 
aberration function may be checked by the following methods:

Fig. 1. Talbot interferometer arrangement 
used for testing the wavefront aberration 
function. G l, G2 — two identical Ronchi 
gratings. The Ji-th self-image of the grat­
ing G l is detected by G2 (S — source) 
L — lens, X  — aberrated wavefront,

i) The Moiré method,, i.e., by inserting the detecting grating G2 in the 
plane of the M -th distorted self-image of the grating Gl. The intensity distri­
bution of the Moiré pattern is proportional to the first derivative 8&(x, y)¡dx 
of the aberration function in the direction perpendicular of the grating lines.

ii) Differentiation of the distorted self-image due to the lateral displace­
ment of the grid G l or a photographic plate (Fig. 2) implemented between the 
two exposures. The Moiré pattern visualizes the second derivative d2<P(x, y)/8x2 
of the aberration function [4].

G l  F P

-----  Fig. 2. Arrangement used for obtaining the
second derivative of the wavefront aberration

( function by the double exposure technique. 
Xq Photographic plate FP is placed in the .Sf-th 
self-image of G l
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The “Moiré method” is equivalent to the two-beam interference in the 
Eonchi interferometer [5], while the differentiation of the distorted self-image 
corresponds to the three-beam interference [G, 7].

Let us assume, for simplicity, that the linear diffraction grating has cosinus­
oidal amplitude transmittance (this assumption does not affect the generality 
of the approach). The grating is illuminated by the quasi-plane beam charac­
terized by the wavefront aberration function exp [«$(&, y )] in the plane of the 
grating; the rulings of grating are parallel to the y-axis. We assume that 4>(x, y) 
is a slowly varying function of the coordinates x, y and z. At a distance z from 
the grating the complex amplitude is given by

_ f 2n f Xz d ~|1
T(x, y, Z)  =  A 0exp[?<£(#, ?/)] +  A texp \x ~  ^  ® { x - A ,  y) U

( 2 71 r Xz d 1|
+  A _1« p j - j — | *+ —  4>(* +  J .» )J }  (1)

where A =  (X/d)z is the lateral displacement of ¿ 1  diffraction orders with 
respect to the zero-order beam, X is the light wavelength.

Let us consider the intensity distribution at the distance z =  Aid2IX corre­
sponding to the If-tli self-image plane. According to the analysis given by P a t o r - 
ski [4] the contrast of the fundamental harmonic of the intensity distribution 
is proportional to the first derivative dd>(x, y)ldx of the aberration function. It 
may be visualized by putting the detecting grating G2 in the Jlf-th self-image 
plane with the relative lateral shift xu. In such a case the Moiré intensity distri­
bution is described as follows:

I M±  occos f  d 8 0 (x, y) '
d r 0+ 2 71 dx '

( 2 )

where A =  (X/d)z =  Aid.
The localization of the Moiré fringes is given by the following equation:

2 71
I T

80 (x, y) I
dx J =  ( 2 p + l  ) ti. (3 )

The aberration function may be expressed as a power series in both coordinates 
[6]. In this series the terms of degree smaller than 2 are omitted and the third- 
order aberration is considered only

y) =  w20(x2 +  y2) +Wi0(x2 + y 2)2 +W22xy +  wS0x3 +  w21x2y +w12xy2 +  rc03y*
(4)

where the terms of the second degree represent defocusing and the third-order
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astigmatism, third-degree terms represent coma and the term w40(a?2 +  y2Y 
represents third-order spherical aberration. While testing the above given func­
tion &(x,y) by means of the Moire method we get the localization of the fringes 
in form of the following equation:

2w20x +  iwwx(xt +  y2) +  wMy+ 3w 30x2 +  2w21x y +  w12y2 =  const. (5)

In order to interpret the fringe pattern we must find the coefficients wmn. 
When one of the basic aberrations, c.g., pure coma or astigmatism, occurs, 
its value can be determined from simple analytical formulae combining the 
parameters of fringe patterns and the values of aberration [3]. Figure 3 shows

Fig. 3. Numerical simulation of the Ronchi pattern of the 
third-order coma: w21 ^  0 (a), w30#  0, w21^  0, w12^  0 (b), 
and the third-order spherical aberration: x0 =  0 (c), x0 0 (d)

examples of numerical simulation of the Moiré fringes obtained for the third- 
order coma (Figs. 3a, b) and third-order shperical aberration (Figs. 3c, d). 
Let us consider a complex aberration wavefront. Figure 4 shows examples 
of simulated fringes obtained for the wavefront suffering from the third-order 
aberrations. In general, in order to obtain the wmn coefficients, a complex analy­
sis of the fringe pattern is required [8-10]. Thus the second stage of optical
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system testing needs much more specialized and expensive equipment than that 
required at the first stage, during which the fringe pattern is obtained.

In order to apply the Eonchi test technique to quantitative measurements 
in a workshop the interpretation method of fringe pattern should be simplified.

Fig. 4. Numerical simulation of the Ronchi pattern of the 
wavefront suffering from the third-order aberrations:
«>40. «>21 t 6 0

Here we propose to test the second deritative of the wavefront aberration 
function d2&(x, y)ldx2. The localization of the Moire fringes obtained after 
differentiation of the distorted self-image is given by

where x0 is the relative lateral shift between the grating and the recording plate 
in the direction perpendicular to the grating lines.

Putting the second derivative of the function given in (4) the localization 
of the Moiré fringes may be expressed as

In this way the second-degree curves give information about the third-order 
coma and spherical aberration, so the equation is by two orders lower than this 
obtained in the Twymann-Green interferometers and one order lower than 
in shearing interferometry. Therefore, the values of the coefficients wi0, iv30 
and w21 may be determined by simple measurements of the parameters of fringe 
patterns. These valies may be used for further interpretation of the patterns 
obtained by the Moiré method. Figure 5 shows examples of the fringe pat­
terns representing spherical aberration. In the case of coma, the Moiré fringes 
are straight and their inclination depends on the direction of the axis of sym­
metry of coma. The fringe pattern representing the complex aberration function 
is shown in Fig. 6. It should be mentioned, however, that the sensitivity of the

( 6 )

AwM(3x2 + y 2) +6w30x -\-2w21y =  const.
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method for testing the second derivative d20{x , y)/8x2 is much lower than 
that of the Moire method. Therefore, it may be used, e.g., for the spherical 
aberration, when w40>1A, and is recommended for testing optical systems 
with larger aberrations. In general, higher-order aberrations may be determined 
by detecting the higher-order derivative of the tested function. In such a case 
it is necessary to use large shear or dynamic way for detecting the second-order 
derivative.

Fig. 5. Numerical simulation of the fringe pattern 
representing the second derivative of the spherical 
aberration w40 ^  0

Fig. 6. Numerical simulation of the fringe pattern representing 
the second derivative of the wavefront aberration function:
» 4 0 . » 2 1  ^  0  (a)> » 4 0 » » 21. » 3 0  ^  0  0 >)

3. Experimental setup

The dynamic detection may be obtained in the setup containing a spatial zero- 
order filtering (Fig. 7). Let us place the optical system behind the Talbot inter­
ferometer illuminated by a spatially coherent quasi-plane beam characterized 
by the wavefront aberration function. The Fourier spectra of double grating 
diffraction are formed at the rear focal plane of the first lens. The spatial filter
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selects beams in the m +n =  0 order direction, where m and n denote the 
diffraction order number at the first and second grating, respectively. The 
phenomenon may be simplified to the three beam interference ((0, 0), ( + 1 , +1),

Fig. 7. Spatial filtering arrangement used 
for differentiation of a quasi-plane wave- 
front. Spatial filter SF selects the beam prop­
agation direction. The first and second 
derivatives of the wavefront function are 
visualized at the output plane P conjugate 
to the second grating plane

( — 1, — 1)) which at the plane P forms the fringe pattern giving the information 
about the second derivative of the wavefront being tested. Figure 8 shows 
examples of the second derivative of the wavefront witli spherical aberration. 
The derivative was obtained by mechanical differentiation (Fig. 8a) and in 
the spatial filtering configuration of the Talbot interferometer (Fig. 8b).

Fig. 8. Fringe pattern obtained by : double-exposure method 
and mechanical differentiation (a), in the spatial filtering 
configuration of the Talbot interferometer (b). The fringes 
depict the wavefront function with spherical aberration

Another advantage of the above setup is the possibility of testing the first 
derivative of the wavefront by the spatial filtering in the m + n  =  1 order 
direction, which was done by a simple change of the spatial filter SF. The 
above technique is an improved (real-time) version of the shearing interfero­
metry method in which the processing of negative is no longer required, but 
a good-quality optical processor is necessary.



238 M. K ujawińska

4. Conclusions

Optical system testing by means of the second derivative allows some of the 
coefficients of the wavefront aberrations to be determined more rapidly and 
accurately than by first derivative (the Moiré method). The shape of the fringe 
does not depend markedly on the degree of defocusing and astigmatism, which 
makes the interpretation easily. The method is especially recommended for the 
workshop testing of optical systems with aberrations greater than 1X.

The proposed setup with the spatial filtering seems to be very convenient 
for rapid measurements, in which quantitative results may be obtained.
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Испытание оптических систем с помощью производной первого и второго порядка 
функции аберрации

Предложен модифицированный метод количественного испытания в интерферометре Тальбота. 
Был найден коэффициент волновой функции аберрации с помощью соответствующей интерпретации 
линий, распределение интенсивностей которых пропорционально производной первого и второго 
порядка этой функции. Представлена система с пространственным фильтрованием для быстрых 
измерений производных функций аберрации.


