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Quick measurement of parameters A and a 
of the refractive index profile in the preforms 
and waveguides. Generalized shearing methods*

W. Kowalik

Institute of Physics, Technical University of Wroclaw, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, 
Poland.

A quick method of measurement of parameters A and a describing the refractive index profile for 
preforms and light waveguides has been presented. The interference methods of both transversal 
and radial shearing have been described as far as being related to the problem. The proposed 
method makes it possible to apply a very simple scanning of the interferograms and the 
calculations are reduced to determination of the coefficients to the given equations.

1. Introduction

In many application and, in particular, when large series of measurements on similar 
objects (mass production) are performed, the measurement results as described by 
analytic formulae with parameters A and a determined experimentally are often 
more useful than the detailed tabelarized results of sampling. Interference methods to 
determine the parameters A and a of both preforms and optical waveguides have 
been exploited since a long time [1], [2]. However, any improvements are worth 
noting, while an increment of both the measurement accuracy and reliability is very 
Wellcome.

Our approach is more general than that in the papers cited above, while the 
assumed cylindric symmetry of the objects is used only for the sake of exempli
fication. This work is the forth one of the five-paper series of publications [3]-[5] 
intended by the author. The first one, [3], describes the method as employing the 
interference with plane reference wave. In works [4], [5], the specific relations are 
exploited which appear in the methods of radial and transversal shearing, respec
tively. They show the possibilities of the measurement of the sought parameters 
A and a as far as deformed interference fringes are concerned for two determined 
normed coordinates of r.

The aim of this paper is to generalize the shearing methods to enable the 
measurement of the fringe deformation for two arbitrary values of r. The next paper, 
being now elaborated, will present a further generalization of all the described

* This work has been sponsored by the CPBP 01.06 Programme.
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methods being also some specific generalization of the methodices of the interference 
measurements.

The interferometric measurements of the phase objects consist in the registration 
of the orders of interference fringes on the plane interferograms in which the 
information taken from the whole volume of the object is coded by passing the 
testing light beams. The calculation of the spatial distribution of the refractive index 
in the examined object is possible if the suitable general data concerning the object 
are known. In the case of preforms and light waveguides the needed information is 
that the geometry of both the object and the refractive index distribution are of 
rotational symmetry. The transition from the data space to the space of results is 
a classic one and it is realized by applying the whole theory with the suitable 
mathematical apparatus. The results of sampling are usually obtained on the basé of 
sampling by carrying out a full time-consuming cycle of calculations for each 
sampling of results. In the calculations, the general information about the object 
examined are also exploited.

In the present paper, another approach is attempted. The aim was to reduce the 
data from the interferogram on the one hand, and to obtain the maximally detailed 
results achievable under these circumstances. It has been assumed that in addition to 
the general information about axial symmetry of both the object shape and the 
refractive index distribution, the general form of the function (1) (see down) of the 
object is known which describes the reaj continuous distribution of the refractive 
index with a sufficient accuracy. This function may be uniquely described by using 
only two numbers (parameters A and a). It has been also assumed that only those 
two values and not the very detailed data, which sometime may obliterate the 
general properties of the examined objects, are the subject of interest.

In order to fully explain the further treatment, let us note that in this work the 
computing simultation examinations were used. They gave the same effect as the 
measurement data treated classically which would fill the space of results.

We want to show that, if the data from the interferograms are even drastically 
reduced, the measurement of A and a parameters is still possible with the accuracy 
sufficient for many practical purposes.

The increase of measurement rate became possible due to the following 
assumptions [3]:

-  Continuous function

n(t) = n j \ - u r , n„ =  n j y j \  - 2 â  (1)

is a sufficiently good approximation of the real profile of the core, where r = r/r0 is 
a normalized argument, r0 = d/2 is the core radius, and np is the refractive index in 
the core.

-  Visual or automatic measurement of the fringe deformations is sufficiently 
intensive to the microdiscontinuities of the fringes.

The following additional assumptions, which influence the numerical values of 
the coefficients reported in this work, have been also accepted:

i) The sought parameters are contained within the limits Ae  <0.009, 0.015) or
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a <1.6, 2.4), the shearing parameters: h e <0.995, 0.98) or s e <0.005, 0.02).
ii) The accuracy of the zero order approximation in calculation of the wavefront 

is sufficient.
iii) Calculations are carried out for the wavelength /  = 632.8 nm.
The simulation computer examinations have been performed, which consisted 

in:
1. Calculations of the wavefront g(r) within the zero approximation for given 

A and a (the latter being changed within the ranges given above) and for different 
values of the core diameter d.

2. Calculations of the shape of the interference fringes for different A, a and d as 
well as different shearing parameters b or s.

3. Analysis of the changes of obtained interference orders (fringe shapes) to 
establish which variables and in which way influence the interference orders resulting 
in reduction of the number of variables.

4. Expressing the interference order through the parameters A and a.
5. Finding new functions and new numerical coefficients which enable a direct 

calculation of A and a from the measured interference order 3m(r).
The symbol 3 denotes the difference operator. The relative interference orders 

3m(r) = m(r)—mp are given by the difference between the interference orders in the 
region of core and coat, respectively.

2. Radial shearing interference

Radial shearing interference is produced by the shearing element giving two similar 
wavefronts, with one of them being slightly evidenced with respect to the other [6] 
-[8], Fig. 1. This interference is characterized by the shearing parameter b = r2jr,. 
The optical path difference 3z is usually measured with respect to the so-called 
reference level (PO in Fig. lb). In the most cases, the position of the chosen fringe in 
the coat of the preform or light waveguide is accepted as a reference level. When the 
fringes in the coat are positioned perpendicularly to the axis of the preform or light 
waveguide, respectively, then the optical path difference may be determined from the 
interferogram (Fig. lc) by using the method of fringe deviation from the straight line 
(by measuring y(x) and c)

Sz(x) = g{(x ) - g 2(x) = cj{x)-g(bx) = y(x)/c = 3m(x)/. (2)

where c is the interfringe distance. When knowing the light wavelength used to 
produce the interference, the difference of interference orders 3m(x) may be 
determined in a arbitrary point x.

2.1. Results of simulation examination

The measured interference order 3m is a function of variables: r, d, A, a and b. It has 
been examined how the interference order depends on those parameters. The 
following conclusions have been formulated:
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Fig. 1. Radial shearing interferometry: a -  mutually interfering wavefronts </, and g2; b -  optical path 
difference Sz: c -  interference fringes on the interferogram

i) As shown in [4], the normed magnitude

Sm(r, a) =
dm(r, d, A, a, b) 

d A (l-b )
0 )

is constant in the first approximation for various values of d, d, b.
ii) The normed interference order dm depends nonlinearly on r and a (Fig. 2). 

Nonlinear dependence of dm on a (for constant r) may be seen distinctly in Fig. 3.
iii) It follows from the accurate study that the normed order of interference dm 

depends linearly on A for fixed r (Fig. 4). This is correction to the point i).
iv) Normed order of interference dm depends almost linearly on the shearing 

parameter b (Fig. 5). This is a correction to the point i).
It has been shown [4] that the parameters A and a may be calculated by
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Fig. 2. Ratio of the relative order of interference dm to the product of the core diameter d and the 
parameter A related to a. Normed order of interference 5th depending on a

Fig. 3. Differences of normed orders of interference as depending on different values of a

measuring dm in two locations on the core radius, while in order to calculate A it is 
sufficient to measure 8m for one exactly defined value of the radius. We show that 
this problem may be solved more universally (Sect. 2.2) by means of general method 
given in [3].
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2.2. Generalized method
The conclusions presented in Sect. 2.1 will be helpful for derivation of the 
mathematical relations given below. It follows that the normed order of interference 
is a function of f, A, a and b, which is continuous in the whole range of the examined 
arguments.

2.2.1. Three-point method

To describe the normed order of interference dm the following conclusions have been 
taken into considerations:

1. Nonlinear dependence <5m(r, a) with respect to ř and a (Fig. 3)

Sm(f a) = a0(r)+ u 1(r)a + u2f/i)a2 (4)

where ah are the coefficients dependent on r.
2. Linear dependence of dm on A

dm(i\ A) = ôj(r%d-0.012) (5)

where ô (r) = ddm/d, is partial derivative (Fig. 4).
3. Almost linear dependence dm on the shearing parameters b (Fig. 5)

Sm(f, h) = aM (/’)(/>—0.99)+362 (ř)(í>—0.99)2 (6)

where 0M abd db2 describe the partial derivative db(r) = ddrh/db. In many cases, we 
may restrict ourselves to the linear dependence

dm(r, b) = db(r)(b-0.99), (6a)

db(r), ôM(r), db2(f) are given in Tab. 1.
Equation (4) describes the dependence for A = 0.012 and b = 0.99, while Eqs. (5) 

and (6) describe the relative changes evolved by A and b in relation to the Eq. (4), so 
the general dependence takes the form

dm(r, A, a, b) = a0(ř)A-aí(ř)y+a2(ř)y2 + dJ(r)(A -0.012)

+ (̂  )(b ~  0.99) + db2 (r)(b—0.99)2, (7)

or, when using Eq. (6a) instead of (6), the form

dm(r, A, a, b) = a oW + a^na  + a ^ ř ^  + dJřHA-O.Oni + d^řHb-OM). (7a)

The respective coefficients ah, dá, db for some values of ř are given in Tab. 1. The 
values of these coefficients (without ôM and db2) for arbitrary r may be calculated 
from the series of coefficients given in Tab. 2.

By measuring dm{r), for three different values of ř, and inserting these values to 
the system of three equations of the form (7), we obtain after suitable transformations 
the quadratic equation with respect to a

Aoi2 + Bot + C = 0 (8)

where:
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T ab le  1. Coefficients at{f) and derivatives dA(f) and dh(f) describing 6rft(r, A, x, b)

t a0(0 « ,(0 a2(t) e6(0 3» (0

0.4 444.05824 233.749373 -56.7912156 1003.7673 276.5489 269.9647 -1316.853
0.44 438.79074 333.010552 -73.2524313 1223.2535 307.2772 305.0825 -438.94
0.48 420.94615 440.749872 -89.5080413 1419.3262 333.6147 331.4197 -439.0133
0.52 393.75232 551.69845 -104.323125 1668.0717 342.394 342.394 0
0.56 358.39413 662.399697 -116.874687 1919.7417 335.8087 332.5163 -658.4667
0.6 318.36029 767.504785 -126.134156 2168.4967 311.6673 307.2777 -877.9333
0.64 272.46602 865.696372 -132.101437 2428.945 241.4313 239.2357 -439.1333
0.68 224.5314 950.965047 -133.747437 2648.43 131.6893 118.5207 -2633.733
0.72 178.17651 1017.05695 -130.249437 2885.4717 -24.1433 -25.2407 -219.4666
0.76 133.53403 1060.92576 -121.812968 3107.8833 -278.745 -290.816 -2414.333
0.8 92.44601 1077.71702 -108.644187 3233.72 -625.525 -635.402 -1975.267
0.84 58.73369 1057.96324 -90.1252187 3353.7 -1150.09 -1154.48 -878.2
0.88 29.49774 998.621325 -68.5200625 3301.0283 -1953.4 -1990.71 -7462.4
0.92 12.11502 879.853222 -43.622375 3078.615 -3228.59 -3293.34 -12949.47

T ab le  2. Polynomial coefficients describing coefficients n,(r) and derivatives ôj(r) and ôh(r)

«,(»*) =  ¿a,·/''
3„(0 =  r a V ' 8*(r) = £ V J'

j / = 0 i =  1 / =  2

au <**j a»j

0 -368.751971 -4278.60453 99.366183 -28066.1897 36993.5877
1 4047.838702 43250.372 -715.846552 293524.1688 -472714.0084
2 -3978.5638 -186941.2209 2874.7285 -1254392.42 2569103.05
3 -5769.8499 434400.8039 -8772.3331 2847693.54 -7676389.49
4 8944.235265 -541774.7676 10738.0122 -3570406.05 13652488.06
5 -2868.526998 348744.9385 -4216.977809 2359759.68 -14453911.32
6 -93006.6461. -646661.8529 8432873.67
7 -2097095.26

^  — a2ijlb ij-a2kilbkl,

B = cti ij!bij—alkl/bu ,

C = (aoijl by—Qokil bki) +  {cUj/by—c ikJ  bkl)(b—0.99)

+ (c2«j/bij—c2kJ  bkl)(b—0.99)2.

The indices i, j ,  k  and /, taking the values: 1, 2, 3, refer to the corresponding three 
equations (each for another value of r), while

“hmn = ah(fm)Sm(r„)-ah(fn)5m{fJ,

b,„n =  C JrJdmifJ-ciJrJSmifJ,

‘mu, = dhPb\Jdirti\)-dhp(rJdm(rm).

(10)
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The pair of coefficients m, n takes the values of either the pair i, j  or k, 1 Such 
notation has been accepted due to the fact that the unique determination of the 
solution of Eq. (8). Consequently, if the coefficients 1, 2, 3 describe the measured 
interference orders dm(r) (for the growing values of rx, r2, f 3) the relation (8) may be 
expressed by various differences, for example:

a) i = 3, j  = 2, k = 2, / = 1,

b )  / = 3, 7 = 1, k = 3, / = 2, (11)

c) / =  3, j  = 1, k =  2, I =  1.

For the coefficients given in Tab. 1, there exists only one true solution of Eq. (8). For
a) and c) from (11) we get

a =
- b - J b 2- a a c

2A
(12)

and for b) from (11) -  the similar equation with the sign “ + ” in front of the square 
root.

When knowing a from one of the three equations of (7), the parameter A may be 
calculated

A A2 + B A + C = 0 

where:

( 13)

A’ = d ( l -b )dA(f),

B =  d ( i -b ) la o(f)+ai(f)0i + a2(f)0i2- d A(f)-0.012 

+ SM (f)(b -  0.99) + 0b2(r)(fc -  0.99)2] ,

C = — <5m(r).

To only true solution is

- B  + J b '2- a a 'c '
2A'

(14)

(15)

2.2.2. Two-point method

If we decide to reduce slightly the accuracy of the measurement, the expression 
04(r)(d—0.012) in (7) may be neglected. Then the parameters A and a may be 
determined from the system of two equations modified in these way. Therefore, only 
¿m(r,) and Sm(r2) are measured on the core radius. The solution of the system of two 
equations is the equation of the form (8), where:

A =  a2{f2)ldm(r2) - a 2(rx)ldm{rx),

B = a ^ f2)ldm{f2) - a x{f)l6m{fx),
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C = ia0(r2)fSm(r2) - a 0(fl)/Sm(rx)̂ \

+ idbl(t2)!Sm(r2) - d bi(ri)/Sm(rim b-0 .99)

+ idb2(f2)/Sm(f2) - d b2(ri)/Sm(fim - 0.99)2.

The only solution of Eq. (8) for the coefficients taken from Tab. 1 is

- B + J b 2-4 A C
* = -------  2 A---- ·

When knowing a from one modified Eq. (7), we obtain

A =  Sm(r)l[d(l-b)(a0(f)+a,(f,)oi+a2(f)x2+6bl(f)(b-0.99)

+ 8t2(r)(6-0.99)2]. (18)

As may be seen, in the method of two-points the expression for A and a are less 
complex than those in the three-points method. These relations may be simplified 
even more replacing Eq. (6) by Eq. (6a). Then, instead of Eq. (7) we have Eq. (7a) and 
the components in the sums containing the factor {b—0.99)2 in Eqs. (16) and (18) 
vanish, while Sbl(r) should be replaced by 0j,(r), in the solution for the coefficient C.

3. Transversal shearing interference

Transversal shearing interference is produced by a shearing element giving two 
identical wavefronts slightly shifted transversally with respect to each other [6], [9], 
Fig. 6. This interference is characterized by the shearing parameters s = s'/r0, where 
s is the transversal shift, and r0 -  the radius of the wavefront. The optical path 
difference Sz is measured usually with respect to the, so-called reference level (PO in 
Fig. 6b), which in most cases is defined by the position of the fringe in the coat of the 
preform or light waveguide, respectively. When the fringes in the coat are positioned 
perpendicularly to the axis of either the preform or the light waveguide the optical 
path difference may be determined from the interferogram (Fig. 6c) by using the 
method of the fringe deviation from the straight line (by measuring y(x) and c)

6z{x) = g(x )-g (x)  = g(x — s ) -g (x )  = y(x)/c = dm(x)/. (19)

where c is the interfringe distance. When knowing the light wavelength for the light 
used to the interference, the difference of the interference orders <5m{x) may be 
determined in an arbitrary point x.

3.1. Results of simulation examination

The measured interference order dm is a function of variables r, d, A, a and s. The 
dependence of the interference order on these parameters has been examined which 
led to the following conclusions:

i) As it has been shown in [5], the normed magnitude

(16)

(17)
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Fig. 6. Transversal shearing interference of: a -  mutually interfering wavefronts g { and i/2; b -  optical path 
difference c)r: c -  interference fringes on the interferogram

3m(r, aj = 3m(i\ d, A, oc, s)/(dAs) (20)

is, in the first approximation, constant for different values of d, A, s.
ii) The normed order of interference dm depends nonlinearly on r and a (Fig. 7). 

Nonlinear dependence of 3m on a (for fixed r) may be seen distinctly in Fig. 8.
iii) From the more accurate examinations, it follows that the interference order 

3m depends linearly on A (for fixed r), Fig. 9. This is the correction to the point i).
iv) Normed order of interference 3th depends almost linearly on the shearing 

parameter s (Fig. 10). This is the correction to the point i).
It has shown [5] that the parameters A and cl may be calculated by measuring 3m 

in two positions on the core radius, while to calculate A it is sufficient to measure 3m 
for one strictly determined value of the ray. In the generalized method, we show that 
this problem may be solved more generally (see Sect. 2, in the case of radial shearing).
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Fig. 7. Ratio of the relative order of interference dm to the product of the core diameter d and the

Fig. 8. Differences of the normed orders of interference as depending on different values of *

3.2. Generalized method

By comparing the conclusions for the transversal shearing with those for the radial 
shearing (as well as the-formulae (3) and (20)), it may be seen that the character of 
changes and the final formulae for both the types of shearing are similar in form. The 
only difference consists in replacing the expression (1 — b) in formulae (3)—(18) for s, 
and 0M, 0b2, 0fc, b—0.99 for 0sl, 0s2, 0S, and s—0.01, respectively (homologue of 
formula (4) describes the relation for s =  0.01).

When taking account of the above differences all the formulae (3)—(18) are true 
also for the transversal shearing. This is also valid for the uniqueness of the solutions 
for A and a. And, thus, the homologue Eq. (7) is
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Fig. 9. Differences of normed orders of interfer
ence with different parameters A. The derivative 
0 j(/) of the normed order of interference with 

? respect to parameter A

ôm(r, A, a, s) = a0(f) + a 1(/»)a+a2(f)x2 + dà(f)(A-0.012)

+ 0fl (f)(s -  0.01) + 0s2 (f)(s -  0.01 )2. (7b)

Clearly, for the transversal shearing the coefficients for the solution of the system 
of Eqs. (7b) are different than those for the radial shearing, and are given in Tab. 3 and 4. 

In the case of transversal shearing, Eq. (8) has the coefficients:
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T ab le  3. Coefficients fl,(r) and derivatives ôj(r) and Ss(r) describing c)m(r, d, % s)

r «<)(') «.(r) Sjfr) e jr ) e„(r) e,2<r>

0.4 1116.4669 572.68575 -140.331875 2510.89 1755.865 -1733.92 -4389.467
0.44 1001.7646 748.82141 -165.846906 2739.15 1624.175 -1602.23 -4389.866
0.48 885.35094 907.672122 -185.188812 2961.56 1496.874 -1499.07 439
0.52 764.19597 1053.18972 -200.004 3189.82 1308.121 -1299.34 -1755.667
0.56 645.80723 1177.47156 -208.646031 3406.3767 1093.025 -1060.1 -6584.533
0.6 532.8169 1278.211478 -211.115343 3581.9633 904.27 -899.879 -878.2
0.64 428.78191 1351.30263 -207.000031 3763.405 610.1627 -581.628 -  5706.867
0.68 333.83372 1397.06467 -197.12325 3915.5783 320.4447 -305.08 -3072.867
0.72 247.44517 1415.50122 -182.308125 4032.6333 -17.558 21.947 -877.8
0.76 176.02727 1398.7403 -161.4435 4071.44 -447.879 467.8303 -3990.333
0.8 116.19288 1349.32511 -136.566406 4074.54 -963.179 988.7253 -5109.333
0.84 70.58216 1262.0229 -108.043187 3976.9133 -1605.91 1634.71 -5759.2
0.88 36.94688 1134.243 -77.6764375 3761.9433 -2484.94 2525.391 -8089.8
0.92 15.393226 956.17524 -47.1408437 3374.6533 -3794.6 3870.014 -15082.87

T ab le 4. Polynomial coefficients describing coefficients t/,(f) and ? t(f) and cs(r)

=  I a uf j
2j(r) = l i / j / · ' cs(f ) =  ZVi,/j

j  ' = 0 i =  1 i = 2

“u “Aj am

0 788.272942 475.6018 334.209969 5619.0525 195639.1
1 7233.195555 -11753.1317 -1681.254471 -42276.1136 -2310108.68
2 -24369.6211 57633.9605 1690.132402 168207.0086 11666021.58
3 23833.8392 -92959.3544 -2649.4027 -292438.9268 — 32320011.46
4 -7481.958501 68040.4324 4777.488792 256389.0588 53049354.11
5 -21006.3065 -2464.938837 -93578.2118 -51657655.95
6 27660963.86
7 -6293828.17

^  — a2ij!bij — a2ki/bki,

B = (tujlbij - ( l lkl/bkl,

C  =  Va o i j i  b ij  — Uokii bki] +  11 y / bij  — t'\k i bki]  ( s — 0.01 )

+ [^2/j / bij—c 2u i bkl] (s—0.01 )2 (9b)

where:

= ah(rjS m (rJ -ah(rJôm{fJ. 

bmn =  S.,(r ,„)Sm(r „)—d,(r,,)Snt(rm),

(10b)= ^ p(rm)^m(r„)-es/,(rJd;i?(r„I).
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Similarly, Eq. (13) has the coefficients:

À  = dsdj(r),

B = ds[a0(f) + ax(f)<x+a2(f)<x2 — ôj(r)0.012 

+  ôs, (r )(s -  0.01 ) + Ss2 (r )(s -  0.01 )2] ,

C = — 3m(r). (14b)

For the two-point method, the coefficients are also slightly different:

A =  a2(r2)/ôm(r2) - a 2(rx)/ôm(rx),

B =  ax(r2)/ôm(r2) - a x(rx)/ôm(rx), (16b)

C =  io0(r2)/Sm(r2) - a 0(rx)/Sm(fx)^

+ № s2(r2)/ôm(r2) - d sX(fx)/Sm(rx)~\(s-0.0l)

+ Î0s2(f2)/ôm(r2) - d sx(fx)/ôni{rx)li{s-0m )2, 

and the expression of A has the form

A = Sm(n/lds{ao(n + a l(f)x+a2(nx2+dsl{r){s-0.0l)+à,2(r)(s -0M )2)'\. (18b)

The simplifications in the solution of two Eqs. (16b) and (18b) due to neglecting 
the respective components of sums in two above equations comprising the factor 
(s —0.01)2 are also possible and result in only slight worsening of the reconstruction 
accuracy of the paramétrés A and a.

4. Measurement accuracies

Due to almost identical mathematical dependences for the methods of radial and 
transversal shearing a common analysis of the measurement accuracy is possible. In 
this analysis, it has been assumed that the relative error in determination of the 
relative interference order is equal to a(ôm(x)/ôm(x) = 0.05, in the case of visual 
measurements, and to 0.01 in the case of a scanning device, respectively. Besides, it 
has been also assumed that the relative error of the core diameter measurement is 
equal to a(d)/d = 0.005, while the error of the normed coordinate is equal to 
a(x) = g(r) = 0.001. It has been also assumed that the errors of the shearing 
parameters fulfill the conditions g(1—b)/(1—b) = g(s)/s = 0.01, which for typical 
values b =  0.99 and s = 0.01 gives <r(l —b) =  <r(s) =  0.0001.

The analysis of the accuracy has been carried out partially by computer 
simulation of the respective dependences as well as by analysis the suitable equations 
analogically as it was the case in works [3]-[5].

The main conclusions following from this analysis as follows:
1. Errors due to reconstruction of the results on the basis of the given coefficients 

are practically avoidable.
2. The biggest measurement errors are introduced by: the approximation of the
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zero order used to calculate the coefficients given in the tables, the accuracy of the 
interference order determination <r(<5m(.v)), the accuracy of the coordinate measure
ment a(x), and the accuracy of the shearing parameters a(b) and d(s).

3. In practice, the sufficient accuracy is provided by the two-point method.
4. The measurement accuracies of A and i  determination for the visual method 

are equal to 4.7% and 5.5%, respectively, while those for the method with scanning 
device are 3.6% and 4%, respectively.

The above errors have been calculated under an assumption that the mi* »sûre
ment of the fringe deformation in two (or three) positions on the core radius may' 
truly reconstruct the profile course along the whole radius. This is true only to such 
degree to which the real profile may be described by the dependence (1). All the 
deviations from this, dependence may increase the calculated errors. In order to 
diminish such errors the deformation may be measured in three or four positions on 
the radius (preferably for its left and right hand sides) and the calculations should be 
performed for the combination of different pairs of the coordinates to calculate the 
averaged parameters A and a.

The above accuracies may be improved (so that the errors diminish by about 
1.5%), if instead of the zero order approximation the accurate calculation reported in 
[10] are applied. Obviously, the whole cycle of calculations presented in the present 
paper should be repeated. Then all the dependences and formulae stay the same and 
only the values of the coefficients in Tables 1-4 will change.

5. Conclusions

It has been shown that for drastically reduced data extracted from interferogram the 
results obtained are only slightly less accurate. It has been also shown that by 
studying the space of results the analytic shape of the function which describes the 
results may be found and the time consuming transitions from the data space to the 
space of results may be replaced by a simple calculation of parameters (A and a) 
describing the function (1) of the examined object.

The proposed method requires the function of results (7) to be found earlier, 
being expressed by the sought parameters (A and a) which describe the object 
functions (1). This is, in general, the problem of multidimensional approximations 
function as defined on the parameters of the object function (A and a) general object 
properties (d, r) and the kind of interference (b or s). The approximation concerns the 
data (Sm(f, d, A, a, b)) obtained either by the method of computer simulation or from 
the direct measurements. The simulation is made with respect to the object function 
(1) and the kind of interference (2) or (19). Clearly, the object function and its general 
properties generate the suitable wavefront, which creates the basis for calculations. 
In order to find the connection of the function of results with the sought parameters, 
the system of (generally nonlinear) Eqs. (7) must be solved. Such a method of solving 
the problem (as one of many possible) has been presented in this paper. In the case of 
carrying out approximation procedure with respect to the measurement data (when 
(1) is not known), the suitable form of the object function must be found. This
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function should recover the real distribution of the refractive index in the examined 
type of the object with sufficient accuracy, while the number of the sought 
parameters describing this function should be possibly small. The finding of such 
general form of the object function for the difinite type of the object is possible (at the 
expense of the suitable extention of the softwave) by introducing to the computer the 
detailed information from several interferograms of the objects of the same type. 
Thus, the measuring system may be “taught” how to measure different types of the 
objects for the reduced number of data. The works in this direction (as shown in this 
paper) are encouraging and will be continued. This may be useful when constructing 
the “intelligent” measuring system.

The method suggested is especially advantageous when many measurements are 
carried out for similar objects. The reduction of the data allows us to replace the 
time-consuming analysis of the interferogram as well as the expensive apparatus 
needed by a very simple scanning device to analyse only few lines. The simplified 
method of calculations allows obtaining the results in the real time, for instance, 
during the preform or the light waveguide through the interferometer.
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Быстрое измерение параметров A n y  профиля коэффициента преломления 
в свстоводовых преформах. Обобщенные методы типа shearing
В работе представлен метод быстрого изменения параметров А и а, описывающих профиль 
коэффициента преломления преформ и световодов. Описаны интерференционные методы попереч
ный shearing и радиальный shearing. Предлагаемый метод дает возможность применения очень 
простого сканинга интерферограмм, а расчеты сводятся к вычислениям готовых уравнений 
с данными коэффициентами.
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