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The usable form of the left semiprojection 
of the displacement-gradient tensor in the fringe 
visibility method and its applications 
to evaluation of holographic interferograms*

Tadeusz M. Molenda

Institute of Physics, University of Szczecin, ul. Wielkopolska 15, 7(M51 Szczecin, Poland.

The usable form of the left semiprojection of the displacement-gradient tensor occurring in the 
fringe visibility method of holographic interferometry is given for small deformations of solids. 
Application of this form to computing the strain and rotation tensors is presented.

1. Introduction

The fringe-visibility method of holographic interferometry [1], [2] gives the 
possibility to determine the quantities relating to the displacement and strain fields 
without using differential methods.

As it results from the analysis of the fundamental equations of holographic 
interferometry [2], [3], the direct information concerning the strain and rotation of 
the object surface is contained only in the argument of the aperture function of the 
imaging system used during the reconstruction of a double-exposed hologram.

The light-intensity distribution /  in the image plane of the imaging system is 
described by the following expression [4]:

where I0 is the light-intensity distribution in the object image, V =  |P| is the 
fringe-visibility function, D is the phase-difference function, and P — the aperture 
function, being the Fourier transform of the pupil function which describes the shape 
of the diaphragm in the imaging system

where r is the radius-vector in the diaphragm plane, k is the wave number, and x —

(1)

+ 00

P(x) =  jf  p(r)exp( — ikx -r)df (2)
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the vector being the aperture-function argument. If the object surface is illuminated 
by a plane wave, this argument takes the following form [4]:

* =  IH J+ (L 0 -  L)S,N;(?®am  (3)

where L and Lv are the focusing distance of the imaging system, and the distance of 
the object surface from the diaphragm centre on the viewing direction, respectively, u 
is the vector of the displacement of the observed point of the object surface between 
two holographic exposures, g is the sensitivity vector of the holographic arrangement, 
i.e., the sum of the unit vectors related to the illumination and viewing directions, 
respectively, Na, Ns and Nv are the operators of the normal projection onto the 
diaphragm plane of the imaging system, the plane tangent to the object surface and 
the plane perpendicular to the viewing direction, respectively, Sv denotes the oblique 
projection, along the vector normal to the object surface in the investigated object 
point, onto the plane perpendicular to the viewing directions, V®u is the tensor 
product of the nabla and displacement vectors, called the displacement-gradient 
tensor, and Ns(V®u) is its left semiprojection.

The solution of Eq. (3) with respect to the tensor Ns(E(g)u) requires that the 
following system of three equations be solved

Ns{V®ú)g(k) = w(k), k ±= 1, 2, 3 (4)

where

(5)

under condition that three different holographic interferograms with different 
sensitivity vector g(k) have an identical viewing direction. The vectors x(k), (Ac =  1 ,2 , 3), 
should be experimentally determined from the measurements of fringe visibility (see 
Eqs. (1) and (2)) for different interferograms relating to different illumination vectors 
and, consequently, for different sensitivity vectors. The vector x' is related to the 
focusing distance L, and the other x-vectors — to L. The operator Av denotes the 
oblique projection, along the normal to the diaphragm plane, onto the plane 
perpendicular to the viewing direction.

The purpose of this paper is to find the usable form of the left semiprojection of 
the displacement-gradient tensor to enable the preparation of appropriate numerical 
algorithms for computer calculations of the strain and rotation tensors.

2. Solution of the problem

Let / 1. / 2 ./3  =  ns and Z 1, / 2, / 3 =  hs be covariant and contravariant bases, 
respectively, originating in the investigated object point, where ris is the normal of the 
object surface. Then the semi-interior tensor Ns(?®u) can be defined by six
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components Uai (a =  1, 2; i =  1, 2, 3) in the contravariant base {/**},=1,2,· 

Ns(V®u) =

where the repetition of indices implies summation.
By virtue of (6), the Eq. (4) can be written in the form

(k)U Jp -g m) =  w

where wlk> = wtk>-fa, and moreover, the following relationship holds:

(N .A J Y l =n-n„

(6)

(7)

( 8)

where na and nv are the unit vectors perpendicular to the diaphragm plane and 
relating to the viewing direction, respectively.

Equations (7) make two systems of linear equation (for a =  1 and a =  2) with the 
same determinant

[ « " ’■ r x f l l C / . - l i x / , ) ] .

If the vectors g(k) are not coplanar, i.e., g{i)-(g{2) x g(3)) ^  0, then the solution of Eq. 
(7) exists in the form (see Appendix)

g,1,-W,2,xg ,3r
(a = 1,2; ¡ = 1 , 2 ,  3) (9)

where fna = -e^w ^ig ^  xg (k)), and eijk denotes the completely antisymmetric 

Levi-Civita’s symbol.
The contravariant components of the tensor Ns(V®u) can be obtained by raising 

indices a and i in Eq. (9).

3. Applications to interpretation of holographic interferograms

In the case of small deformations, the left semiprojection of the displacement-gradient 
tensor can be decomposed as follows [5]:

Ns(V®û) = r +QE + cb(g)fis (10)

where r  is the surface-strain tensor, QE is the skew-symmetric surface tensor, E is the 
two-dimensional perm utation tensor, Q is the pivot-rotation angle around the vector 
ns, and œ — the vector of inclination of ns.

By virtue of (6) we get

(11)

«« =  £7.3 > (12)
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Q = (U12- u 2l) (13)

where a =  f i T i —(fi'Ii)2 denotes the determinant of the metric tensor of the object 
surface.

Finally, the surface-rotation vector, defined in [4] by

c5s =  (nins +  Qhs (14)

($ — three-dimensional permutation operator), generates the surface-rotation tensor

Rs = <fc5s.

This tensor takes the following matrix form:

1
0 2 ^ 1 2 - ^ 2 1 ) - Ul3

^ 1 2 - ^ 2 1 ) 0 - U23

ul3 U23 0

(15)

(16)

4. Final remarks and conclusions

The quantities determining the elements of the left semiprojection of the 
displacement-gradient tensor can be divided into three groups. The first group 
consists of the quantities na, nv, gw , L and L which are determined by geometry of 
holographic arrangement and by measuring conditions. The x-vectors form the 
second group of the quantities which can be directly determined from measurements 
of fringe visibility [4]. The quantity Lv and the normal ns of the object surface belong 
to that group because they can be evaluated also by means of the fringe-visibility 
method [6], though some other methods, e.g., holographic contouring methods, can 
be used, too. The vector ns is necessary to define the vectorial base {/*} composing 
the third group of quantities which, in general, can be chosen arbitrarily. In practice, 
however, the base of vectors /*  should be chosen to simplify the calculations.

It should be emphasized that the obtained form (9) of the elements of the left 
semiprojection of the displacement-gradiednt tensor and the forms (11) and (16) of 
the strain and rotation tensors can be easily algorithmized for computer calculations.

Appendix

For a fixed a, where a =  1 or 2, Eq. (7) turns into the following system of equations: 

v .A ? l -9" ')+ u .A f2-ê,l')+U '3(p -g (U) = ni1», 

u M l -gm)+ u A P -9 m) + v A P - 9 m) -  w<2»,

t / „ ( / 1-0(3,) +  l / . , ( / 2 -0<3,) + ^ i ( / 3-g(3>) =  w<3>.

(Al)



The usable form of the left semiprojection of the displacement-gradient tensor... Ill

In order to solve this linear system the Cramer formulae can be used. The main 
determinant Da of the system (Al) takes the form

(A2)
P-P' PP' P-9'1

Da = P-g'2 ) P'P' P'P'
PP' P'P' P-91”

or more compactly [7]

D. =  [ / 1l / W 3)][9a l '(0(2| ><0'3>)]·

The determinant for the unknown element Ual has the form

D*i =
P'P' PP

w < 2 ) P-P' PP
w < 3 > PP' P-P'

(A3)

(A4)

By virtue of the Laplace theorem, the determinant Dal can be decomposed as 
follows:

Azi =  w;-  U,(D PP' P-9 «,(2) P'P' P-P' 1 J3 ) P-P' P-P'
P-g™ P-P'

—
P-P' P-P' + P-P' P-P' .(A5)

The above determinant can take a reduced form by using the well-known identity
[7]

d-c b'C
a-ct BB

=  {axB)-{cxct)

where a, B, c and cf are arbitrary vectors. Then

A ,. = K ( P * P )

where

ma = wi1)(̂ (2) x 0(3)) + wl2)(̂ (3) x 9{1)) + wi3)(<7(1) x g{2)).
The base vector normal to the object surface is defined by

/ iX /2

(A6)

(A7)

P  = / 3  =

l/i x / 21
(A8)

and contravariant base vectors / ' ( i  =  1, 2, 3) — by the orthogonality relations:

V , ; i :

Then we have

1
(A10)
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Substituting the identity

/2x (/1x 72) = (/2/2)/,-(/2-/,)/2
into Eq. (A 10) and using the orthogonality relations (A9) we get

(A ll)

(A 12)

By virtue of (A 12) and (A9), the mixed vectorial product takes the following form:

Finally, substituting Eqs. (A12) and (A 13) into Eqs. (A7) and (A3), respectively, we 
find the searched component of the left semiprojection of the displacement-gradient 
tensor

The other components of that tensor are formed in the same way. Consequently, we 
get the uniform expression as in Eq. (9).
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Полезное выражение левой полупроекции тензора градиента смещения 
в методе контраста полосы и её применение в количественной интерпретации 
голографических интерферограмм

В работе получено полезное выражение левой полупроекции градиента смещения в случае малых 
деформаций твёрдого тела для метода контраста полосы в голографической интерферометрии. 
Вид этого выражения удобен для вычислений на ЭВМ тензоров деформаций и вращения 
непрозрачных объектов исследованных методом голографической интерферометрии.
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