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Influence of aberrations on the imaging of short 
light pulses by holographic concave gratings

R. G uther

Central Institute for Optics and Spectroscopy of the Academy of Sciences of the GDR, 1199 
Berlin-Adlershof, Rudower Chaussee 6, GDR.

We treat the influence of a corrected holographic concave grating on the image of a short light 
pulse, using a time-dependent ray tracing and a time-dependent diffraction theory. The pulse is 
lengthened by a duration the light needs for scanning the grating. This lengthened pulse can be 
split into multiple pulses by aberrations.

1. Introduction

In short-time spectroscopy [1] high luminosity corrected holographic concave 
gratings (f / 3) and pulses of a few ten picoseconds are used. Then, however, the light 
pulse does not cover completely the surface of the diffraction grating during its 
propagation from the source A to the receiver B (see Fig. 1)

General considerations on the connection between spatial structures and time 
behaviour were made by V ie n o t  et al. [2] in the framework of “four-dimensional 
optics”. A similar treatment using the correlation function was given in [3], [4]; its 
special purpose was spectral analysis of short pulses made by instruments without 
aberrations. The time response caused by grating aberrations was first considered in 
[5]. The difference between the phase front and the pulse front in lens systems and 
Fresnel zone plates was treated in [6]. In such systems the possibilities of the pulse 
front deformation correction are connected with the achromatic correction of the 
optical system.

D

Fig. 1. Diffraction of a short 
light pulse by a corrected holo­
graphic concave grating
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Here, we treat the influence of aberrations on the time-dependent imaging by 
corrected holographic concave gratings. The aberrations can be considerable if the 
tuning of a single grating monochromator ranges, for instance, within 500 nm ([7], 
[8]). The calculation methods are based on a time-dependent diffraction theory and 
a time-dependent ray tracing. We treat solely the unchirped pulses and assume 
constant diffraction amplitudes of the fields. The effects considered here are essential 
for the pulse duration ranging between 10 ps and 100 ps. The compensation of the 
pulse propagation time for the range of a few picoseconds in double mono­
chromators composed of holographic gratings will be treated in a forthcoming paper.

2. Time-dependent diffraction

The formulae for time-dependent diffraction are ([9], [10]):
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Both formulations are useful for the discussion of the approximations to be 
performed. In these formulae: Fis the field with all the time dependence; Um- the 
temporal Fourier transform; s-the  distance between point M on the grating surface 
S and image point P; c-the velocity of light, and d/dn is the normal derivation with 
reference to the grating surface; [...] means that after the calculation of the internal 
term the retarded time (t — s/c) should be used.

In the first approximation step we find in (2) ico ds
d n \ s ; cs dn

, because every

derivation made with s = MP is small compared to co/c by a factor 105...106. 
In Equation (1) we multiply the integrand by the factor

{ 2n r i

A0 /.
which means the phase change caused by point M moving from groove to groove on 
the grating surface S. In the holography this is the phase function generated by the 
interference pattern of the object wave and the reference wave. Here, the holographic 
grating is produced by the interference of the spherical waves which start from the 
point sources C and D [11]. Therefore, the distances CM and DM between the point 
sources C and D and point M (Fig. 1) generate the phase difference. £ is the order of
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diffraction, X-the wavelength of light used for production of the grating, and A0-  
the wavelength of the grating used.

The incident field is the product of a slowly varying amplitude and the phase
(Fig. 1) ___ ___ ___

V(M,t) = U(k0MA-cot)exp{ik0M A - ia ) ()t}/MA. (3)
We obtain
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k0 is given by 2tl/a0. We emphasize the convention on the brackets [ ...]  given in 
connection with Eq. (1). The position ofjthe surface element dSM varies with M. 
Finally, the sign of the local cos (n, MA) is inverted because of reflection. We 
suppose:
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After all differentiations we get the equation

V(P, t) = conste - “°0 ,n (iU(t) +  1/ ' ( t))

x exp |i/c0
fcLMA + M P — C M - D M ) dSM (5)

where x = k0 [MA + MP'\ — co0(t — t0). The addition of t0 means a possible trans­
lation of the zero point of the time which is useful in the practical calculations. In 
Equation (5) the orders of magnitude are for our purposes \U(z)\ 
« (104... 105)|C/'(t)|. This offers a further approximation down to the “qua­
si-stationary” use of U(x) only. A pulse shape of U(x) causes an actual integration on 
a limited part of the grating surface as shown in Fig. 1. Equation (5) was 
programmed on a desk-top computer. P varies in a plane perpendicularly to the 
central ray MB. In the case of one-dimensional simplifications (7-integration only), 
we multiply sometimes the integrand of Eq. (5) by an additional phase factor 
exp {ik0(DY2 + K l Y3-f S74)} in order to consider the effects of defocusing D, 
meridional coma K lt or spherical aberration S. These aberrations occur in the light 
path function of the grating theory ([7], [11]).
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3. Time-dependent ray tracing

Large phases in Equation (5) produce high frequency oscillations of the integrand, 
giving rise to errors in the numerical integration. Therefore, we look for the results of 
purely geometrical ray tracing. The usual ray tracing procedure for gratings [7] is 
being combined with the demand that a spot in the spot diagram be plotted only if 
the optical path length and detection time fit the pulse length

AM + M P — c(t — t0) = ± cT /2, (6)

where T is the pulse lenght of a rectangular pulse. Given pulse shapes could be 
modelled by counting the “fractions of spots” per area, but we intend to study the 
principal effects. The condition (6) cuts out a range of points M on the grating 
surface with the limits

J M  + A d P -c { t - t0)= ±cT/2

time t being given. This range has a characteristic width w on the grating resulting in 
a characteristic diffraction width w' in the focal plane. Finally, we keep w' smaller 
than the effects we have found by ray tracing.

4. Images by diffraction

Firstly, we consider the ideal stigmatic focusing which may be achieved by the use of 
a corrected holographic concave grating type III [11] of the following production 
parameters X = 458 nm, lc = 28.284 cm, y = 45° (polar coordinates of point C), 
lD = 20 cm, 5 — 0° (polar coordinates of point D), R = 20 cm (radius of curvature of 
the grating support), and the parameters used: / n = 458 nm, \A = 28.284 cm, * = 45° 
(polar coordinates of the slit), grating extension in the 7-Z plane-2  cm < Y, Z  < 2 
cm. We assume for U{i) a Gaussian pulse with the temporal width T= 50 ps. The 
time dependence of the intensity at four points in the image plane B is shown in Fig. 
2a-d.

In Figure 2a and 2c the pulse is lengthened; the intensity in a is lower than in 
c because the diffraction intensity decreases with the distance from the maximum. 
There is, however, no splitting of the pulse because of the simultaneous illumination 
of all Z-coordinates. This is not the case for the 7-coordinate, where the illuminated 
part changes in time. At the beginning of the propagation of the pulse along the 
7-direction on the grating surface a small “7-width” of the grating is illuminated. 
A broad intensity distribution results in the image plane B with a considerable 
intensity at a selected distance from the centre of the image. If the pulse illuminates 
the central part of the grating with the maximum “7-width”, then there occurs 
a contraction of the intensity distribution at B. The intensity at the selected point 
decreases. If the pulse propagates close to the second grating edge the intensity 
increases again. This is shown in Figs. 2b and 2d.
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Fig. 2. Time-dependent intensity for a diffracted 50 ps-pulse at four positions in the image plane B(Y\ Z')\ 
a (y Z )  =  (U, A), b ( Y \Z )  = (A, A), c - U  , Z') = (0, 0), d -(T ', Z') = (A, 0), A = 2.5 x 10~4 cm

The maximum intensity corresponding to Fig. 2d increases in comparison with 
Fig. 2a if we add. for instance, a comatic aberration. This meridional coma can be 
“produced” by changing the applied wavelength of the grating from the stigmatic 
wavelength /.0 = 458 nm into A0 = 468 nm. The corresponding pulses in the image 
plane, with Z = 0 and at 6 different ^positions, are shown in Fig. 3.

Fig. 3. Pulse shape at six different image positions, form left to right: Y' = 0, 2.5, 5, 7.5, 10 and 50 pm, 
Z =0



270 R. Guther

Now we consider an example with a triple pulse derived from a Lloyds 
mirror-type grating used in earth satellites of the “intercosmos programme” [8]. The 
manufacturing configuration is lc = 20.46 cm, y = 41.753°, lD= 18. 215 cm, 
<5 = —2.662° (polar coordinates of points C and D), R = 18.34 cm (radius of 
curvature of the support), k = 458 nm. The polychromator configuration has the 
parameters of use lA = 22.267 cm, a = 45.976° (polar coordinates of split A). In 
Figure 4a light pulse of 50 ps with k0 = 822.9 nm is shown in the central image point 
Y' = Z' = 0 (Fig. 4a), in the point Y' = 25 pm, Z' = 0 (Fig. 4b) and in the point 
Y' = Z' = 0, adding, however, 5 x 10“5 Y2 — 3 x 10~7 Y4 to the light path function 
(Fig. 4c). The different signs for defocusing D and spherical aberration S in the last 
example are chosen for the demonstration of the effect.

The side pulses could not be increased due to the difficulties related to the diffraction 
integral convergence by using large aberrations. In calculation shown in Figs. 3 and
4, the Z-integration was neglected in order to simplify the problem.

5. Images by ray tracing

As the example of ray tracing calculations we took the above-mentioned grating [8]. 
We have assumed in the model that the receiver of radiation sumps up the whole 
intensity contained in a narrow slit which has an infinite extension perpendicular to 
the dispersion direction. All the resulting pulses are normalized to equal maximum 
values.

Firstly, we treat the case of defocusing with a 30 ps rectangular pulse for 
k0 = 822.9 nm. We do not focus to the spectroscopically preferred meridional 
focusing position, but to the sagittal focusing position. We obtain a moving focus 
depicted in Fig. 5. A similar intensity moving in a receiver plane is shown in [12]. 

Secondly, we demonstrate the turning motion at k0 = 700 nm (30 ps-pulse)
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Fig. 5. Movement of the focus: a - spot dia­
grams for different times, b - intensities derived 
from ray tracings. l - t =  —120 ps, 2 - r  = 0, 
3 t = 120 ps

caused by meridional coma (Fig. 6). Now the focusing distance in the meridional 
focusing position. The curvature of the spectral line results in a spread of the 
intensity profile, but the turning motion of the intensity is demonstrated. The effect is 
marked by a shortening of the pulses if we perform integration over a limited vertical 
extension of the receiving slit. The pure ray tracing does not include the diffraction. 
But the 30 ps-pulse gives a width w % 2 cm on the grating, and this width results in 
a diffraction width w' «  0.001 cm, i.e., smaller than the details of the ray tracing 
figures.

Thirdly, we demonstrate a double turning by adding to the case of Fig. 
5 (A0 = 822.9 nm, 15 ps-pulse) exaggerated defocusing and spherical aberration to 
the light path function —4x 10"2 T2 + 4x 10"3 T4. The results is shown in Fig. 7.
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Triple pulses may occur at fixed space points. The aberrations added in the last case 
for producing these triple pulses are greater than those we can find for well corrected 
gratings. We exaggerated for demonstrating the principle.

-1mm 1mm

Fig. 6. Spot diagrams (a) and slit-integrated intensities (b) for meridional coma: 1 - t  =  — 30 ps, 2 - f  = 40 
ps, 3 - t  — 100 ps

Fig. 7. Double turning of intensity: a - t  = —120 ps, b t = —100 ps, c - f  = — 80 ps, d - f  = 0, e - f  = 80 
ps, f - t  = 100 ps, g f = 120 ps
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6. Discussion

If the receiver has a wrong position in the image plane, then the pulse lengthened by 
the grating can be split into multiple pulses. The neighbouring spectral lines may 
disturb the pulse shape if the comatic tail reaches the centre of the receiver. In 
general, the astigmatic curvature of the spectral line will smooth this effect if 
a lengthened receiving slit is used. We have, however, shown the cases, where 
a lengthened slit does not suppress this effect. In usual gratings with a spectral 
interval of 400 ... 500 nm there are ranges where multiple pulses occur mixted with 
ranges where they do not exist. If multiple pulses are required, then appropriately 
large aberrations can be obtained by the construction of concave gratings, e.g., by the 
methods given in [7]. We can extend the holographic aspect: prescribed spatial 
movements of the focus can be obtained by synthetic holograms used for light 
deflection [13], where the hologram moves through the laser beam. The same effect 
can be obtained if the short pulse moves over the hologram (or grating) in the same 
manner as discussed above.
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Влияние аберрации на отображение кратких импульсов света через вогнутую 
голоргафическую сетку

Рассмотрено влияние корригированной, голографической вогнутой дифракционной сетки на образ 
краткого импульса света при применении расчетов зависимого от времени хода лучей, а также 
зависимой от времени теории дифракции. Импульс был удлинен на время, необходимое для 
сканирования сетки. Этот удлиненный импульс может быть разложен на многие импульсы 
вследствие аберрации.


