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Focusing element of
axial refractive index gradient*
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The problem of spherical aberration correction has been discussed for the case of light focused by 
a single spherical surface when applying the material of axial refractive index gradient. An analytic 
form of the formula for the refractive index distribution, which has been derived, assures a complete 
correction of the spherical aberration for the objects at infinity. The results of calculation of the 
spherical aberration are reported for the media of small refractive index gradient described by an 
exponential function.

1. Introduction

In the last period of time, a significant attention has been paid to the role of gradient 
media in optical instruments. The considerations concern usually the axially 
symmetric distribution of indices. In a number of works, the focusing properties of 
the optical elements produced of material with axial gradient have been also 
considered. As a rule, the theory of third order aberrations is exploited [1]. This 
approach was proposed to design such elements as: gradient collimating lenses [2], 
corrections Schmidt plate [3], and telescope objective [4].

In the present paper, the possibilities of a complete correction of the spherical 
aberration by introducing the material of axial gradient of the refractive index 
distribution have been analysed. The results concern a single spherical refracting 
surface under assumption that the object is positioned at infinity.

2. Mathematical considerations

In this part, the focusing properties of a spherical surface of the radius R are 
considered under the assumption that the object space medium is characterized by 
a heterogeneous distribution of the refractive index along the optical axis. The 
coordinate system (Fig. 1) is oriented in such a way that its origin is identical with the 
centre of the spherical surface, while the axis OZ is identical with the optical axis. 
The refractive index distribution is described by the function n = n(z).

* This work was supported by the Polish Ministry of Sciences and Higher Education, Project CPBP 
01.06.
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Fig. 1. Single refracting surface (notations in the text)

We assume that the surface is convex and that n2 < n10 (where n10 is the 
refractive index value in object space at the sphere and the optical axis intersection 
point).

The rays travelling parallelly to the optical axis do not change their direction in 
such a heterogeneous space, since they are parallel to direction of the gradient n. 
First, when hitting the surface they suffer from refraction, while the angle of 
refraction depends on the local value of n(z) on the refracting surface at the respective 
ray-surface interaction point. By using the notation from Fig. 1, we form the 
conditions for stigmatic focusing of the beam. The paraxial focal length is defined by 
the formula

/ '  = *
»2

nl0- n 2 (1)

In this formula, all the quantities are nonnegative. We start with the scalar law of 
refraction

n1(?)sin(a) = n2 sin(fi).

From Figure 1 the following relations may be easily found: 

sin (a) =  h/R, 

cos(a) = z/R,

P = y + <x, while p < n/2.
The condition for the ray transition through the focus leads to relations:

sin(y) = 

cos(y) =

y t f + U - z f + f c 2’

f ' + R - z

J t f '+ R - z ) 2+ h2"

From the trigonometric formula for the sinus of a sum of angles we get

sin (P) =
M f'+ R )

J l f  + R-zY + h2'

(2)
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After substituting (3) to the refraction law (2), we obtain

ni(z) = f ' + R
./(Z ' + R - z f  + R’ - z 2'

Taking additionally (1) into account, we get

nl0n2
«i(z) =

y/n j0- 2 n i0(ni0- n 2)z/R + (n10- n 2):

(4)

(5)

As may be seen, the distribution of the refractive index depends on the coordinate 
z normed with respect to the radius R, i.e., z/R.

Another form of this relation may be given for the distribution depending on the 
normed depth (G = 1 — z/R) measured from the surface vertex

MG) n 10

/ 2n10{n10- n 2)G

V «1

(6)

The subsequent simplification of this formula may be achieved after introducing 
the relative refractive index

nr(z) =  Mz)/n2, nr0 = ni0/n2.

Now we have

nr(G) = ______ «rO______

y /l+ 2nr0(nr0 — l)G

In Figure 2, a few curves illustrating the determined relation of the relative 
refractive index to the normed depth G are shown for several parameters nl0.

(7)

Fig. 2. Dependence nl (G) for a medium correct
ing spherical aberration for: nl0 =  1.7 (1), 1.5 (2) 
and 1.3 (3)1 G 0
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3. Correction of the spherical aberration for glasses 
of small refractive index gradient

The distribution of refractive index (7) determined theoretically assures the complete 
correction of the spherical aberrations for the beam of rays  ̂parallel to the axis. The 
correctness of the obtained distribution has been checked with the help of the 
geometrical transitions of the ray. The numerical results showed a stigmatic 
concentration of all the rays passing through the limiting surface.

It may be easily noticed that the determined distribution is realizable only within 
a limited region of depth G (for G equal nearly to 1 the relative refractive index tends 
to 1; in the case of n2 = 1 it would mean smooth transition of the medium material 
from glass to gaseous state which is practically unrealizable).

Also, for practical reasons not the whole semisphere is used to produce 
a plane-convex lens but a part of it around its vertex. For the lenses of relative 
aperture 2hmaJ / ' ,  the complete correction may be achieved if the above change
ability of the refractive index is assured up to the depth

Ge(0, l-y i - ( W R ) 2)·

It appears that even for the significant values of the relative aperture the change 
of the refractive index within this range is not high (Fig. 3).

For small depths, the change of the refractive index determined in (7) becomes 
almost linear. The exponential distributions of relatively small total change of the 
refractive index may be technologically realized by using the ion diffusion method. 
The correction effects, appearing when applying such glasses, seem to be very 
interesting.

Below, the numerical results of the spherical aberration correction are presented 
for the glass of axial gradient. It has been assumed that the refractive index in these

Fig. 3. Value of refractive index at the spherical 
surface vs the distance from the axis (n10 =  1.5)
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glasses is described by the formula

«i(z) = w10—dnĵ exp̂ — (8)

(An is the maximal change of n^z)). The function defined above is tangent to the 
optimal one (6) at the vertex of the sphere. The function nx(z) for several values of n is 
shown in Fig. 4. The graphs of the transversal spherical aberration for the above 
materials are shown in Fig. 5. Analogical results of calculations for slightly modified
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Fig. 4. Dependence n^G)  for the uniform (1), and for the gradient: An =  0.5 (2), 0.1 (3) media. n10 =  1.5 

Fig. 5. Transversal spherical aberration for the uniform (1), and the gradient: An =  0.5 (2), 0.1 (3) materials. 
«10 = 15

distributions, i.e., those of the form

n ^ G)  =  n10 — dnj^exp^ — k > 1, (9)

are shown in the subsequent figures. In these examples, the function of refractive 
index distribution appears to be steeper at the spherical surface than the curves 
corresponding to the optimal distribution. The function n^z) for the chosen values 
An and k  is shown in Fig. 6. The graphs of the spherical aberration for the above 
materials are shown in Fig. 7.

The presented results of calculation shown that the spherical aberration 
correction may be significantly affected also by the changes of refractive index 
deviating from that determined theoretically. In particular, a distinctly improved 
correction may be achieved for the distributions described by formula (9). The lens of 
such a distribution is slightly overcorrected in the central part, but the value of 
aberration remains small even for significant (1/4) values of the relative aperture 
(Fig. 7, curve 4).
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▲
Fig. 6. Dependence nfG) for the uniform (1), and the gradient: An =  0.10, k =  2 (2), An =  0.05, k = 2 (3), 
An =  0.1, k =  1.7 (4) media. n10 =  1.5

Fig. 7. Transversal spherical aberration for the uniform (1), and the gradient: An =  0.01, k = 2 (2), 
An =  0.05, k =  2 (3), An =  0.1, k =  1.7 (4) materials. n10 =  1.5

It appeared also that a relatively small modification of the refractive index 
(An = 0.01) made in a thin layer resulted in significant decrease of aberrations (Fig. 6, 
curve 2, and Fig. 7, curve 2).

4. Concluding remark

The results presented above indicate the applicability of materials with axial gradient 
to the spherical aberration correction.
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Фокусирующий элемент с аксиальным градиентом коэффициента преломления

Обсужден вопрос коррекции сферической аберрации в случае фокусировки света отдельной 
сферической поверхностью при применении материала с аксиальным градиентом коэффициента 
преломления. Выведена аналитическая форма формулы распределения коэффициента преломления, 
обеспечивающая полную коррекцию сферической аберрации для объекта в бесконечности. 
Представлены результаты расчетов сферической аберрации для сред с небольшими изменениями 
коэффициента преломления, описанными экспоненциальной функцией.


