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Image contrast in the coherent, aberration, apodized optical system. 
Rotating aperture at the Fourier transform plane

A. Magiera

Institute of Physics, Technical University of Wrocław, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, 
Poland.

It has been shown that the introduction of an amplitude phase apodizer into a coherent aberration op
tical system an imaging of periodical amplitude or phase object results in the change of the contrast 
which, in turn, depends on the rest modulation depth and on the shape of the amplitude part of the 
function describing the apodizing filter. The change of contrast has been examined with respect to 
the function of apodizing filter as well as to the system aberration for amplitude apodizers of the 
types: [1/2(1 + r 2)] '’, (1 — |r|2)p for p = 1,2, 3,4. In the next part of the text, the speckle-contrast has 
been shown in coherent optical system with time-varying pupil function and diffuse object.

1. Introduction

Let us assume that in the exit pupil of a coherent optical system there is an 
amplitude-phase apodizer of the transmittance

A(r) — t{r)emr), 0 <  r ^  1.

If we admit wave aberration in the optical system W{x, y), then the total phase 
change in the pupil will equal

W(x;y) = xv(x,y) + $(r), r = y/x 2 + y2. (1)

As it is known, a coherent optical system is a linear filter with respect to the 
amplitude harmonic [1]. Coherent transfer function of such a system is

/(/*> f y) =  P(XfxR,Xfy)cxp{ikW(XfxR,XfyR)}. (2)

where:

k — — (X -  light waveguide),
A

fx< fy -  spatial frequencies,
R -  reference sphere radius,

P(x v) -  {  ^  -  PUP^ Unction within the pupil,
[ 0  -  beyond the pupil.

To describe the optical system with quadratic detection, we shall apply the 
method employed in papers [2] and [3].
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2. Amplitude and phase test
Assume that in the object space of an optical system there is a test of the amplitude 
transmittance

H{x,y) =  a + bcos(2nfxx). (3)

(4 )

ba
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Energy contrast in the image is

k '(L) =
2abt(0)t(s) 

a2t2(Q) + b2t2(s) C° S

W(s) + W (-s)
-JT (0 )]} (5)

where s = XfxR /fg (fg -  cut-off frequency, R -  reference sphere radius,/* -  spatial 
frequencies).

Contrast change in the image with respect to the object is

Fig. 2. Effect of apodization r(/·) on the image contrast of amplitude test for: f(r) = 1 -  r2 (a); t(r) = (1 - r 2)2 
(b); t(r) =  (1 —r2)p (c); t(r) = (1 - r 2y  (d)

D(fx) = n o

K(L) 1 + m2 t2(s) 
t2( 0)

cos<fe fT (s )+ M -s )
2

(m =  b/a -  test m odulation depth).
The phase shift appearing in the image will have the form

(6)
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Fig. 3. Effect of apodization i(r) on the image contrast of amplitude test for: t(r) — 1 — |rj (a); 

t(r) = (1 -  |r|)2 (b); t(r) =  (1 -  \r\V (c); t(r) = (1 -  |r |) ' (d)

&(fx) = k
IF (s ) - lF ( -s )

2 (7)

(k = 2njX, X -  light wavelength).
For a phase test of the transmittance

H(x,y) ~  1 +  im sin x
the change of contrast with respect to the object equals

D(fx) =

f(s)

t(0)
(1+ m 2)

1+ m 2
i2(0)

sin</c
W{s)+W(-s)

2 (8)

From Equation (8) it results that for low-contrast object, at m -»0 , when 
JF(0) =  it¡2 and W(s) =  0, the change of the contrast is the strongest one. In functions
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a  b

Fig. 4. Contrast change D(s) for amplitude test (a) and phase test (b) for the optical system with spherical 
aberration W{r) ~  kr2 apodized with the function t(r) = 1— r2

a b

Fig. 5. Contrast change D(s) for amplitude test (a) and phase (b) test for the optical system with spherical 
aberration W(r) =  Ar4 apodized with the function f(r) = (1+ r 2)0.5

o  b

describing the fall contrast for amplitude (6) and phase (8) tests, two parts may be 
distinguished; namely, a part depending solely on the shape of apodizing function t(r) 
and a part which depends on the wave aberration of the system WXx,y).vLet Dt 
denote first part of the function, it will am ount to
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T 1 , >Contrast change D,(s) for low-contrast objects and apodizers: -  (1 +r2) , p = 1, 2, 3, 4; (1 - r 2)p,p =  1,

2, 3, 4; (1 — |r|)p, p = 1, 2, 3, 4,

Or

r(t) s = 0 s =  1, m = 0 s = 1, m = 1

\ {X+r2)
1 2.0 0.8

r  1 , 1 2

- a w ) 1 4.0 0.5

z 1 3

- ( 1 + r 2) 1 8.0 0.2

= 1 4

- d  + r2)
L 2 J

1 16.0 0.1

( 1 - r 2) 1 0 0
(1 — r2)2 1 1 0
(1 — r2)3 1 0 0
(1 — r2)4 1 0 0

(i — ki) / 1 0 0
( i —kl) V 1 0 0
(i — |r|)V 1 0 0
(i — kl)4/ 1 0 0

t(s )
i(0)

(1 +  m2)

1+ m 2
t2(5) ' 

i2(0)

(9)
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For the test of small m odulation depth (m - ►  0), the run of the function is g’ven by 
the formula

(1 —|r|)p, where p =  1, 2, 3, 4. For low-contrast object, the contrast increases with

apodizer of this type strongly improves the contrast within the range of high 
frequencies for the tests of rather small modulation depth. The smaller the 
modulation depth the stronger is the contrast improvement. On the other hand, for 
great m odulation depths (m -> 1) the contrasts become weaker.

The introduction of the aberration (Figs. 4-7) deteriorates the contrast in the case 
of the amplitude test, and that in the case of the phase test this contrast is improved. 
In the next part of the text, the speckle-contrast has been shown in coherent optical 
system with time-varying pupil function and diffuse object [4].

3. Statistical properties of the time-averaged image speckle pattern
Figure 8 shows schematically an optical system for coherent image formation 
of a uniform diffuse object, i.e., a stationary random  phase object with no signal. 
It is equivalent to a double-diffraction imaging system used for spatial filtering 
and is employed here to vary a pupil in time. In particular, an aperture is rotat
ed at the Fourier transform plane of the object corresponding to the pupil

Object Fourier Image
plane plane plane

Fig. 8. Optical system for coherent imaging of a uniform diffuse object through a time-varying pu
pil at the Fourier transform plane of the object. The rotating circular aperture with rotating radius 
R and aperture width W0 is set at the Fourier transform plane and the lenses are assumed to have focal 
length /

r ( s )

i(0)·
( 10)

Figures 1-3 present the functions Dt{s) for the apodizers

plane. For mathematical simplicity, two-dimensional coordinates at the object, 
Fourier transform and image planes, are denoted by the position vectors of 
*0 =  (x0,y fl), xf  = (xf ,yf ) and Xi = {x^yj, respectively.
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When a uniform transparent diffuse object is normally illuminated by coherent 
light of unit intensity, the object amplitude may be expressed by

U0(x0) =  exp[i0 (^o)] (11)

where $(x0) is a random  phase shift due to the surface roughnes of the diffuse object. 
With a magnification of unity, the point spread function is a Fourier transform of the 
time-averaging pupil function P{xf ,t) which is given by

h(x0, Xi! t)
1

W 1

00 r  k 1 —►
J P{xf ,t)exp - i - ( x 0+Xi)xf  \dxf  

-oo L j  J
(12)

where k =  2n/X is the wave number, X being the wavelength of light, a n d /is  the focal 
length of lenses. Then, the speckle amplitude at the image point xf and the time t is 
reperesented by a convolution integral

Ui(U t)=  ?  U0{x0)h{Xo,ii:t)dZ0, (13)
— 00

and the time-averaged speckle intensity actually recorded by photosensitive detec
tors, such as a TV system, and a film system over an exposure time T can be written
as

/(*,·)= l (14) 1 0

where the symbol * indicates a complex conjugate.
The autocorrelation function of the speckle amplitude, defined by the following 

ensemble average:

r(Xf, x{; t, t) =  <L//xf,f)£/f(x;,i')> (15)

plays an im portant role in characterising the statistical properties of the time- 
averaged speckle pattern at the image plane.

The autocorrelation function yields

r(xi,xi;t,t) = AS J [h(x0,Xb t)h*(x0, xj; t )~\dx0, (16)
— 00

AS is a correlation area of <P(x0).

4. Application to a rotating Gaussian soft aperture 
at the Fourier transform plane

The pupil function for the rotating Gaussian soft aperture is expressed by 

where a{t) is a position vector of the rotating aperture given by



Letter to the Editor 103

a{t) =  (Rcoscot, Rsincot), (18)

(W0 -  aperture width, Fig. 8).
Use of the pupil function in Eq. (17) yields the point spread function expressed by

h(x0,Xi;t) = e x p | ^ l ^ + ^ I ^ J e x p j ^ - /  j  (*0 +  * ,)a(i)J. (19)

As is clear from Equation (19), the point spread function is time-dependent, while 
its modulus is time-independent. Therefore, the mean of the time-averaged speckle 
intensity is equivalent to that of the static speckle intensity, i.e.,

00 nWn
</> =  </(x,)> =  AS J \h(X0,$i;t)\2dx0 =  ¿S -TJ7J · (20)

- 0 0  A j

On the other hand, the autocorrelation function of the time-averaged speckle 
intensity can be written by

i?/ ( J i i) =  < /> 2| l  +  % .T ) e x p |^ -  i ( i ^ ° | z l * |. | ) 2J }  (21)

where Axt = xf—x) denotes the distance vector between the two points xf and x\ in 
the image plane, and

1 TT
V(a, T ) =  exp(—o·2) —^ f f exp[2cosco(t-t)]dtdt, (22)

2 oo

with a param eter defined by

* = W o . (23)

which may be called a scanning ratio. The contrast of the time-averaged speckle 
intensity is of primary interest; it can be derived from Eqs. (19) and (21) as

C =  [F(<7,T);T2. (24)

This equation indicates that the contrast of the time-averaged speckle intensity 
depends both on the scanning ratio a of the rotating aperture R to the aperture 
width W0, and on the exposure time T, [4],

2 e
V(a, T ) =  V(a, 0)= - j  exp{—a2)$(0—(p)exp (a2cos(p)d(p 

“ o

where 6 =  a>T is the rotating angle of the aperture in the exposure time T.
Figure 9 shows the resultant contrast of the time-averaged speckle intensity as 

a function of the scanning ratio a for the various values of the rotating angle 0. 
Starting from C =  1, the contrast decreases m onotonously with an increase of the 
scanning ratio a. As the rotating angle 0 approaches 2n rad, the contrast rapidly 
decreases in the region of small values of a. O f course, with any values of o{ #  0), the 
contrast takes a minimum for 0 =  2n rad.
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Fig. 9. Contrast C of time-averaged speckle intensity as a function of the scanning ratio a for six values of 
the rotating angle 0, a =  R/W0, (R -  rotating aperture, W0 -  aperture width)

The contrast C in Figure 9 and contrast Dt(s) in Figures 3a-d for apodizers 
t(r) = [ 1 -  \r\y, p = 1, 2, 3, 4 (see the Table, items *) are similar. The aberration 
optical system W(r) = 0.5hr2, hr2, 2hr2 for phase test object improved the contrast 
Dt(s) (Fig. 7). The good idea is combination the pupil-aberration-apodizer function 
(constant in time), (in particular, apodizers 1 /2[(1+  r2) ] p) with rotating aperture 
time averaging in coherent optical system with diffuse object. The total pupil 
function in this case is

A{r,xf ,t) =  i(r)exp[2Wb ~

2 ~|
exp[i4>(r)].
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Изобразительный контраст когерентной, аберрационной, анодизированной 
оптической системы. Применение вращательной апертуры в плоскости Фурье

Было показано, что введение амплитудно-фазового аподизатора в когерентную, аберрационную 
отражающую оптическую систему с периодическим амплитудным или фазовым предметом 
вызывает изменение контраста, зависимое от модуляции теста и амплитудной части функции, 
описывающей аподизатор. Изменение контраста было исследовано для следующих амплитудных 
аподизаторов: [0.5(1+ r)2]p, (1—г2), (1 —|r|)p; (р = 1, 2, 3, 4). Показали также speckle-contrast 
в когерентной оптической системе со зрачковой временно изменяющейся функцией и предметом 
диффузии.

,Перевел Станислав Ганцаж


