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On a modification of the Fialovszky method 
for the case of nonsymmetric tolerances
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There has been presented in the paper the problem of determining the manufacturing tolerances for 
the optical elements in the case of nonsymmetric tolerancing.

1. Introduction

The fundamental objection to the F ia l o v s z k y  method [1], [2] is that its model does 
not include the reality of the technological process, i.e., the real distributions 
occurring in the workshop practice. Each technological process is organized so that 
the worker can “safely” approach the nominal dimension. A typical example is a 
principle of maximum of the material and connected with it nonsymmetrical 
tolerancing, i.e., in depth of the material, e.g., 20.1-0.2 (instead of symmetric one: 
20+0.1). This leads to the probability density distributions in which the most 
probable dimensions occur in the vicinity of the upper deviation. Such distributions 
are usually described by a rectangular triangle in the first approximation. In the case 
of optical design parameters (radius of curvature, spacing, refractive index) the 
spacing tolerance (thickness) is typical, Fig. lb. A special commentary is required for 
the case of curvature tolerancing of an optical system for which the verification of the 
surface dimension with the help of interference gauges requires one-sided deviations 
(two-point contact of a gauge with the optical elements, Fig. 2), although theoretically 
the deviations in plus and minus with respect to the nominal dimension are 
acceptable. This leads to the distributions indicated in Fig. la. The only distributions 
close to the normal ones are those of the refractive index. However, even here the 
slight shifts of the expected index value with respect to the one taken from the 
catalog are possible, which follows from the inaccurate consideration of the due 
correction during the glass stabilization process (see Table and Fig. lc). The 
statistical studies carried out in the optical industry [3] confirm the above 
considerations. Therefore, there arises the necessity of realistic modifications of the 
Fialovszky method since a credulus application of its original form to determine the 
performance tolerances for optical elements may lead to an uncontrolled percentage 
of waster optical systems due to violating the admissible values of aberrations.
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Fig. 1. Probability density distributions for design parameters of optical system: a — surface curvature, b 
— spacings (thickness), c — refractive index. The continuous line denotes the distributions appearing in 
the workshop practice while the broken line represents the theoretical distributions according to the 
Gauss curve. £((?nom), E(dnom) and £ («nom) denotes the respective average values of curvatures, spacings, 
refractive indices for master case of Gaussian distribution, while E(q), E(d) and E(n) are the expected 
values (averages) for these parameters for the real systems

optical·

cement

Fig. 2. Two-point contact of the optical surface 
for interference control (a -  convex surface, b — 
concave surface), and for the cemented elements 
in an assembly (c)

Comparison of the typical shifts of the refractive index elaborated by the Hoya firm (for the stress relieving 
rate l°/h) with statistical approximation of this value

Sort of glass BK7 BaK4 SK10 SK4 F2 SF2

Statistical increment: n x 10“ 5 +  70 +  91 +  104 +  137 +41 +45
Increment acc. to Hoya firm: n x 10~5 +  90 +  80 +  110 +  110 +  50 +  60

2. Description of the method

In the new method a realistic probability model for the random variables occurring 
in the problem should be regarded, while the technical control procedure used by 
technologists and workers in the workshop should be retained not to perturbe the 
actual state of the art in this respect. Therefore, the denotations of the deviation on
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the technological documentation of optical systems as well as the controlling 
procedure should remain unchanged. The basis of the modified method is the 
statement proven in paper [4] that the distributions of aberrations of the optical 
system being a linear combination of partial aberrations are normal and of definite 
parameters. From this elementary properties of the independent random variables it 
follows that:

E(Zxd =  ZE(Xi), c72( I Xi) = Z<j2(Xí).

Hence, the parameters of the normal distribution for the aberrations are defined 
univocally by the distributions of the random variables attributed to the design 
parameters of the system. In the normal distribution there exists a simple dependence 
between the tolerance T and the standard deviation a: T = 2to, where t is a 
standardized variable of the normal distribution. In practice, the six-standard field of 
tolerance is widely applied (i.e., for t = 3), for which the probability of leaving the 
field of tolerance equals: P(|i| > 3) = 0.0027. In the Fialovszky method the same 
feature was attributed to the normal distribution of the performance deviations and 
the problem of tolerance determination was relatively simple. In the case of other 
types of distributions such a simple way is no more possible. For these types of 
distributions and especially for nonsymmetric ones the field of tolerances must be 
determined in another way. The following approach to such problems is practiced in 
the engineering works: the so-called master case is the starting point, in which both 
the components of the sum and the sum itself are of normal distributions. This 
theoretically most advantageous case has been considered in Fialovszky’s work.

Now, if in the arbitrary case of summing up of the aberration sum components of 
different distributions the resultant distribution is also normal (central theorem of 
probability), then, it may be assumed that this is such a case as if the components of 
the sum were of normal distributions but of other distribution parameters. Thus, 
each distribution may be characterized by a coefficient X, which says how much the 
field of tolerance for the given type of distribution differs from the field of tolerance 
for the corresponding component in the master case. Obviously, A = 1 by definition 
for components of normal distributions. Therefore, consider first the master case. 
Since the tolerance for the j-th component is

Tj = 6a(xj), then <7(Z,) =

where atj -  influence of the j-th parameter on the ¿-th aberration.
The upper limit of the aberration tolerance amounts to

Z imax =  Z iav +  3 ťT(Z i) =  Z «av +  Tf  ’

while the lower limit is

Z imin =  Z ťav ^®"(Z i) =  Z iav — 2 x / ^ a «7 ·
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Hence, the field of tolerances for the aberration 7] amounts to

(1)

which is consistent with the principle of summation after taking account of 
7] = 6a{Zt) and 7} = 6a(Xj).

Now, consider the case of arbitrary distribution. As an example consider the 
uniform distribution of the components of the sum for which the density function is 
described by the relation/ (x̂ ) = 1/7} and the variance <r2(xJ) =  7}2/12. Following the 
procedure applied for the master case the field of tolerances for the i-th aberration 
amounts to

The comparison of the relations (1) and (2) indicates that they differ by the factor 
appearing in front of the square root only. This is the sought coefficient A = 1.73 of 
the uniform distribution. The values of the coefficient for other distributions may be 
found in the papers [5], [6]. Thus, in general, it may be written that for the arbitrary 
distribution

There are no intuitive objections to the symmetric distributions, i.e., for the 
distributions the expected value of which lies in the centre of tolerance field while the 
deviations are symmetrically distributed around the mean value. As to the case of 
asymmetric distributions exemplified by triangle distribution the application of Eq. 
(3) meets the difficulty in interpreting both the field of tolerances and its position 
with respect to the mean value.

In such a case the expected value of the parameter Xj may be presented in general 
as

E(x}) = Xjo + ZjTj

where xj0 — fixed value of the parameter Xj corresponding to the centre of the 
interval 7}, Bj — coefficient characterizing the shift of E(Xj) from the value of xj0. For 
the right angle triangle distribution Bj = 2/3 —1/2 = 1/6. The mean square deviation 
from the mean value is also the function of the tolerance field and amounts to

where Ay is a coefficient indicating the relation between the standard deviation of the 
real distribution and the deviation in the master case. This is thus the same 
coefficient which appears in Eq. (3). Hence, in accordance with the elementary 
relation for independent random variables we have

T, =  =  1.13^/lafjTj2.' i min (2)

7] = yrajA ?7}2. (3)

(t (Xj)  = XjTj

E{Zt) = (p(xj0 + BjTj). (4)
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After having taken 7} = 6a(x;) into account, the standard deviation becomes

<7(Z,.) = '-JZajjXjT*,

and after further transformations, analogical to those used in the master case, we 
obtain

T, = y/Z<$AjTf. (5)

This form is identical with that of (3), and hence it may be concluded that the 
nonsymmetry of the distribution has no influence on the value of the tolerance field 
(it continues to ay and X} only). This field, as it follows from (4), is positioned 
nonsymmetrically with relation to the centre of the interval, in a way characteristic 
to a given type of the distribution with respect to the expected value.

3. Concluding remarks

The determination of the working tolerances by using the modified Fialovszky 
method leads to a relatively small change consisting merely in additional consideration 
of the distribution coefficient Ať only. However, a much greater problem appears due 
to the reference of these tolerances to the expected values of the design parameters 
and to the so-called probable aberrations connected with the latter. In the discussed 
case of nonsymmetric distributions the mean values lie beyond the centre of the 
tolerance field, (Eq. (4)), and this means that the most probable parameters of the 
optical system will differ from their nominal values. Consequently, the aberrations of 
the system will change too. These are the above mentioned probable aberrations. In 
order to illustrate this fact, the graph of the longitudinal spherical aberration for a 
typical optical system has been shown in Fig. 3. The broken line denotes the curve of 
this aberration for nominal values of the design parameters of the optical system, i.e., 
for the centre of tolerance field. The continuous line is used to mark the same 
aberration but obtained from the expected values (most probable) of the design 
parameters. To illustrate this fact better the statistical spread of the aberration values 
is also shown in this figure. As it can be seen in the figure, it is impossible to obtain a 
system with aberrations which would meet the nominal values of the statistical 
parameters (their values exceed the six-standard tolerance field, where the probability 
of occurrence amounts to P < 0.0027). In this specific case an advantageous change 
of aberrations occurred but in general case some worsening of the state of system 
correction took place. This altered state of system aberrations, caused exclusively by 
nonsymmetric distributions of design parameters, must be corrected so that the 
optical system could work properly. Therefore an additional calculational procedure 
(taking account of the additional correction of the aberrations) is necessary at the 
stage of tolerance determination. Its task is to change the nominal values of the 
design parameters in such a way that the probable aberrations could represent the
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Fig. 3. Graph of the longitudinal spherical aberration for typical optical system. The continuous line 
marks the probable aberration together with its statistical spread for particular zones of the aperture, 
while the broken line denotes the same aberration determined on the basis of nominal values of the design 
parameters of the system (H — radius of the pupil, Ss' — longitudinal spherical aberration)

suitable state of the system correction. The fulfilment of this postulate is easy only 
with respect to the spacings (thickness) where any change of the nominal value is not 
problematic. However, for the curvatures there appear significant difficulties due to 
the necessity of using the radii recommended by the industrial standards [7] (for 
instance, Polish Standards) or the radii consistent with, the actual set of used gauges.

There are practically two ways of solving this problem. The first one is to use the 
so-called deviation gauges suggested by the author in paper [8], where the change of 
the nominal radius is done by execution of the “deviation” replica of the working 
gauge, serving to control a given technological part only. This way requires formally 
no additional calculation stage because of application of the deviation gauges, and
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for this reason is recommendable. However, this introduces a kind of danger of the 
mistakable use of the gauges (a given deviation gauge may be applied to that 
technological part for which it was produced). The other way is to change the 
nominal values of the parameters of the optical system by its undercorrecting (see 
Fig. 3), in such a way that the probable aberrations become identical with those for 
the nominal variant, i.e., with the aberrations of the starting system for tolerance 
calculations. The block scheme of such a procedure is shown in Fig. 4.
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Модификация метода Фиялковского для несимметрических 
распределений допусков

В статье разработана проблема определения допусков на оптические детали с учётом несим
метрических распределений.


