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Application of double complex numbers 
to the description of the polarization state
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Institute for Aircraft Engineering and Applied Mechanics, Technical University of Warsaw, 
ul. Nowowiejska 22/24, 00-665 Warszawa, Poland.

The paper presents a new way of describing the resultant polarization vector in which two 
mutually perpendicular physical components of electric field — expressed in the form of complex 
numbers — are put in a complex sum. The number obtained in this way is double complex and 
is governed by simple rules of arithmetic, due to which the calculations concerning any changes 
of polarization state are clear and simple. A number of examples of calculations of this kind are 
shown concerning, among others, the changes in the state of polarization due to the passage of 
light through such elements as: polarizer, birefringent plate, and beam-splitting mirror. Also a 
relation between this way of description of polarization state and that based on Stokes and 
Jones matrices is presented.

1. Introduction

The elliptic polarization is the most general state of polarization of a monochro
matic light wave. Two different but equivalent ways may be used to describe this 
state [1], [2].

The first one employs the parameters describing straightforwardly a polariza
tion ellipse in its plane. These are: (p — azimuth, i.e., the angle between the 
positive direction of the x axis and the major axis of the ellipse (cf. Fig. 1), tan # 
= b/a — ellipticity describing the shape of the ellipse and the polarization helicity 
direction, m = y j a2+ b2 = J m 2x + m2 — amplitude, i.e., the size of the ellipse, \J/ — 
relative time phase. The space orientation of the polarization plane is determined 
here by unit vector, normal to this plane, which defines simultaneously the 
direction of wave propagation (it is enough to know two of its directional cosines 
since the third one may be calculated from the sum of their squares that equals to 
unity).

The second way consists in vector superposition of three mutually perpendicu
lar linear harmonic vibrations of independent amplitudes and phases. For a 
complete description, the knowledge of these amplitudes and phases is necessary, 
thus of six quantities in all (which is the same number as in the first case).

On the assumption that the positive direction of the axis z of the orthogonal 
right-handed Cartesian coordinate system determines the direction of the plane 
wave propagation, the number of parameters necessary to describe completely the 
state of polarization is reduced to four. The space orientation of the unit vector,
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normal to the polarization plane, is explicitly defined under these circumstances; 
namely, it is colinear with the z axis and thus, perpendicular to the xy plane.

To describe the state of polarization in the first way, it suffices to know the 
parameters q>, $, m and if/.

mx»mcos/3, my = msin^. 

ta n tf'b /a , »1» — «1>X - .

Relations between parameters:

S = sin 2 & -  sin 2/3 sin ij»,

M » cos 2p = cos 2t> cos 2ff,

C -  sin 2/3 cos t|> “ cos 2’d- sin 2<p, 

8g -  cos - cos 20“ cos 2 or,

Gg * cos 2/3 sin - cos 2n> sin 2ac.

Fig. 1. Ellipse of polarization. Parameters of polarization ellipse: 3 — ellipticity, <p — azimuth, P — 
diagonal angle, \¡> — phase difference, a — general equiphase, a, b -  semi-major and semi-minor axes, 
respectively

The second way involves the superposition of two mutually perpendicular 
harmonic oscillations of directions consistent with the axes x and y :

Ex = E0x cos (cot -I- ÿ x) = mcos(icos(a)t + iJ/x),

Ey = E0y cos (cot + 1f/y) = m sin /5 cos (cot + 1J/y).

2. Basic notations

For the plane monochromatic wave travelling along the z axis, two mutually 
perpendicular harmonic oscillations located in the xy plane may be written down 
with the help of usual complex numbers as follows:

Êx = Ê0xeiù)t = mcos f}pi<ot+'l'x),

Êy = E0ye,<ot = msinf}e(‘ot*'l'y).

The resultant polarization vector written down with the help of double 
complex number is

E = Êx+ jÊy = Ë -F iH = m (cos +j  sin 0e**) ei<0‘

= m [cos 0 cos (cot + \f/x) +j sin fi cos (cot + 1jjy)

+ i [cos 0 sin (cot -h lf/x) -f j  sin fi sin (cot + lj/y)] ] (1)
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where: Ex, \px — first linear component and its phase,
Ey, ij/y — second linear component and its phase,
E =  m{cos)5 cos (cot + ij/x)+j sin p cos (ot A-ipy)) — real elliptic component 

(vector) of polarization.
H = m{cos)5sin(tof+ i/r'J + /sin/)sinfiuf | — imaginary elliptic compo

nent (vector) of polarization (the so-called “shadow”), 
i — first imaginary (ordinary) unit number, 
j  — second imaginary unit number, 
m, a>, t — amplitude, frequency, time.

Each double complex number possesses three corresponding conjugate forms:
— conjugation with respect to the i unit

E* = E*+jE* = E — iH, (la)

— conjugation with respect to the j  unit

E  — Ex—jEy = E'+iH', (lb)

— conjugation with respect to both the imaginary units (double conjugated 
number)

E*’ = E* — jE* = E' — iH'. (lc)

On the basis of these conjugate forms the Stokes parameters can be calculated in 
the following way:

J = ^(£ £*' + £* £') = ExEi + EyE; = EE’ + IlH' = m2, (2a)

S =  -  -’- (£ £ * '-£ * £ ')  = UEXE*-E ,E*)
2 ij

= j(EH' -  HE') =  m2 sin 2)5 sin i¡j = m2 sin 2&, (2b)

M = l-  (EE* + 1E*') = Ex E* -  Ey E* = ~ (E2 + E,2 + H2 + H 2)

= m2 cos 2)5 = m2 cos 25 cos 2(p, (2c)

C = 1  (EE* -  E  E*') = EXE* + Ey E*

= —(E2 — E 2 + H 2 — H'2) = m2 sin 2)5 cos«// = m2cos25sin<p. (2d)
2/

A vector for which J = m2 = 1 is defined as unit vector

E = (cos pe** + j  sin Pe**) eitat. (3)

Substituting the following expressions into (1):

ip = — y — phase difference,

ij/p = i  (ij/x — ipy) — general initial phase
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it may be reduced to the following form:

£ = mÊ = m( c o s + j sin/3e '*/2) + ̂ p) = m/E
&

in which E is a unit vector (cf. (3)), and

¡(Wt+ (/»„)

j e '“* (4)

is the so-called standard form of a double complex vector, for which the phase- 
amplitude coefficient is

The Stokes parameters calculated according to Eqs. (2a)-(2d) for a unit or 
standard vector should be reduced by m2.

Taking advantage of the relations (lH lc), the parameters defining the elliptici- 
ty funtion of the vector E

may also be determined.
The real component E (similarly to the imaginary one H) performs a rotational 

motion as a function of time parameter cot in the xy plane, being elliptic in the 
general case. This motion is right-handed (i.e., positive in the assumed right- 
handed coordinate system xyz, Fig. 1) if it is performed counterclockwise, and vice 
versa. The sense may be determined on the basis of the following relations between 
the signs of the basic ellipse parameters

— right-hand sense

{[(7i > ij/ > 0) A(tan/? > 0)] v [( — n < [¡/ < 0) A(tan 0 < 0)]} =>($ > 0),

— left-hand sense

{[(■-« < if/ < 0) A(tan0 > 0)] v [(k > \jt > 0) a  (tan 0 < 0)]} =>(S < 0) 

while EJEy = el·*/tan 0.

3. Rotational transformation of the coordinate system

Let the polarization vector E = Ex+jEy be written down in primary coordinate

system xy, while the same vector E(in) = e J<p° E = E^+jE^ (the same polarization 
ellipse) is written in the secondary system £77, rotated through an angle cp0 (Fig. 2). 
In the case where in the primary system the vector is written in the standard form, 
and in the secondary one it is to be written in such form, too, the shift of general 
time phase 1j/0 between both systems must be considered in the formula

(A = me*<· = 1) -  {(m = 1) a(*, =  0)}.

0  =  EE* £ '£* ' =  cos2 29 (2e)

(5a)
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Assuming, for example, that the system £rj and the principal axes of the ellipse 
overlap, i.e., that (p0 = (p (angle between both the coordinate systems is equal to 
ellipse azimuth in the xy coordinate system), the equation of the standard

Fig. 2. Transformation of the coordinate system rotation

polarization vector (4) takes the canonical form in the system (for which (1 = d 
and i¡j = 7t/2)

/EKm = (cos dei7t/4 + j  sin de - in/4) eitot = (cos d -  ij sin d) el{<°,+aiK)

where aK = n/4 -  general equiphase of the standard canonical form.
In the xy coordinate system (rotated with respect to the coordinate system r̂j 

through —</>), the.equation of this vector is

/E = ei(f> /EKm e v° = e* (cos d -  ij sin 5) ei(0Jt+a)

= (cos 12 + j  sin fie~l*12) elwt (6)

where: a = txK — ̂ 0, \j/0 = <xK — a, or generally

=<*№,)-< W  (7)
In Eqs. (6) and (7), there has appeared a new ellipse parameter — general 
equiphase a. It occurs in the relations constituting a completion of the Stokes 
parameters, which, however, unlike the Stokes parameters, are the functions of the 
time variable cot and the general initial phase ^ p, namely

1 a a a a 1 ^ * _ __________
B = -  {EE' + E*E*') = -  {El + E*1 + El + E*2) = EE' -  HH'

= cos 2d cos 2 {cot + ^ p + a),

G =  j.(EE - E* E*1) = ~AE2x~E*2+ E-  £*2) =  EH'+HE'

(20

= cos 2d sin 2 {cot + «AP + a)· (2g)

Using the parameter B the instantaneous values of the amplitudes of the vectors E 
and f l  may be calculated

E = ± JE E ' = ± /—(1 + B )= ±  M (l+cos2dcos2(coi +  ̂ p + a)},

H = ± ^ H H '= ±  M l - B ) = ±  {1 —cos 2dcos2(coi + ̂ p + a)}.
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A A
For the initial moment, when ojt = if/p = 0, i.e., E = /E0 (cf. (4))

B = £ 0 = cos29cos2a = cosi/  ̂ |

G = G0 = cos 2.9 sin 2a = sin i// cos 2/1J

and

E = E0 = P(1 -l-cos 25 cos 2a) = /^(1+cos^) = cosy,

H = H0 = M l—cos 29 cos 2a) = A(1 —cos ^) = sin^.

( 8)

The parameters described by formulae (2a)-(2g) may be taken in one common 
relation. By creating for the unit vector

E = (cos/te,*/2+/sin /te_,*/2)e,<wi+̂ p> = (cos 3 — ij sin 9) ++a )

the following products:

££* = M+jC = cos 2Sei2<p,

EE*' = J — ijS = 1 — (/sin 2d,
r-rv r> , ·✓- i2(caf + ̂ D + 3t)EE = B + iG = cos 2ue p

we may then calculate the total product to obtain the expression 

££* EE*'EE' = (M + jC )(J-ijS)(B  + iG) = QE2 = (cos29£)2. ( 2)

From the transformation formula (6) the following equality follows:

e'v (cos.9 — (/sin 9)^* = cos/te,>/2 + /sin/te_,>/2,

from which -  by comparing the respective parts of double complex numbers on 
both sides -  we obtain the formulae joining the trigonometric functions of single 
angles being parameters of ellipse, for instance,

f\j/ \  |J/
cos cpcos 9 = cos p cos (— — a I, cos a cos q> cos 9 — sin a sin <p sin 9 = cos P cos—,

{¡/ \  ip
sin (p cos 9 = sin p cos — + a , cos a sin (p cos 9 + sin a cos cp sin 9 = sin /1 cos —,

/[1/ \  \Jj
cos (p sin 9 = sin P sin I — + a I, cos a sin q> sin 9 + sin a cos cos 9 = cos /1 sin —,

/[J/ \  . il·
sin </) sin 9 = cos P sin I— — a I, cos a cos sin 9 — sin a sin </> cos 9 = sin /1 sin —,

and so on.
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In the transformation formulae, the parameters of ellipse /?, (p, iJ/, and a refer to 
concrete coordinate system in which the ellipse is described. This remark does not 
concern the parameter 9 which is an invariant.

4. Rotational transformation of the vector with respect 
to the coordinate system

Rotational transformation of the vector with respect to the coordinate system is an 
operation reciprocal to the rotational transformation of the coordinate system. 
Therefore, if Ep = Epx+jEpy is a vector in the primary position with respect to the 
xy system, then

Ew = ¿ v° Ep — Ewx +jEwy (9)

describes the vector in the same system in the secondary position, i.e., rotated 
through an angle (p0 with respect to the primary position (Fig. 3). The angle (p0 
= (pw — (pp is the difference of the azimuths of both the ellipses measured in the

same coordinate system. When the vector in the primary position is written in the 
standard form |Ep, and the notation of the vector in the secondary position is to 
be of the standard form \EW as well, then the shift of the general time phase \J/0 
should be taken into account in (9)

I K  = e ^ / E pe - ^ . (9a)

The formulae (9) and (9a) differ from the formulae (5) and (5a) only in the signs 
for (p0 and for positive direction of rotation of the system in the first case or 
that of the vector in the second case.

4.1. Linear polarization

In the case where the ellipticity angle 9 = 0 and thus, the diagonal angle is equal 
to azimuth, /? = <p, and by the same means the phase difference if/ = 0, Eq. (3) 
describes the linear polarization vector that forms the </> angle with respect to x 
axis

r· i , · · V ¿(tor+ 1/0 i(itfi + </0E = (cos tp +y sin (p) e r  = e*v e p . ( 10)
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4.2. Circular polarization

In this case # = /? = n/4, while the phase difference ^  = n/2

E =  ^cos ̂  é nt* +  j  sin ̂  e i*/4^e,(c,i +V

V2 V2

5. Transformation of polarization state

As it is well known, each state of polarization may be expressed as a sum of two 
component polarizations. The components are in the general case of elliptic 
polarization types being in mutually orthogonal states. This means that the 
respective axes of ellipses are mutually perpendicular, while their senses of helicity 
are opposite.

The following notions are to be introduced:
— eigenvector, determining one of the two orthogonal directions of distribu

tion and being a unit vector

Ê =  Êx+jÊ y,

— initial polarization vector

K  =  Êpx+ j Ê py,
A

— two orthogonal vector being components of Ep vector

=  Ê lx+ j Ê ly,

E2 = Ê 2x+jÊ  2y.
A A A

From the above definitions it follows that £ i + £ 2 = ED.
The operation of decomposition of the vector Ep is carried out taking account 

of the identity

A 1 A A A A A
Ep =-(EE*' + E* E')Ep (12)

following from the formula (2a).
For the unit eigenvector E, the factor appearing in front of Ep on the right- 

hand side of the identitiy is equal to unity. The identity (12) may be transformed 
to the following form

£ , =  !{£<£*'£,) + £*(£'£,)} = 1 { (£ Ï 

+(ÊX —jÊy)(Êpx + jÊ n )£*} =
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+ ./'(£, £„. -  Êy£,,) £ * + (£ , Êpx + £„ £* +./< ¿ î  -  £* £ „ ) £ |

= J !(£ll +_/£2l) + (£|2 +^£22)] ·

The above result shows that the operation of decomposing the vector Ep into two 
component elliptical polarizations may be performed in the two following ways:

Ep = Eil+ jE 21 =  (Ê* Ê*px + Ê* Êpy) Ê + j(Êx Épy- Èy Êpx) È \  (13a)

Èp = Êl2 +jÉ22 = (Êx Êpx + Êy Êpy) Ê* +j(Ê* Êpy -  Ê* Êpx) È. (13b)

5.1. Linear polarizer
The eigenvector of the polarizer E = ej < P H has the direction of the Ç axis, 
consistent with that of polarizer transmittance (Fig. 4). If Ep = Êpx+jÊpy is a

Fig. 4. Linear polarizer

vector of initial polarization written in the xy system, and which in the Çrj system 
has the form

Epito) = e~J<PHEp = cos (pH Êpx + sin q>H Epy

+j ( -  sin (pH Epx + cos (pH Êpy) = Êpi +jÊptt,

then, only the Ep4 component is transmitted through the polarizer. The resultant 
polarization vector is thus a linear vector. In the £rj system it has the form

= Êp4 = cos Ç)H Êpx + sin <pH Êpy, ( 14a)

while after having been transformed to the xy coordinate system

Ew = eJ<PHEMw  = eJ<l>H (cos (pH Êpx ■+■ sin (pH Êpy) = ^{Èp + ej2(PH Ê'p) (14b)

A ^ ^ A

where E'r = Epx — jE py is the conjugate version of the number Ep with respect to y.
If the directions of polarizer transmittance were consistent with the rj axis, the 

equation for the resultant polarization linear vector in the system would be

K m  =jÉpn =j(  — sin (pH Êpx+ cos (pH Êpy),

and after transformation to the xy system

Ew = eJ(PH EMin) = jeiVH( -  sin <pH Êpx + cos q>H Êpy) = ^(Ep-  ej2<PH E 'p).
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5.2. Linear double-refracting plate

The double-refracting plate performs a decomposition of the initial polarization 
into two linear component polarizations being in mutually orthogonal states 
shifted in phase by = — The first direction of the decomposition is
represented by the eigenvector E of the plate, determining the axis £ of the £rj 
system together with its azimuth (pF (Fig. 5). The respective phase shifts introduced

Fig. 5. Linear double-refracting plate

A ^
by the plate for both optical axes of the £rj system are ^  and If Ep = Epx 
+jEpy is an initial polarization vector written in the xy system, and

Epiiv) = e~JVF EP = EPt +jEp„ = cos cpF Epx + sin (pF Epy +j( -  sin (pF Epx 
+ cos (pF Epy)

is the same vector written in the Crj system, then

E«in) = Ep(. +je*' Em = (cos (pF Epx + sin q>F Epy)e**

+j ( -  sin (pF Epx + cos (pF Epy) e*n (15a)

is the equation of the resultant polarization vector in the î rj system, which after 
having been transformed to the xy system takes the form

Ew = eJ<PFEMin) = eJVF {(cos q>F Epx + sin (pF Epy)e**

+j ( -  sin (pF Epx + cos (pF Epy) e*1·}

= i  {(Er+ ^ E ' p)ei* iH K -< ? 2VFb e '* '}

= i  { (E „ + ^ r E'p)el*rl2+(Er - e n v F e*s

Á , . · *Af A, J2<p f  Ep + ism —  Epe J+s
(15b)

where +
A

The formula (15b) results from the decomposition of the initial vector Ep into 
two orthogonal polarizations (linear in this case) and next ascribing to them the 
respective phase shifts and in accordance with the properties of the plate. 
This formula may also be derived starting from the relation (13a). Since the first 
eigenvector is

E = ejVF el(0t = (cos (pF + j  sin (pF) ,
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then

Ew = (£* Èpx + É* Êpy) Êe+j(Ê, Ê„ -  Épx) e*''

p x= {(cos (pF Êpx + sin (pF Êpy)e** +j( — sin (pF Ê
r  , i'I'n) t<PF+ cos (pFEPy)e n)e .

This is a result consistent with the relation (15b). An identical result is obtained 
for decomposition into two linear polarizations (i.e., for linear eigenvector) based 
on relation (13b).

53. Elliptic double-refracting plate

The initial polarization is decomposed in this case into two orthogonal elliptic 
polarizations shifted with respect to each other in phase by if/F = ^  — Assuming 
that the first eigenvector of the plate is

E = Ex+jEy = (cos fie1'1'12 + j  sin fie^1*12) e*"* = ejVF (cos # — sin &)ei{<ot+a),

and taking account of (13a) and (13b), the following results may be obtained

C i  =  e‘*<Ei l + jel*'E2i =  e>{(£* £ „  +  E, £ „ )
Jp x  ' y pyJ

A A A  AAA
= 1 {e'*{ (££*' Ep + EE*t„)+e *"(£* £ ' E„ -  EE* E'p)}

= ~ {(e*Fl2 EE*'+e-‘*Fl2È* Ê') Êp+(e*FnÈÊ*

= |^ c o s -y + js in 2 9 s in -y ^ £ p + i cos 29 sin e‘1‘"F £p|  e*s, (16a)

L ·  = e‘*( Ei2 +je1*- Ê22 =  e‘*<(Êx Êpx + Ê, Ê„) Ê* (£* É„ -  Ê* E

-  \  [en (È* E'Ep+ £ £ *  E'p) + e *"(££*' Ê„- ÈÈ* E'p))

= l-{e*F'2 E* t  + e~‘*Fl2 ÊÊ*')Êp+(e*F'2-e ~

= |  (cos y  - j  sin 29 sin y j  Ep+ icos 29 sin y  e,2VF J  c">s ( 16b)

where i F = i = j(i/'< + '/',)·
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In deriving the formulae (16a) and (16b) the following substitutions were made use of: 

£* '£„  =  E* Epx + E* Epy+j(E* Epy -  E* Epx),

E* E'p = E* Epx +  E* Epy+ j  (E* Epy -  E* Epx),

E Ep =  Ex Epx +  Ey Epy +  j(Ex Epy Ey Epx),

EE'p = Ex Epx + Ey Epy —j(Ex Epy -  Ey Epx),

EE*' =  J - i j S =  1 — ij sin 29,

E*E' = J  + ijS =  1 +  1/ sin 29,

EE* = M + jC  =  cos 29e,2<p.

5.4. Linear quarter-wave plate
A quarter-wave plate is a double refracting plate for which \J/F = \j/̂  — ̂  = ±n/2 
(the plus sign denoting the dextrorotatory quarter-wave, while the minus sign — 
the laevorotation quarter-wave). In accordance with (15b) the equation for the 
resultant polarization vector in the xy system is

Ex,4 = e,vr {(cos <pF Epx+sin <pF Epy)e ±,’/4 + j ( - sin <pFEpx

+cos<pFE„)e±i«i }e*s = ( E .+ i e ^ E ’Je**. (17)

5.5. Linear half-wave plate
In this case the phase difference i¡/F = n, and thus

Ex,2 = eJVF {(cos (pF Epx + sin (pF Epy)ein'2 + j ( - sin (pF Epx

+ cos cpFEpy)e - iK'2}e^s = iej2<PF E'p = ej2(PF t pems+^ . (18)

5.6. Beam-splitter (beam-splitting mirror)

The light beam incident on the mirror ̂ surface at the angle r (Fig. 6), with the 
polarization determined by the vector E = Ex+jEy composed of:

Ex — lying in the plane of incidence,
Ey — lying in the plane perpendicular Jo  the plane of incidence, is decompos

ed into the ray of the polarization vector Er = Rx Ex-\-jRyEy reflected at the angle 
r and the ray of the polarization vector Et = f xEx+ jfyRy refracted at the angle t.

MEDIUM

Fig. 6. Beam-splitting mirror xyz — the dextrorotatory reference system 
related to the direction of light propagation in the following way: the x 
axis lies in the plane of incidence, the y axis is perpendicular to the 
plane of incidence (in the figure it is directed upwards, which is denoted 
by the symbol O), the z axis determines the directions of incident, 
reflected and transmitted light beams, respectively
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The complex amplitude-phase coefficients appearing in the formulae given above 
are:

»  — i\jl R
Rx = Rxe x — reflectance of the light reflected for the component of the 

polarization vector lying in the plane of incidence (which is determined by the z 
and x axes).

*  — ilp R
Ry = Rye y — reflectance of the light reflected for the polarization vector 

lying in the plane perpendicular to the plane of incidence (which is determined by 
the z and y axes).

*  — iiltf
Tx = Txe x — trnasmittance of the light transmitted for the polarization 

vector component lying in the plane of incidence.
 ̂ ~ jÿ  T

Ty = Tye y — transmittance of the light transmitted for the polarization 
vector component lying in the plane perpendicular to that of incidence.

The real coefficients Rx, Ry, Tx, and Ty define the degree of the attenuation of
A A

amplitudes for the respective components of vectors Er and arguments of the 
complex coefficients \J/R , i/^ , \J/T , and il/T represent the phase jumps of the

X y * A y
respective components of vectors Er and Et. Since, for the light transmitted, the 
phase jumps ijjT =il/T = 0, then finally:

X y

Er = Rx Ex +jRy Ey = RxExe 

Et = TxÊx+jTyÊy,

+jRyEye ' Ul,Ry, (19)

The reflectance and transmittance coefficients are functions of absolute indices of 
refraction nl for the medium 1, and n2 for the medium 2 (Fig. 6).

6. Conclusions

The description of the polarization state by means of the double complex numbers 
seems to be more perspicuous in comparison with the respective matrix methods. 
A transition from the double complex to the matrix notation renders no difficul
ties.

In order to determine the matrix components of the Stokes vector, the 
relations (2a)-(2d) may be used. The Stokes vector expressed by the double 
complex numbers is

' J -
A

' E*' -
M A A A 1 A

A
E*

c
=M +M \ where M = -  E A

2 -jE*
-S  - L —jiE*' -

A A
M' — the form conjugate with respect to j  of the matrix M.

The Jones vector may be written immediately on the basis of the double
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complex notation, since

E = (cos fie4'x + j  sin pe'l'y) eiv>t = 

Hence,

cos fie
* n ^sin pe

T c o s ^ l  · 
J |_sin J

is the matrix of the Jones vector.
The way to write the Jones transformation matrices will be shown by two 

examples. The relation (5) makes it possible to determine the matrix of the 
coordinate system rotation

£(*„) = e~JV°E  = (cos (p0- js in  (p0){Ex+jEy)

= cos (p0 Ex + sin (p0Ey+ j(-  sin q>0 Ex + cos (p0 Ey)

I”cos (p0 Ex +  sin (p0 Ey I” cos (¡p0 sin (Pq 1 \ E X~\

|_ — sin (p0 Ex -I- cos (p0 Ey J [_ sin (Po cos </>oJ1a J

Hence, the Jones matrix for the transformation of the coordinate system is

^o ) [
COS (p0 si 
-s in  (Po

sm(p0 

(Po cos (p0

The other example is the determination of the polarizer matrix. Taking account 
of the relation (16a) we obtain

E w =  ( E * E px+ E* E „ )  ( 4  +JE,)e*“ + j ( E x -  (£ *  + }£ * )

[4*  4  4 -  4  4  4* 1  r

“ L 4 4 4 . + 4 4 4 J  L

- 1

E*EyEpx- E x E*E„ 

-E *E ,Epx+E*Ex Epy
_ * > r

4 4 4 4 *
4 4 4 4 j

4 * 4 4 4
E*x EyE*EyJ

[ 4 4 - 4 4 1 [ £  
4 J  L - 4 4 4 4 J U

'<4

^F/2 + E*Ey - E XE*
£ ? £ .

~i+Fl2 Jpx
Er

J't's

= (Ji e‘*F,2+ J2e~,*Fl2)\i E. pxy * s

where

J i  =
E*E3
£? t

EXE* 1

¿3 #

is the Jones matrix built up on the basis of the first eigenvector of the E polarizer

J 2 =
E*Ey- E xE* 

-E*x Ey E*EX
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is the Jones matrix built up on the basis of the second eigenvector of the —jE* 
vector, while

J = J l el*rl2+ J1e-'*rl1

Ê * Ê j* fl2 + Ê *Ê ,e^‘*fl2 2i sin ^  £ , '

=  2 is in ^ £ * £ „  Ê* Êye*Fl2 +

is the Jones matrix of a double-refracting plate.
The whole reasoning given in this work has been carried out basing (as it has 

been pointed out at the beginning and as it is usually assumed in all the methods 
of describing the polarization state [l]-[4]) on the assumption that the direction 
of the wave polarization is consistent with the z axis, while the polarization vector 
E lies in the xy plane. In this formulation the description of the state of 
polarization is a two-dimensional problem. There obviously exists a possibility of 
leaving out this assumption and considering the problem in three-dimensional 
complex space, so that the direction of propagation be completely arbitrary. 
However, as far as the optical systems are concerned, such generalization is usually 
unnecessary. It may be useful in using the double complex numbers for simulta
neous description of both fields of an electromagnetic wave (in which the real 
vector E  may be identified with the polarization ellipse of an electric field, while 
the imaginary vector H may be identified with the ellipse of the magnetic field 
polarization).

In the complex three-dimensional space, the imaginary unit i remains assigned 
to the time variable, while separate imaginary unit numbers (imaginary versors) 
are assigned to each of the three axes of the xyz system. These three numbers 
j x, jy> jz form the base of a complex space. They possess the following properties:

jxjx - 1, JxJy Jzi jyjx = -jz ,

jyjy = - 1, jyjz =jx, jziy = - jx ,

Jziz = - 1, jzJx jyi jxJz - j y

More detailed presentation of the problem in this formulation lies beyond the 
extent of this paper.
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Двухкомплексные числа используемые для описания 
состояния поляризации
В работе представлен новый способ записи результирующего вектора поляризации, в котором два 
взаимно перпендикулярных физических компонента электрического поля — представленные в 
виде комплексных чисел — взяты в комплексной сумме. Создано таким образом двухкомплексное 
число подчиняется простым законам арифметики, благодаря чему расчёты касающиеся любых 
изменений состояния поляризации несложны и наглядны. Представлен ряд примеров такого пода 
расчетов, касающихся между прочим изменений состояния поляризации в результате прохо
ждения света через такие элементы как: поляризатор, двухпреломленная пластинка, зеркало 
разделяющее свет. Представлена также взаимосвязь между этим способом описания состояния 
поляризации и описанием при помощи матрицы Стоукса и Джоунса.


