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Holographic lens recorded on conical surfaces. 
Aberration analysis
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Institute of Physics, Technical University of Wroclaw, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, 
Poland.

The paper contains an analysis of aberration of holograms recorded on conical surfaces. The case 
of holographic lens is studied in more details. The possibilities of compensating third order coma 
are examined in particular.

1. Introduction

In modem optics unconventional imaging elements are more and more widely used 
in practice. The holographic lenses are a very important example of above. The 
problem of the quality of the images obtained by the holographic lens (holo-lens), 
particularly those recorded on a spherical surface, has been investigated by many 
workers [1]—[7]. The first, who considered a spherical holo-lens was W elford [1], 
but a full analysis of its third order aberrations was given by M ustafin[2], [3]. K ijek 
in [5] tried to extend the formulas obtained by Mustafin into the more general case 
of holo-lens recorded on conical surface. His results, however, were not satisfactory. 
Verboven and Langesse have found the formulas for aberration terms of holograms 
made on surfaces of any shape [8]. It seems that they have not known the Mustafin’s 
work, but which is important for the particular case of spherical surface, their results 
are in agreement with those of Mustafin’s. It is important that, for conical surface, 
the Verboven’s and Lagasse’s formulas take a simple form. In present work, we 
investigated some characteristic features of the holo-lens recorded on conical 
surfaces.

2. Analytical formulas

Let P0, Pv Pc and P; (Fig. 1) be the coordinates of the object point source, the 
reference point source, the reconstruction point source and the trial image location, 
respectively. The total wavefront aberration can be expressed [8] as

0 0  n

i f = n  K *
n  =  0  k  —  0

(1 )
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The aberrations’ terms Wn k are:

This sum may bé written for short as

(3)
«

where

qe{o, r, c, i).

Vq is the inverse of the distance from the point Pq to the origin of the coordinates

wq =  xx^+yy*,

x, y, z are the coordinates of a point on the hologram surface

H represents the reconstructing-to-recording wavelength ratio. The sign (+ ) by \i in 
the sum (2) corresponds to the primary image and the sign (—) -  to the secondary one. 
We will deal with the primary image only. The index n in the Eqs. (2) and (3) 
corresponds to the order of aberration. The terms corresponding to n are the (2n—l)th 
order. The index k corresponds to a fixed sort of aberration. For example, in the case of 
the third order aberration n is equal to 2 and the increasing values of k = 0, 1, 
2 correspond to the third order astigmatism, the third order coma, and the third order 
spherical aberration, respectively.

Çq = x2+ y2+ z2-2 z z q. (4)

x

I I z

Fig. 1. Considered setup
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Let us consider the equation below

2z = l/p{x2+y2+ z2), (5)

which describes a family of conical surfaces. The family depends on parameters <5, e, 
which take the following values:

ťT =  1 , 8 = 1 for the sphere,
( 7 = 1 , e >  1 and 0 < e <  1 for the ellipsoid,
( 7 = 1 , 8 =  0 for the paraboloid,
( 7 = 1 , £  <  0 for the hyperboloid of one sheet,
<7 =  - 1 , 8 <  0 for the hyperboloid of two sheets,
(7 =  - 1 , 8 = 0 for the hyperbolic paraboloid.

We consider here the proper conical surfaces only.
Inserting the fixed number of the family (5) into Eq. (4), we can eliminate the 

variable z. Thus, for the paraboloidal and hyperbolic paraboloid, we get

É, =  r2 + C[0.25C(x2 + y2) - l ] ( x 2 + ̂ 2), (6)

for the hyperboloid of two sheets we get

Zq = r2 +  (x2- y 2) e~1 + 2(Ce) " 2 {1 -  [1 -  C2(x2- y 2)e]l'2 }(1 -  Cezq), (7)

and for the others surfaces we get

í f =  r2( 1 -1/8) +  2 (Ce) - 2 [1 -  (1 -  C2r2e) 1/2](1 -  Cezq) (8)

where: C = 1/p, and r2 = x2+ y2.
It is easy to see that for e =  1 the first factor in Eq. (8) vanishes (e =  1 corresponds 

to a spherical surface with a radius p). In this case, each aberration term can be 
represented by

<9>
* 9

where: /¡(A,a) is a function of the coordinates of the point A on the hologram surface 
(Fig. 1), and the parameters a =  (p, a, e) of the surfaces; gqi{Pq,a) is a function of the 
coordinates of the point Pq and the parameters a. For example, for the W2 t the 
functions f  and gqi are:

ft — 2i/,C~2[l —(1—C2r2) 1/2], (10)

</„ = (11)

where: i =  1, 2
= x  for i = 1 and rji = y for i = 2, 

r\qi = xq for i =  1 and v\qi = yq for i = 2.

Functions gq = Yigqi are called aberration coefficients.
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When we aye able to represent the aberration terms in the form (9), it is 
reasonable to find such values of the parameters a and the coordinates of the point 
sources Pq that the aberration coefficients vanish. It is not always possible, of course, 
but when it is, then for each point A(x, y, z) on the hologram surface the aberration 
term W„tk corresponding to the considered gqi is equal to zero. This fact allows us to 
compensate some aberrations. For other conical surfaces and additional factor for 
Wn k emerges in the equation. The W„ k (except for tTn 0) take the form

Wnx = I  hql (A, Pt, « ) + !  *)Ygqi(Pq. «)
q i  i  q

( 12)

where: hqi(A, Pq, a) is a function of the entire set of parameters and variables 
described above. For example, in the case of ellipsoid we get for W2tl:

ft — 2</i(Ce)~2[ l —(1 —C2r2£)1/2], 

gqi =  nqi K j(l-C cz,),

=  tv l ' 2( 1 - 1 /4

(13)

(14)

(15)

We cannot exclude from both factors of the sum (12) its common part which is 
independent of the coordinates of points on the hologram surface. Hence, it is 
impossible to get any Wnk equal to zero for each point A(x, y, z) on the hologram 
surface simultaneously. Thus we have shown that the only surface, among the 
conical surfaces, that allows us to eliminate some aberrations, is sphere. For the Wn 0 
of any order the situation is different. It is easy to obtain from Eq. (2) that the Wn 0 
can be represented in the form (9) for any shape of a hologram. In this case, however, 
the W„to does not depend on parameters (a) of hologram surface, so we cannot 
improve the quality of image by changing the hologram surface geometry. To make 
it clearer, we want to give some numerical examples.

3. Numerical examples

An analysis of the third order aberrations of a holo-lens recorded on a spherical 
surface is given in [7]. The holo-lens is a hologram under conditions:

*o = = 0, xr = yr = 0.

The coordinates of the Gaussian image are given as:

v ^ K i M K - K ) ,

= Kxc.

(16)

(17)

(18)

For the holo-lens the location of the Gaussian image does not depend on surface’s 
parameters. In the general case this fact is not true.

In paper [7], it is showed that for a fixed value of p and coordinates of the source 
points Pq the aberrations coefficients corresponding to the third order coma and the 
third order spherical aberration vanish simultaneously. Those authors based on the
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M ustafins works [2], [3]. We present the value of the W2t j aberration term, which 
corresponds to the third order coma for the holo-lens recorded on sphere, ellipsoid, 
paraboloid. Our examples will be confined to the one-dimensional case, i.e., we put 
y — yq = 0. We put next p = 1 and V f 1 = V ~1 =  oo, V{ =  V0 = 100" L These values 
satisfy Eq. (17). All examples will be calculated for xcVc = 0.02. It is worth noting that 
the product xcVc corresponds to the value of sine of an angle between the z axis and 
beam of the reconstruction wave. (The distances are given in mm).

3.1. Sphere (a =  1, a =  1)

To examine the spherical holo-lens, it is sufficient to deal with the aberration 
coefficients. For coma the aberration coefficient takes the form

9t = - V exe(CV0+V*). (19)

It is easy to show that for p — 100 the 9i coefficient is equal to zero. Hence, W2 tl — 0 
for each point on the holo-lens surface.

3.2. Ellipsoid (c> 0 , e #  1, a =  1)

Now, because of the additional factor in Equation (12), we have to examine the 
whole expression for the W2t v From Eqs. (2) and (8) we get

W2t t =  0.5 Fcxc{—x3(l —1/e) F02 + 2x(C£) - 2 [1 -(1  - C 2r2s)1'2W 0̂ C+ F 2)}.

Let a be the radius of ellipsoid in the direction of x axis, and b the second radius 
of ellipsoid in the direction of z axis. Let e' =  a/b, then from Eq. (5) we get e = e'2. We 
will consider the family of ellipsoids which intersect the sphere with radius p =  100 at 
the points: x = z = 0, x =  5, z = 0.125078223 (Fig. 2). The values of W2 , for different

Fig. 2. Ellipsoid and paraboloid intersecting the 
sphere, a — sphere, b — paraboloid, c — ellipsoid
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s' are given in Tab. 1. This table shows that the W2 { value depends strongly on the 
coordinate x of the points at the pupil. Equation (20) for W2< l is continuous in 
relation to variable x, hence between s' =  0.9 and s' — 1.1 there exists such s' that 
W2t! =  0. According to our theory, in the case of ellipsoid each x can correspond to 
different ellipsoids if W2 x =  0. This is well shown in Tab. 2, where we have fixed the 
s' {s' = 0.8) and treated the W2t t as a function of p. The results show that the W2< t 
equal to zero corresponds to different p for different x. That difference is due to the 
fact that for the ellipsoid it is impossible to represent the aberration term W21 by its 
aberration coefficients.

Table 1. Aberration term W2tl for the family of ellipsoids

£' II W2A (x =  5)

0.7 3.06x10"10 1.53x10"13
0.8 2.16x10"10 2.44x10"13
0.9 1.14 xlO "10 4.00x10"13
1.1 -1 .2 6 x 1 0 -10 - 1 .9 7 x 1 0 -13
1.2 -2 .64  xlO "10 -1 .9 9 x 1 0 -13
1.3 -4 .14  xlO “ 10 - 1 .8 5 x 1 0 -13

T able 2. Aberration term W2t  as a function of p (for ellipsoids)

P

IIi
W2A (x =  5)

99.90 9.92x10"10 9.70x10" 8
99.95 4.91 xlO "10 3.44 xlO "8
99.97 2.91 x 10“10 9.36x10-9
99.98 1.91 xlO "10 -3 .19  xlO "9
99.99 9 .1 0 x l0 ~ n -1 .56x10"  8

100 -9 .0 2 x 1 0 " 12 -2.81 x l0 ~ 8

33 . Paraboloid (p =  0, a =  1)

We have to examine, as previously, the whole expression for the W2t t. From 
Equations (2) and (7) we get

W > . ,  =  - 0 . 5 x 3 K > +  C + 0 . 2 5 V a C 2 ) .  ( 2 1 )

T able 3. Aberration term W21 for the family of paraboloid

P II ^ 2.1 (x =  5)
90 1.11 xlO "7 1.38x10" 5
95 5.25 xlO" 8 6.50x10" 6
99.94 5.75x10"10 -3 .17  xlO"9

105 -4 .76  xlO “8 -4 .8 2 x 1 0 " 8
110 -9 .1 0 x  10-8 — 1.14 x 10-5
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We will consider five paraboloids. The paraboloid number 3 intersects the sphere 
with radius p =  100 in the same way as ellipsoids in the previous example. The 
results given in the Tab. 3 are similar to those obtained for ellipsoids.

4. Conclusions

We have shown that for the holograms recorded on the conical surface (except the 
sphere), it is impossible to represent the aberration terms Wn k by the aberration 
coefficients. Hence, it is impossible to find such values of surface parameters and 
coordinates of source points Pq that the Wn k is equal to zero for each beam going 
through any point of a pupil. It is not sure, however, that the most appropriate way 
to obtain the best image is to compensate completely some aberrations. For this 
reason, it is necessary to make numerical investigations in order to get the full 
characteristic of an image.
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Голографические линзы, полученные на поверхностях второго порядка. Анализ 
аберрации

Проведен анализ аберрации голограмм, нолученных на поверхностях второго порядка. Пример 
голографических линз рассматривали более точно. Исследовали корректировочные возможности 
голографических линз для комы третьего порядка.


