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Rapid evaluation of the zero-order Hankel transform 
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A sampling theorem based on the Dini expansion is employed for the numerical evaluation of the 
zero-order Hankel transform. In order to compute the optical field in sampling points both fast 
and accurately, basic Hankel transforms for polynomial representations of pupil functions are 
considered, and the concept of Elementary Sampling Coefficients (ESC) is proposed. For moderate 
values of a space-bandwidth product of the transform, our technique seems to be superior to the 
commonly used algorithms.

1. Introduction

In many optical diffraction problems involving cylindrical geometry, the aim is to 
evaluate Hankel transforms (HT) numerically with high computational efficiency. In 
the case of rotational symmetry, commonly encountered in optics [1], [2], this leads 
to the fast computation of the following transform:

G(z) =  2 j  T (r)J0(zr)rdr (1)
o

where J 0 is the Bessel function of the first kind and of zero-order. There are several 
general techniques to handle the transform (1), but all of them have substantial 
disadvantages [2]-[9]. For instance, the Abel-transform-based algorithm [3], [4] as 
well as Candel’s dual algorithms [5] are very involved and slow. The QFHT 
algorithm according to S ie g m a n  [ 6 ]  requires exponential sampling grids both in the 
original and transform domain; in addition, owing to the artificial obscuration, 
appropriate analytic end correction techniques of the QFHT result are to be used 
[7]—[9]. Among various methods of computing the HT, the classical Baracat’s 
approach that utilizes Fourier-Bessel (FB) sampling theorem as a computational 
tool (1) is still recommended because of rather small number of sampling points that 
are necessary in typical optical applications. The problems, however, is that the 
corresponding samples play the role of interpolation nodes, and, therefore, must be 
calculated very exactly with the aid of a separate numerical quadrature. Since the 
integrand involves the highly oscillatory function J 0 the quadrature is neither 
typical, nor rapid [1].

In our previous paper [10], we have introduced the Dini sampling theorem 
instead of the standard Fourier-Bessel one, and proposed it as an improved
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computational tool. Dini-series-based approach was originally introduced into 
optical imaging by Roisen- D ossier [11], who discussed the usefulness of that 
approach to solve analytically certain apodisation problems. The great usefulness of 
the Dini sampling formula in numerical work results from the fact that it converges 
much more rapidly than the FB one [10]. The number of sampling points can be 
therefore reduced, but the question how to calculate the samples efficiently and with 
high accuracy is again crucial in practical computational work. In what follows here, 
we shall propose a useful method of both fast and accurate calculation of the samples 
that are necessary for employing the Dini sampling formula as the computational 
tool.

2. Basic considerations

In order to evaluate the transform (1) it is possible to use the band-limited properties 
of the function G(z) to develop sampling formulae that can be employed for 
computational purposes. Our approach is based on a Dini expansion of the original 
function T(r), which leads to the following sampling formula [10]:

G(z) = [2J, (*)/(*)] {G(0)+ Y  [G(zt )/J0(zl ) ] /[ l- ( z l /z)2]} (2)
L =  1

where z =  0, z = zL, and the discrete sampling points, z = zL, are nothing but 
successive zeros of the familiar Airy pattern, 2JX (z)/z. The above relationship permits 
one to compute G (z) anywhere in between the sampled values G (zL), basing on these 
values as the sole data. In practice, G(z) may be evaluated with arbitrary precision 
over any prespecified interval of z, by using sufficiently large finite number M  of the 
samples: the greater both the interval of z and the precision required, the higher the 
number M  of the discrete samples that would be demanded. In fact, the relation (2) 
can be interpreted as a sort of interpolation formula, in which the samples G (zL) play 
the role of interpolation nodes. It is important that in typical optical applications the 
small and moderate (z < 20) values in the transform domain are of greatest interest, 
and, in this case, the number of samples M is surprisingly small: in certain 
applications concerning small intervals (z <  zx) even first-sampling-point approach 
(M = 1) has proved to be fully sufficient [9], [12].

As it was mentioned earlier, the truncated series (2) is useful for our purposes 
provided that the following sampled values:

G(zL)/J0(z,) = [2/y0(zJ] J* T(r)J0(zL r) rd r  (3)
0

may be exactly computed without considerable effort. Now, we propose the simple 
method of evaluation of the normalised samples (3). The technique is based on the 
following assumption:

T(r) = T(r2), (4)
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that is commonly fulfilled in optical diffraction problems involving pure rotational 
symmetry [2]. In consequence, the original function T(r) can be expanded in terms of 
powers, r 2p or represented by an appropriate polynomial. Namely,

m  =  PY, apr * ' .  (5)
P = 0

That is why the following set of basic functions

{p +  l) r2p, (p = 0 ,1 ,...) (6)

was introduced by Boivin to deal with rotationally-symmetric optical diffraction 
problems, and corresponding Hankel transforms of these functions are extensively 
studied and tabulated [2]. The transform

2(P + l ) f ‘ r 2pJ0(zr)rdr (7)
0

is defined as the Boivin function of (p+l)-th order, and designated as A p+1(z). 
Selected mathematical properties of the Boivin’s function A p(z) create the basis for 
our further considerations. In fact, after taking into account Eqs. (3) and (5), it is 
easily seen that the whole problem reduces to the computation of the following 
numbers:

SP+UL =  [2/70(zt )] f ‘ r 2pJ 0(zLr)rd r  (8) 
0

that are nothing but properly normalised values of the Boivin function of p +1 order. 
If the numbers (8) are calculated, the whole procedure of evaluation of the samples 
(3) will be reduced to a single summation

G(zL)/J0(zL) =  P;£  apSp+UL, (9)
p =  0

being analogous to the original function representation (5) except that the powers r 2p 
are replaced with corresponding values Sp+l L determined for successive sampling 
points. For this reason, the numbers Sp+l L are interpreted as ESC. The set of ESC 
for a given Lrth sampling point can easily be generated with the help of the following 
recurrence formula, derived in the Appendix,

Sp+1,L =  (2p/zLn m - S p,L]  (10)
where p =  0 ,1 ,2 ,...; and Si L = 0. Hence, the values of the ESC can be successively 
computed and stored in a look-up table, if necessary. The sets of ESC for the first few 
sampling points are listed in Table 1. It should be noted that the ESC tabulated there 
enable one to make computations for the polynomials T(r) up to the order 20. The 
first few values for L= 1 were listed in our previous works [9], [12]. However, 
neither the further ESC values nor the method of calculation were published there. 

Summing up, the whole procedure of computation of the transform (1) for the
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T a b le  1. Elementary sampling coefficients Sp L tabulated for increasing orders of p  and first few sampling 
points L

P L =  1 L =  2 L =  3 L =  4 L =  5

2 .272443 .081270 .038647 .022532 .014745
3 .247985 .136121 ,071320 .043034 .Q28620
4 .209272 .144247 .091135 .058870 .040436
5 .177535 .137513 .098235 .068906 .049440
6 .153009 .126959 .098323 .073847 .055500
7 .133952 .116173 .095086 .075293 .059009
8 .118879 .106260 .090464 .074597 .060580
9 .106727 .097473 .085421 .072684 .060791

10 .096753 .089780 .080420 .070134 .060099
11 .088439 .083060 .075671 .067296 .058834

original functions represented by Eq. (3) reduces to the evaluation of the sampling 
series (2), in which the necessary samples can be obtained by the summation (9). The 
algorithm is both very simple and efficient. Excluding the computation of the 
familiar Airy pattern 2J l  (z)/z the algorithm does not require any Bessel nor special 
functions to be precomputed. In order to keep good accuracy, the required zeros zL 
should be stored very exactly. The known Olver’s tables are recommended as 
a source of the exact values of the zeros of Bessel functions.

3. Examples

At first, we consider a couple of analytic examples closely related to the optical 
diffraction theory. We assume that the original T(r) stands for the pupil function of a 
rotationally-symmetric optical system; in consequence, the transform G (z) describes 
the associated impulse response of the system. For convenience, we slightly redefine 
the set of basic functions (5), namely, we take

Tp(r) = 2 { p + l ) r 2p. (11)

The reason for the change is that 
1

2 (p + 1)J r 2prdr =  1. (12)
o

Now, we consider the limiting cases when p->  oo, and p =  0, respectively. It is easy to 
see that in the first case

Tp(r) =  S ( r - 1), ( p -  oo) (13)

where S denotes the Dirac delta function. In fact, Tp vanishes everywhere except for 
the point r = 1, in which Tp-*oo. Nevertheless the condition (12) is still satisfied. 
Therefore, the function (13) describes an infinitely narrow, uniformly illuminated
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circular rim, that can be interpreted as a limiting case of a uniformly illuminated ring 
pupil of the unity radius. As it is well known [2], the associated impulse response is 
simply the Bessel function of zero-order, i.e., G (z) = J 0 (z). As a result, all the 
normalized samples in the formula (3) are now equal to unity

G(zl)/J0(zl ) =  1, (14)

regardless the sampling point number L. Further, if we analogously rescale our ESC 
as defined by Eq. (8) in such a manner that

<J2(p+d,l = 2(p+ l)Sp+1L, (15)

we obtain, for the thin-ring pupil,

G2(p+i),l = 1, if P-+ oo. (16)

Turning back to the second case (p = 0) it is easy to see that it reduces to the trivial 
case of a uniformly illuminated circular pupil T0(r) = 1. In such a case the sampling 
formula (2) immediately gives the familiar result G(z) = 2JX (z)/z and both the 
normalized samples and corresponding ESC must be equal to zero, regardless the 
sampling order L. Thus,

G 2 t p + l ) , L  =  S p + l , L  =  ® if P  =  0. (17)

The rescaled sets of ESC are shown graphically in the Figure which seems to be 
a useful aid for better understanding of our computational technique, and gives a

o 2 4 Graphical interpretation of the rescaled elemen
tary sampling coefficients G m L (note that m =  2p)
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clear physical interpretation of it. Excellent numerical features of the ECS are also 
evident from the Figure.

Finally, to demonstrate numerical advantages of the proposed algorithm, let us 
consider the following original function;

Since T(l) = 0.000 004, it may be treated as a nontruncated Gaussian; in 
consequence the HT is also Gaussian. Namely,

By using the sampling formula (2), the HT of the Gaussian function (18) is 
calculated an compared with the exact values obtained from Eq. (19). Firstly, the 
necessary samples of G (z) are computed: although the nodes may be evaluated by the 
use of Eq. (19), they are determined with the aid of the ESC after fitting the Gaussian 
with a polynomial of 20th order. Selected numerical results are presented in Table 2.

T a b le  2. Values of the Gaussian response function 
calculated with the help of Dini sampling technique using 7 
sampling points, compared with those obtained exactly

z Dini Exact

0.0 1.000000 1.000000
2.5 0.882502 0.882499
5.0 0.606535 0.606531
7.5 0.324653 0.324652

10.0 0.135337 0.135335
12.5 0.043936 0.043937
15.0 0.011109 0.011109
17.5 0.002188 0.002187
20.0 0.000497 0.000335
22.5 0.000041 0.000040
25.0 0.000003 0.000004

It is found that to hold the maximum absolute error at the level of 10"5 over the 
whole interval z [0,25], seven sampling points (M = 7) are sufficient. It should be 
stressed that the same example was originally investigated by A g r a w a l  and L a x  
[7], who applied the QFHT algorithm with and without the additional end 
correction. They showed that the same level of accuracy for the space-bandwidth 
product z = 25 can be obtained with 512 radial samples without the end correction, 
or with 64 radial samples with the end correction.

4. Conclusion

It is demonstrated throughout the paper that for the class of originals T(r) that can 
be fitted with a polynomial or represented by a truncated power series, there exists 
a profitable technique of evaluation of the corresponding zero-order HT. The

T(r) = exp(—12.5 r2). ( 18)

G(z) = exp(—z2/50). (19)
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method is based on the single Dini sampling series (2) and all the necessary samples 
can be calculated by the single-summation formula (9). Excluding the familiar Airy 
pattern function, no special functions are required to perform the HT calculation. 
Owing to the previously reported numerical advantages of the Dini approach [10], 
as well as due to the introduction of the elementary sampling coefficients, the 
algorithm appears to be very useful for optical diffraction calculations, as well as in 
related areas of imaging technology.

Appendix

Here, the recurrence formula (10) will be derived. Our starting point is the following
recurrence formula developed by Boivin [2]

^  + {z2/[4 i(t+ l)]} Ap+1 = A'. + t f / i t y U i  (Al)

where Ap = Ap (z) denotes Boivin functions of appropriate orders, and
A oo = J0(z), (A2)

A \  = 2Jj(z)/z. (A3)
According to the definitions (7) and (8) the ESC can be reexpressed as

SP+1,L =  [1AP+1 ) ] ^ F+1(zL)/i4ao(zL). (A4)
Further, since A 1 (zL) = 0, the recurrence formula (Al) reduces to 

A p{zI)  +  { z jJ [4 p ( p + 1)]} A p + l (zJ)  =  A ^ iz j ) .

After multiplying both sides of the above equation by 
i / t p A n i z j ] ,

and taking into account Eq. (A4), we immediately obtain

sP,L+[V(2p)]2 sp+ltL = iI p , s1>l = o,
which is in perfect accordance with Eq. (10). Finally, we note that, owing to Eq. (A4), 
further interesting properties of the ESC may be directly developed by using the 
Boivin function formalism. For instance, having in mind Eq. (A2) and (A3) one can 
easily see that Sp L ~ l / p ,  when p->  oo.
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Быстрый метод численного определения изображения функции Ганкеля 
нулевого порядка в вопросах оптической дифракции
В работе показано применение теоремы о выборке для поворотно-симметрических систем, 
использующей ряды Дини для численного определения изображений функции Ганкеля нулевого 
порядка. Рассуждены свойства изображений функции Ганкеля из полиномов, а также введены 
т.наз. Элементарные Коэффициенты Выборки, которые способствуют быстрому и точному 
определению образцов изображения функции, необходимых для вычислений. Было численно 
показано, что для умеренных значений аргуманта изображения функции представленный метод 
является конкурентным по отношению к известным алгоритмам, применяемым в оптических 
вычислениях.


