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Application of double complex numbers
to the description of the polarization state

JtRZY BOJANOWSKI

Institute for Aircraft Engineering and Applied Mechanics, Technical University of Warsaw,
ul. Nowowiejska 22/24, 00-665 Warszawa, Poland.

The paper presents a new way of describing the resultant polarization vector in which two
mutually perpendicular physical components of electric field — expressed in the form of complex
numbers — are put in a complex sum. The number obtained in this way is double complex and
is governed by simple rules of arithmetic, due to which the calculations concerning any changes
of polarization state are clear and simple. A number of examples of calculations of this kind are
shown concerning, among others, the changes in the state of polarization due to the passage of
light through such elements as: polarizer, birefringent plate, and beam-splitting mirror. Also a
relation between this way of description of polarization state and that based on Stokes and
Jones matrices is presented.

1. Introduction

The elliptic polarization is the most general state of polarization of a monochro-
matic light wave. Two different but equivalent ways may be used to describe this
state [1], [2].

The first one employs the parameters describing straightforwardly a polariza-
tion ellipse in its plane. These are: (p — azimuth, ie, the angle between the
positive direction of the x axis and the major axis of the ellipse (cf. Fig. 1), tan #
= b/a — ellipticity describing the shape of the ellipse and the polarization helicity
direction, m = yja2+b2 = Jm 2+ m2 —amplitude, i.e., the size of the ellipse, \I —
relative time phase. The space orientation of the polarization plane is determined
here by unit vector, normal to this plane, which defines simultaneously the
direction of wave propagation (it is enough to know two of its directional cosines
since the third one may be calculated from the sum of their squares that equals to
unity).

The second way consists in vector superposition of three mutually perpendicu-
lar linear harmonic vibrations of independent amplitudes and phases. For a
complete description, the knowledge of these amplitudes and phases is necessary,
thus of six quantities in all (which is the same number as in the first case).

On the assumption that the positive direction of the axis z of the orthogonal
right-handed Cartesian coordinate system determines the direction of the plane
wave propagation, the number of parameters necessary to describe completely the
state of polarization is reduced to four. The space orientation of the unit vector,
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normal to the polarization plane, is explicitly defined under these circumstances;
namely, it is colinear with the z axis and thus, perpendicular to the xy plane.
To describe the state of polarization in the first way, it suffices to know the

parameters ¢z $, m and iff.

mx»mcos/3, my=msin”.
tantf'b/a, »—&X-

Relations between parameters:
S =sin2& - sin 23sinip

M» cos 2p = cos 2 cos 2ff,

C- sin 23 cos t* cos 2dsin 2<,
8g - cos - cos 20%“cos 2or,
Gg * cos 2/3sin - cos 2 sin 2ac.

Fig. 1 Ellipse of polarization. Parameters of polarization ellipse: 3 — ellipticity, p — azimuth, P —
diagonal angle, \> — phase difference, a — general equiphase, g, b - semi-major and semi-minor axes,
respectively

The second way involves the superposition of two mutually perpendicular
harmonic oscillations of directions consistent with the axes x and y:

Ex = EOxcos (cot-I-§ X) = mcos(icos(a)t + iJx),
Ey = EQycos (cot + $fy) = msin /bcos (cot + ).

2. Basic notations

For the plane monochromatic wave travelling along the z axis, two mutually
perpendicular harmonic oscillations located in the xy plane may be written down
with the help of usual complex numbers as follows:

Ex = EOxei(t = mcos f}pi<tt+1x),
Ey = EOye<d = msinf}e(ot*1y).

The resultant polarization vector written down with the help of double
complex number is

E=Ex+jEy= EFiH =m(cos  +j sin0e**) ekd
= m [cos 0 cos (cot + \f/X)+] sin ficos (cot + 1jy)
+ i [cos 0 sin (cot -h If/x) -fj sin fisin (cot + )] ] N
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where: EX,\p( — first linear component and its phase,
Ey, ijy — second linear component and its phase,
E = m{cos)5cos (cot + ijix)+j sin p cos (ot A-ipy)) — real elliptic component
(vector) of polarization.
H = m{cos)5sin(tof+ i/rd + /sin/)sinfiuf | —imaginary elliptic compo-
nent (vector) of polarization (the so-called “shadow™),
i — first imaginary (ordinary) unit number,
j — second imaginary unit number,
m, & t — amplitude, frequency, time.
Each double complex number possesses three corresponding conjugate forms:
— conjugation with respect to the i unit

E* = E*+jE* = E—iH, (1a)
— conjugation with respect to the j unit
E —Ex—Ey=E'+iH", (Ib)

— conjugation with respect to both the imaginary units (double conjugated
number)

E* = EXE* = E'—iH". (Ic)

On the basis of these conjugate forms the Stokes parameters can be calculated in
the following way:

J=MNEE*¥+£*E) = EXEi +EyE; = EE’+IIH' = m2, (2a)
S= - —2’i—j(££*‘—£*£') = UEXE*-E,E*)
=j(EH"'- HE") = m2sin 25sin ij = m2sin 2&, (2b)

M = } (EE* + 1E*') = EXE*- EyE* = ~(E2+E2+H2+H 9

m2cos 25 = m2cos 25 cos 2(p, (20)

O
1

1 (EE*- E E*) = EXE* + EyE*

= E(EZ_E 2+ H2—H'2) = m2sin 2)5cos«// = m2c0s25sin<p. (2d)

A vector for which J = m2= 1 is defined as unit vector

E = (cos pe** +j sin Pe**) eitat. ©)
Substituting the following expressions into (1):

ipb= — y — phase difference,

ii/p=1 (ijx—ipy) — general initial phase
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it may be reduced to the following form:
£E=mE=m( c o s +jsinf3e *2) iWBz m/E
&
in which E is a unit vector (cf. (3)), and

je @

is the so-called standard form of a double complex vector, for which the phase-
amplitude coefficient is

(A = mex=1- {Mm= Da(*, = Ok

The Stokes parameters calculated according to Egs. (2a)-(2d) for a unit or
standard vector should be reduced by m2

Taking advantage of the relations (IHIc), the parameters defining the elliptici-
ty funtion of the vector E

0 = EE* £'£*' = c0s229 (2€)

may also be determined.

The real component E (similarly to the imaginary one H) performs a rotational
motion as a function of time parameter cot in the xy plane, being elliptic in the
general case. This motion is right-handed (i.e., positive in the assumed right-
handed coordinate system xyz, Fig. 1) if it is performed counterclockwise, and vice
versa. The sense may be determined on the basis of the following relations between
the signs of the basic ellipse parameters

— right-hand sense

{l7i > iy >0) A(tan/? > 0)] v [(— < [} < 0) A(tan 0 < 0)]} =>($ > 0),

— left-hand sense

{[(-« < iff <0)A(tan0 > 0)] v [(k >\t > 0)a (tan 0 < 0)]} =>(S < 0)
while EJEy = el-*/tan 0.

3. Rotational transformation of the coordinate system

Let the polarization vector E = Ex+jEy be written down in primary coordinate

system xy, while the same vector E(in) =e X E = E*+jE” (the same polarization
ellipse) is written in the secondary system £7/, rotated through an angle q@ (Fig. 2).
In the case where in the primary system the vector is written in the standard form,
and in the secondary one it is to be written in such form, too, the shift of general
time phase J/0 between both systems must be considered in the formula

(52)
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Assuming, for example, that the system £rj and the principal axes of the ellipse
overlap, ie, that (0 = (p (angle between both the coordinate systems is equal to
ellipse azimuth in the xy coordinate system), the equation of the standard

Fig. 2. Transformation of the coordinate system rotation

polarization vector (4) takes the canonical form in the  system (for which 1=d
and ij = #2)

/EKm = (cos deit/4+ j sin de- in4) eitct = (cos d- ijsin d) el +ak)

where aK= n/4 - general equiphase of the standard canonical form.
In the xy coordinate system (rotated with respect to the coordinate system *yj
through —< the.equation of this vector is

/E = elfEKmev® = e* (cosd- ijsin 5)ei(Qft+a)

= (cos  122+j sinfie~I*12 et 6)
where: a = t&K—" 0, \j/0 = sK—a, or generally

=<M,)-<W @
In Egs. (6) and (7), there has appeared a new ellipse parameter — general

equiphase a. It occurs in the relations constituting a completion of the Stokes
parameters, which, however, unlike the Stokes parameters, are the functions of the
time variable cot and the general initial phase ~p, namely

B = [ {EE' + E*E*) = > {El + E*1+ El + E*2) = EE'= HA'

= cos 2d cos 2{cot + " p+ a), (20
G- JE Bx B ~AE2E*2+
= cos 2d sin 2 {cot + R+ a)- (29)

Using the parameter B the instantaneous values of the amplitudes of the vectors E
and fl may be calculated

E=+JEE'=+ /{1+B)=%x M{(l+cos2dcos2(coi+"p+a)},

H=x"HH'=+ MI-B)=x {L—cos 2dcos2(coi + *p+a)}.
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For the initial moment, when ojt = ifp= 0, ie, E = /E0 (cf. (4)

B = £0 = c0s29cos2a = cosi/* |

G = GO = cos 29sin 2a = sin i cos 2/1] 8

and

E=EO0O= P(1-l-cos25cos2a) = /~(1+cos”) = cosy,

H=HO0O= M |l—0s29cos2a) = A(l—€0s”) = sin”.
The parameters described by formulae (2a)-(2g) may be taken in one common
relation. By creating for the unit vector
E = (cos/te,*/2+/sin/te_,*2)e, nit*p>=  (cos 3—ijsin 9) ++a)
the following products:
££* = M+jC = cos 2Seizp
EE*' = J —ijS = 1—/sin 2d,
EE = B+i6 = cos 2ueZ@* "I
we may then calculate the total product to obtain the expression
££* EE*'EE' =(M+]jC)(J-ijS)(B +iG) = QE2 = (c0s29£)2. 2
From the transformation formula (6) the following equality follows:
e'v (c0s.9—(/sin 9)* = cos/te >2+ /sin/te_,>/2,

from which - by comparing the respective parts of double complex numbers on
both sides - we obtain the formulae joining the trigonometric functions of single
angles being parameters of ellipse, for instance,

o\

COS CPcos 9 = €os p €os (J——a I, cosacoscos 9—sinasin psin 9 = cos Pcosu—,
. . i \ ) . . . ip
sin(pcos 9 = sinpcos —+a , cosasin (pcos 9+ sinacos @sin 9 = sin /1cos —

. N (A o : - \J
cos (psin9 = sinPsinI—+ a I, cosasingsin 9+sinacos cos 9= cos/lsin—,
N}

. . . \ . . . . il
sin 9)sin 9 = cos Psin {——a l, cosacos sin9—sinasin <cos 9 = sin /1sin—

and so on.
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In the transformation formulae, the parameters of ellipse /2, (o i¥, and a refer to
concrete coordinate system in which the ellipse is described. This remark does not
concern the parameter 9 which is an invariant.

4. Rotational transformation of the vector with respect
to the coordinate system

Rotational transformation of the vector with respect to the coordinate system is an
operation reciprocal to the rotational transformation of the coordinate system.
Therefore, if Ep = Epx+jEpy is a vector in the primary position with respect to the
Xy system, then

Ew=¢v° Ep —Ew+jEwy 9

describes the vector in the same system in the secondary position, i.e., rotated
through an angle (pO with respect to the primary position (Fig. 3). The angle (0
= (pv—(pp is the difference of the azimuths of both the ellipses measured in the

same coordinate system. When the vector in the primary position is written in the
standard form |Ep, and the notation of the vector in the secondary position is to
be of the standard form \EWas well, then the shift of the general time phase \J0
should be taken into account in (9)

IK =e”/Epe-". (%a)

The formulae (9) and (9a) differ from the formulae (5) and (5a) only in the signs
for (p0 and for positive direction of rotation of the system in the first case or
that of the vector in the second case.

4.1. Linear polarization

In the case where the ellipticity angle 9 = 0 and thus, the diagonal angle is equal
to azimuth, /7= g and by the same means the phase difference iff = 0, Eq. (3)
describes the linear polarization vector that forms the < angle with respect to x
axis

E= tcos tp+y sin (p)\é(;(krﬂ/p = e*\/ei'tﬁ"'(/&. 10
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4.2. Circular polarization
In this case # = f? = n/4, while the phase difference » = n/2

E = Ncos™Nént*+jsin™e i*4™e,(ci+V

V2 V2

5. Transformation of polarization state

As it is well known, each state of polarization may be expressed as a sum of two
component polarizations. The components are in the general case of elliptic
polarization types being in mutually orthogonal states. This means that the
respective axes of ellipses are mutually perpendicular, while their senses of helicity
are opposite.
The following notions are to be introduced:
— eigenvector, determining one of the two orthogonal directions of distribu-
tion and being a unit vector
E = Ex+jEy,
— initial polarization vector
K = Epx+jEpy,
A
— two orthogonal vector being components of Ep vector
= EIx+jEly,
E2 = E 2x+jE 2y.
A A A
From the above definitions it follows that £i+£2= ED

The operation of decomposition of the vector Ep is carried out taking account
of the identity

Ep =-(EE* +E*EYEp (12)
following from the formula (2a).

For the unit eigenvector E, the factor appearing in front of Ep on the right-
hand side of the identitiy is equal to unity. The identity (12) may be transformed
to the following form

£, = E<E*'E) + £X(E'E,)} =1{(£]

+(EX—EY)(Epx+JEnE*} =
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+.['(E £, - Eg,) £*+(£, Epx+ £, £* +/<¢ 1 - £%£ )E|

= J I(EN +_/E20) + (£]2 +/£22)] -

The above result shows that the operation of decomposing the vector Ep into two
component elliptical polarizations may be performed in the two following ways:

Ep=Eil+jE2l = (E* Bpx+ E* Epy) E+ j(EXEpy- EyEpX) E \ (13a)
Ep=EI2+jE2 = (ExXEpx+ EyEpy) E* +j(E* Epy- E*EpY)E. (13b)

5.1. Linear polarizer

The eigenvector of the polarizer E = ¢ <P H has the direction of the C axis,
consistent with that of polarizer transmittance (Fig. 4). If Ep= Epx+jEpy is a

Fig. 4. Linear polarizer

vector of initial polarization written in the xy system, and which in the Qj system
has the form

Epito) =e~XHEp = cos (HE px+ sin (HEpy
+j (- sin (PHEpx+ cos (PHEpy) = Epi+jEpt,

then, only the Ept component is transmitted through the polarizer. The resultant
polarization vector is thus a linear vector. In the £rj system it has the form

= Ept = cos QHEpx+ sin HE py, (14a)
while after having been transformed to the xy coordinate system

Ew= eXHEMw = eXH{cos (PHEpx#sin (PHEpy) = *{Ep+ ejPHED) (14b)

A ~ ~ A
where Er = Epx—jE py is the conjugate version of the number Ep with respect to .
If the directions of polarizer transmittance were consistent with the 1j axis, the
equation for the resultant polarization linear vector in the system would be

K m =jEpn =j(—sin (|HEpx+ cos (PHEp),
and after transformation to the xy system

Ew= eJFHEMN) =jeiVH(- sin sHEpx+ cos HEpy) = (Ep- e2<FHED).
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5.2. Linear double-refracting plate

The double-refracting plate performs a decomposition of the initial polarization
into two linear component polarizations being in mutually orthogonal states
shifted in phase by = —  The first direction of the decomposition is
represented by the eigenvector E of the plate, determining the axis £ of the £rj
system together with its azimuth (pF (Fig. 5). The respective phase shifts introduced

Fig. 5. Linear double-refracting plate
by the plate for both optical axes of the £rj system are * and If ép: ép(
+jEpy is an initial polarization vector written in the xy system, and
Epiiv) = e~M-EP= ER +jEp,, = cos qFEpx+ sin (fFEpy+j( - sin (fFEpX
+ cos (BFEpy)
is the same vector written in the Qj system, then
E«in = Ep(.+je*' Em = (cos (pFEpx+ sin GFEpy)e**
+j (- sin (oPFEp+ cos (PFEpy)e*n (15a)

is the equation of the resultant polarization vector in the ¥Yj system, which after
having been transformed to the xy system takes the form

Ew = eXFEMN) = eM-{(cos FE+ sin (fFEpy)e**
+j (- sin (oFEpx+ cos (BFEp) e*

=1 {(EI’+ "E 'p)Ei*iHK-<?2\/|:be-*-}
=1 {(E,,+"rEpelri2+(Er-en v F e*s

A Lo A A e J4S
Ep+ism 2 Epe (155)

where +

The formula (15b) results from the decomposition of the initial vector IéZp into
two orthogonal polarizations (linear in this case) and next ascribing to them the
respective phase shifts and in accordance with the properties of the plate.
This formula may also be derived starting from the relation (13a). Since the first
eigenvector is

E = ejVFel® = (cos (pF+j sin(@®
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then
Ew= (£* Epct E* Epy) EeHEE, - Ep) e
= {(cos (PFEpx+sin (FEpy)e** +j( —sin (FE,,
+ cos (oFER)e" Me .

This is a result consistent with the relation (15b). An identical result is obtained
for decomposition into two linear polarizations (i.e., for linear eigenvector) based
on relation (13b).

53. Elliptic double-refracting plate

The initial polarization is decomposed in this case into two orthogonal elliptic
polarizations shifted with respect to each other in phase by ifF= ~ —  Assuming
that the first eigenvector of the plate is

E = Ex+jEy = (cosfiell12+j sinfie " ¥12) e¥* = gjVF(cos #— sin &)el<u+a),

and taking account of (13a) and (13b), the following results may be obtained

Ci= e*<Eil+je'E2i = e>{(EXE. § ., E,£,)
AAA AAA

= 1 {e*{(EE™" Ep+HEt)y+e*"(E* £'E,,- EE* Ep}

=~ {(€*A2  EE*'+e-ir E)  Ep+(e*BE*

= |*cos-y+jsin29sin-y~Ep +icos29sin e 1"FEp| e*s, (16a)

L. = e*(  E+jel- E2= e€xEx+E, E,)E* (E*E,, -
-\ [en (E* BEp+£E£* Ep+e*"(E£*' E,.-
= He*F2E*t +e~"*H2 EE*")Ep+(e*F2-e~
=] (cosy -jsin29siny j Ep+icos29siny e2VF Jc's (16b)

where i F= i =j(ir<+'1)
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In deriving the formulae (16a) and (16b) the following substitutions were made use of:
£*'£,, = E* Epx+ E* Epy+j(E* Epy- E* EpX),

E* Ep= E*Epx+ E* Epy+]j (E* Epy- E* EpY),

E Ep= ExEpx+ EyEpy+ j(EXEpy EyEm),

EEp = EXEpc+ EyEy—(EXEy- BYED),

EE* = J-ijS= 1—ijsin29,

E*E' =J +ijS = 1+ ¥sin 29,

EE* = M+jC = cos 29e,2p

5.4. Linear quarter-wave plate

A quarter-wave plate is a double refracting plate for which \I#F=\{A*— = +n/2
(the plus sign denoting the dextrorotatory quarter-wave, while the minus sign —
the laevorotation quarter-wave). In accordance with (15b) the equation for the
resultant polarization vector in the xy system is

Ex4 = evr {(cos FEpx+sin gFEpy) e+’ /4+ j(-sin FFEpX

+Cos<pFE,,)edici }e*s = (E.+ie"E Je**, )

5.5. Linear half-wave plate
In this case the phase difference ij/F= n, and thus

Ex,2 = eM{(cos (oFEpx+ sin (pFEpy) ein'2+ j (- sin (pFEpx
+cos qFEpy)e-iK2 ens = igf<FHFEp = ejAFFt pems+”" . (18)

5.6. Beam-splitter (beam-splitting mirror)

The light beam incident on the mirror”~surface at the angle r (Fig. 6), with the
polarization determined by the vector E = Ex+jEy composed of:

Ex — lying in the plane of incidence,

Ey — lying in the plane perpendicularJo the plane of incidence, is decompos-
ed into the ray of the polarization vector Er = RXEx-\-jRyEy reflected at the angle
r and the ray of the polarization vector Et = fxEx+ jfyRy refracted at the angle t.

MEDIUM

Fig. 6. Beam-splitting mirror Xyz — the dextrorotatory reference system
related to the direction of light propagation in the following way: the X
axis lies in the plane of incidence, the y axis is perpendicular to the
plane of incidence (in the figure it is directed upwards, which is denoted
by the symbol O), the z axis determines the directions of incident,
reflected and transmitted light beams, respectively
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The complex amplitude-phase coefficients appearing in the formulae given above
are:

» —0jIR

Rx = Rxe T — reflectance of the light reflected for the component of the
polarization vector lying in the plane of incidence (which is determined by the z
and x axes).

* —ilpR

Ry = Rye " y — reflectance of the light reflected for the polarization vector
lying in the plane perpendicular to the plane of incidence (which is determined by
the z and y axes).

* —iiltf

Tx= Txe ' x — trnasmittance of the light transmitted for the polarization
vector component lying in the plane of incidence.

A ~jiyT . . . N

Ty = Tye W y — transmittance of the light transmitted for the polarization
vector component lying in the plane perpendicular to that of incidence.

The real coefficients Rx, Ry, Tx, and Ty define the degree of the attenuation of

A A
amplitudes for the respective components of vectors Er and arguments of the
complex coefficients \JR, i/* , \JT , and il/T represent the phase jumps of the

respective components oxf vectors ér and ét.ySince, for the light transmitted, the
phase jumps §jT =il/T =0, then finally:

Er = RXxEx+jRyEy = RxExe +jRyEye "UR, (19)
Et = TXEx+jTyEy,

The reflectance and transmittance coefficients are functions of absolute indices of
refraction nl for the medium 1, and n2 for the medium 2 (Fig. 6).

6. Conclusions

The description of the polarization state by means of the double complex numbers
seems to be more perspicuous in comparison with the respective matrix methods.
A transition from the double complex to the matrix notation renders no difficul-
ties.

In order to determine the matrix components of the Stokes vector, the
relations (2a)-(2d) may be used. The Stokes vector expressed by the double
complex numbers is

A
‘\] _ 1 E*l _
M A A A 1A E*
=M+M\ hereM = ~E .
c where ) -jEA*
-S - L —HE~ -
M' — the form conjugate with respect to j of the matrix M.

The Jones vector may be written immediately on the basis of the double
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complex notation, since

cos fie
E= fiedx+j sinpe'lyent=
(cos fiedx+j sinpe'ly)e o 5'8/\
Hence,
T cos"ﬂ :
J |sin

is the matrix of the Jones vector.
The way to write the Jones transformation matrices will be shown by two

examples. The relation (5) makes it possible to determine the matrix of the
coordinate system rotation

*) =e~ME = (cos (0-jsin (QO{EX+jEY)
= cos (POEX+ sin (OEy+ j(- sin (O EX + cos (POEY)
I’cos (pOEx+ sin (p0 Ey F’cos (jsin (Pg 1\E XA
|_—sin (pO Ex-l-cos (p0EyJ [ sin (Pocos ¢0lla J
Hence, the Jones matrix for the transformation of the coordinate system is
cos (p0sm(p0
"0) [-sin (Pocos (p0

The other example is the determination of the polarizer matrix. Taking account
of the relation (16a) we obtain

Ew = (E*E gRE*E,)(4 & +j(E x
[4%4 4- 4 4 4*1 r EXEyEpx-E xE*E,, |
“L444.+444) L -E*E.Epx+E*ExEpy
4444 % [44-441[E 4
144445 49 L-4444]3U
4*444 2+  E*EY-EXEY a0 g Jts
Bx EyE*EyJ £2F. Er

= (Jie*F,2+J2e~*H\ Epxy * s

where

E*E3 EXE*1
Ji= ot

is the Jones matrix built up on the basis of the first eigenvector of the E polarizer
E*Ey-E xE*

J2=  E*xEy E*EX
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is the Jones matrix built up on the basis of the second eigenvector of the —E*
vector, while

J =Jlelri2+J1le-"*rl1

ExEj*fl2+E*E en 2 Jisin® £, '

= 2isin~E*E, E* BEyer R+

is the Jones matrix of a double-refracting plate.

The whole reasoning given in this work has been carried out basing (as it has
been pointed out at the beginning and as it is usually assumed in all the methods
of describing the polarization state [I]-[4]) on the assumption that the direction
of the wave polarization is consistent with the z axis, while the polarization vector
E lies in the xy plane. In this formulation the description of the state of
polarization is a two-dimensional problem. There obviously exists a possibility of
leaving out this assumption and considering the problem in three-dimensional
complex space, so that the direction of propagation be completely arbitrary.
However, as far as the optical systems are concerned, such generalization is usually
unnecessary. It may be useful in using the double complex numbers for simulta-
neous description of both fields of an electromagnetic wave (in which the real
vector E may be identified with the polarization ellipse of an electric field, while
the imaginary vector H may be identified with the ellipse of the magnetic field
polarization).

In the complex three-dimensional space, the imaginary unit i remains assigned
to the time variable, while separate imaginary unit numbers (imaginary versors)
are assigned to each of the three axes of the xyz system. These three numbers
jx, jy>jz form the base of a complex space. They possess the following properties:

xix -1 Xy X jyjx = -jz,

yiy=-1 Jyiz=jx, jziy= -jx,

Jziz= - 1 jux jyi Xz -jy

More detailed presentation of the problem in this formulation lies beyond the
extent of this paper.
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102 .' BOMTMCM8K1

lEl.ByXKOMI'I.I'IEKCHI:Ie yuycna UCnosibsyemble A4 OonncaHuA
COCTOAHMA nonAapunsaunm

B pa6oTe npefcTasneH HOBbIM CMOCO6 3anucy pe3ynbTUPYHOLLEr0 BEKTOPa NonspusaLMm, B KOTOPOM ABa
B3aMMHO MepPNeHANKYNAPHbIX (PU3NYECKMX KOMMOHEHTA 3/1eKTPUYECKOro MoNfs — MpeAcTaB/ieHHble B
BMAE KOMMMEKCHbIX YMCENT — B35iTbl B KOMMJ/IEKCHOM cyMMe. C034aH0 TaknuM 06pa3oM ABYXKOMIMIEKCHOe
UYMCNO MOAYMHAETCA MPOCTbIM 3aKoOHaM apuMeTMKKM, 6narofaps 4YeMy pacuéTbl Kacarouwmecs f6bIxX
N3MEHEHWIA COCTOSHUSA MONApM3aLMmM HeCNOXHbI U HarnsaHbl. MNpeacTaBneH psAg NPYMMepoB Takoro noga
pacyeToB, KacaloLMXcsa MeXay MpoYMM W3MEHEHWI COCTOSAHMS nonspusaunm B pesynbTaTe MNpPoOXo-
XKAEHUS1 cBeTa 4epe3 TaKWe 3/M1eMeHTbl KaK: MoNsipu3aTop, ABYXMPeNoM/IeHHas MacTUHKa, 3epKasno
pasgenstwouiee cBeT. [NpeacTaBneHa Takke B3aMMOCBA3b MeXAYy 3TMM CMOCO60M OMMcaHWs COCTOSHMSA
nonsipMsayMm n onmMcaHmem npu nomowin matpuubl CToykca u [koyHca.



