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Optical dispersive bistability in media 
of forced anisotropy
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In the paper, results concerning optical dispersive bistaility in media of forced anisotropy (due to 
electro- and elasto-optical effects, for instance) are presented. Radiation transmitted through 
a nonlinear Fabry-Perot cavity is shown to reveal bistability of intensity, of both the total field and 
each of its Cartesian components, as well as bistable states of polarization. If the electrical vector of 
the incident wave is neither parallel nor normal to the direction of optical axis the transmitted light 
possesses the elliptical polarization. That elliptically polarized radiation changes bistably not only 
the value of proportion of the polarization ellipse semiaxes but also orientation of its major 
semiaxis.

1. Formulation of problem and simplifying assumptions

In the paper a Fabry-Perot resonator, bounded by two parallel mirrors extending to 
infinity and orthogonal to the vector ez, is examined. It is filled with medium which, 
in absence of any forcing factor, appears to be isotropic and to have nonlinear 
third-order electric susceptibility. Influence of the forced anisotropy on the light 
transmitted through a cavity is studied under the assumption that external factors 
change only linear susceptibility leaving the nonlinear tensor unchanged. The linear 
susceptibility is described by the following tensor:

8jk = Sjk(e + dikAe) (1)

where Ae is caused by the external factors.
The intensity reflectivities R = 1 — T  of the mirrors differ for waves of different 

velocities of propagation. It is assumed that:
1. There is a plane monochromatic wave incident from the outside of one of the 

mirrors

E0 = [cos a, sin a, 0] E0exp — k0z)~\ (2)

where kl = co2/c2.
2. Waves propagating inside and outside a cavity are independent of variables 

x and y.
3. Wave inside a cavity is composed of two components of slowly varying 

amplitudes and phase functions both propagating in mutually opposite directions.
4. Components of the nonlinear polarization vector proportional to exp [i co t~\ 

are the only ones which are taken into account.
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2. Nonlinear polarization

When incident field approaches a suitable big value, a nonzero nonlinear polariza
tion vector appears in the cavity. It has the following Cartesian components [1]:

P?L = X(ExExEx + E,E,Ex),

P?L = X(ExExEy + EyEyEy),

P"L = 0

where x denotes one of the elements of the nonlinear tensor

X X~.xxxx Xyyyy XzZZZ'
Having represented real functions as sums of complex functions and their 

complex conjugates:

1 ~ „
E, = -{E, + Et),

E, = \ ( £ , + £ i)>

the components of the nonlinear polarization vector PNL can be rewritten as follows:

p?L =  | {(3 \EX\2+ |E,|2) £x + £, £, £ ? } ,

v ......................................... (5)
■C = \  {(3 |E,|2 + 2 |EJ2) £, + Ex Ex £*}.

3. Differential equations describing the field 
inside a Fabry-Perot cavity

The Maxwell equations comprising both the tensor (1) and the nonlinear 
polarization vector (5) imply the following equations for wave field of the frequency 
a) inside the cavity:

j p E x + fi0E0£1a)2Ex =

d2 ~ . ~
j ^ E y + n0£0£2a)zEy =

[(3 \£x\2 + 2 \£ e x + £y£yE n ,

[(2 \EX\2 + 3 |E /  ££x
(6)

where: e0 — electric permittivity of vacuum, = £n/e0 and e2 = e22/a0 — relative 
electric permittivities for the directions Ox and Oy.

In general, £x and e2 may be complex numbers:

Ej = Eif )- i e f ,  0  = 1,2). (7)
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It is assumed [2] that the wave field inside the Fabry-Perot cavity consists of two 
waves propagating in two opposite directions:

Ej = exp -  kj z)] + exp + kj z)], (; = 1, 2)

where: j  = 1 = x , j  = 2 = y and <5 ,̂ are slowly varying functions of the
variable z, i.e., such that

d2
dz

< 2  kj dz

dz2 *
<2kj — 0 ^  

dz *

ot = F, B, k] = klEf .

The assumption (8a) leads to the following system of differential equations:

(8a)

(8b)

dz J

= - v  j V \ m 2+6\(,i )\2+2\&3- iY+2\&3- jY '\ ,dz J

^-4>V= +  y, [6 № Y  +  3 l® l2 +  2 |&3 I£b “ ' ’I2]dz J
(9)

where:

Qj = 

yj =

&oH0 (D1 e f  

2 kj

£o F0 a>2X

8 kj ’
7 = 1, 2.

(9a)

The rapidly varying components of the nonlinear polarization vector are 
eliminated, but it causes loss of symmetry of Maxwell equations. Hence, it must be 
assumed that

< \ k , - k 2\. ( 10)

Equations (9) imply that the waves propagating in the direction of positive 
z-coordinates are damped when z increases, while the backward waves are damped 
when z decreases:

= m o )e x P i - e j z i ,

S'(z) = ^y’(0)exp [Qjz], / = 1, 2. (11)
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Equations (9) allow us to define:

A<pj(z) = + 0 ) - ^ ( 0 ) ]

J. Petykiewicz, D. Strojewski

= - V j i  {9[|^',(z)|2 + |^ (z ) |2]+ 4 [ |5 3--"(z)|2 + |^--''>|2]} ‘iz, ;  = 1, 2. (12)
0

4. Boundary conditions and solutions of the equations 
for the wave field inside a cavity

When light is incident from the direction of negative z-coordinate the continuity 
conditions for the Cartesian components of the electric vector E within the space 
limited by boundary mirrors (contained in the planes z = 0 and z = L) give the 
formulas:

+ exp [/4V(0)] = a/>(0)exp[i*j/>(0)],

W (L)exp[i(4tf (L) + ̂ L)] = J r ] Q/>(L) x  exp [i(*JP(L)-  kjL)], j  = 1, 2, (13)

E0j = £ 0(<5l7cosa + <52j sina), j  = 1,2. (13a)

The Cartesian components E1' and Ey of wave field transmitted through the cave 
and the intensities Ix* and Py of planes x- and y-polarizations are stated as follows:

E? = « № e x p  [ ! ( # № ) - * , L)],

E'; = V 7 ^ 2U)exp U(0?>{L)-k2m ,  (14)

2 V Po

I? = L f c T 2\№(L)\2. (15)
Po

Defining

tjj = exp [ — Qj E], j  = 1,2, (16)

and taking account of the fact that the functions: ftp, ftp, &P, (j = 1, 2) are real 
one derives from (11) and (13) the following equations:

__________  V/s/Tj Eq,___f №  =

exp [i ^ ’(0)] =

(1 Ej)2+4t]j Rj sin2

________ Viy/TjE0J

££l_fc L 
2 ‘

1/2

tf>(0) {1 -  ̂  exp [i(d cpj -  2fc,L)]} ’

(17a)

(17b)



Optical dispersive bistability... 85

® ( 0 )  = ’l)y/Ri Tl Eoj

( l - R j t l j ) 2+4rijRjsin2

exp [i ^ ( 0)] = —{7 Vj\/TjRjEoj_
&  (0) {exp [i(2 kj L -  A (?,)] -  Rjvij}

(17c)

(17d)

where Aq>j = d ^ (L ) are defined by (12) and with the use of Eqs. (11), (15) and (16) 
can be described as follows:

A c p ^  - y l { 9 r i I“ + 4 r 2I';},

A(P2 = - y 2{ 4 r i I“ + 9 r 2I';} (18)

where

r j  = / ^ ^ = ^ ( 1  + n j iy ,  for s f  #  0, 
‘ V E0 ejTjfij1 1

U =  1 .2 ) (18a)

r , = 2 / —(1 + R ,)4 , for e f = 0.
J V Bn J 1 ,V S0 -j

Conditions determining 7* and 7‘vr can be also deduced from (15), (17) and (18):

171 T\  70cos2a
7lr =

( l - i / ? JR1)2 + 4 ^ JR1sin: ^(9rl /? + 4r2/") + /c1I.J

701?2 T2sin2a7tr = l y
( l - i ?22R2)2 + 4 i/iR 2sin: ^ ( 9 r 2/"  +  4 r i i") + l:2L

]

(19)

Expressions (19) indicate a bistable dependence of each of the intensities 7* and 
7‘r upon the intensity 7() of the incident light. These two intensities are mutually 
dependent. However, the mutual dependence disappears when the electric vector E0 
of the incident wave is oriented at either the angle a = 0 or a = n/2 with respect to 
the axis Ox. In those cases, the classical formulas describing bistability are obtained 
[3]-[6] and the transmitted light is polarized linearly in either the plane y — 0 (for 
a = 0) or x = 0 (for a = n/2).

When 0 < a < rc/2, both the intensities 71* and 7J,r are different from zero and there 
exists the following dependence between them:

lx
yj\ T 2 cos2 a

7lr
y

r\\ T\  sin2 a

J(1— 4i f*i)2+4 'li Ri sin2 ^ ( 9 r , n , + 4 r 2l?) + fc1L |

|(1 —’ll R2)2 + 4tj2 R2 sin2̂ ( 4 r i /"  + 9 r 2/ 'r) + /c2L | = 7, (20)
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5. Polarization state of transmitted wave field

The state of polarization of the wave field can be determined by means of a matrix of 
coherence [7]. The matrix of coherence M  of the transmitted light takes the form

M xx Mxy
M YX M_.

. f t” ft2) v/T, T2 exp [i(&f2) -  >) + i(k, —k2) L], |ft2) (L)\2 T 2_ '

The determinant of the matrix M is equal to zero. The parameter of polarization 
P is given by the expression [7]

p =  / > _______ (22)

where |M| denotes the determinant of matrix M.
In our case, the parameter of polarization P = 1, which means the full 

polarization of transmitted light. It is an elliptic polarization. The ratio of the ellipse 
semiaxes [7] may be expressed by tan0 = ±a/b. The tangent can be determined 
taking account of the following expression:

ijMyx- M x,) = 2y/lx Iy sin [<?>̂1)(L) — <P(f }{L) + (k2 — /c,)L] 
Mxx+M yy p;+ i';

(23)

Numerical calculations based on formula (23) together with (17) and (9) show (see 
Sect. 6) bistable changes of the ratio b/a. The angle ^ between the major semiaxis of 
the polarization ellipse and the axis Ox is given by the formula [7]

V / y 7 ? c o s W ( i . ) - ^ U ) + ( * 2 - * i ) «  
ta" i V / = =---------------m ---------------■ (24)

That quantity can be also estimated by means of numerical analysis which is 
presented in Sect. 6, and shows bistable changes of the angle if/.

6. Interpretation of received results

Numerical analysis of received formulas has been carried out on a computer 
compatible with IBM PC/XT. For the calculations the following assumptions have 
been made: The material constants are those characteristic for GaAs [8], [9], the 
width of the Fabry-Perot cavity L= 0.005 m, the angle between the plane of 
polarization of the incident light and the Ox-axis a = 7t/6 and, if assumed to be 
constant, the forced difference of relative permittivities Ae — 0.0001. The medium has 
been assumed not to reveal any damping.
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Fig. 1. Bistability of the intensity Ilt of the total 
transmitted

The relation between 7tr = Pf + Iy and 70 is shown in Fig. 1. Bistability of 7tr as 
a function of 70, i.e., 7tr = /  (70) is incontestable. Figures 2a and 2b show similar 
dependences for 7* and Iy. Figure 3 being an illustration of the formula (20), shows 
the bistable relation between 71/  and 7*. Figure 4 presents the proportion of 
polarization ellipse semiaxes tan 0 as a function of the incident intensity 70. Figure

Fig. 2. Bistability of the intensities I1' (a) and I1' (b) of the Cartesian components of the transmitted field
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5 illustrates the bistability of orientation angle if/ between the major semiaxis of the 
polarization ellipse and the axis Ox.

As Figures 6a-c show, it is possible to modify the parameters of bistability 
hysteresis, i.e., the width of the hysteresis cycles A I0 = / 0| — I0i (Fig. 6a), the value of 
the upward bistable jump A I[J] (Fig. 6b) and downward bistable jump A I\P (Fig. 6c) — 
as functions of A e.

tan(8) ,
*0

0 105 I* ij 2*Tô

-0A

Fig. 4. Bistability of the proportion of the polarization ellipse semiaxes tan#
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Fig. 6. Parameters of bistability hysteresis cycle as 
function of the difference Ae between the relative 
electric permittivities for the directions Ox and Oy (for 
details see text)
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7. Summary and conclusions

The results presented above are indicative of possibilities of interfering in a course of 
intensity hysteresis cycles by means of electro- and elastooptical effects.

It has been pointed out that an anisotropic medium located in a Fabry-Perot 
cavity may exhibit the bistability of polarization of transmitted light (Figs. 4 and 5) 
provided that the incident intensity reaches a suitably high value.
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Оптическая дисперсионная бистабильность в средах 
с вынужденной анизотропией

Представлены результаты, относящиеся к дисперсионной бистабильности в средах, обладающих 
вынуженной анизотропией (вызванной, например, электро- или упругооптическим эффектом). 
Было показано, что свет, прошедший через нелинейный резонатор Фабри-Перо, обладает 
бистабильностью интенсивности и поляризации. В случае, когда электрический вектор падающего 
поля не является параллельным или перпендикулярным к оптической оси, прошедший свет 
обладает эллиптической поляризацией. Этот эллиптически поляризованный цвет изменяет 
бистабильно не только отношение малой и большой полуосей поляризационного эллипсиса, но 
и пространственную ориетацию его большой полуоси.


