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The modulation of polarization state is now widely applied in optical measuring systems. Every 
measuring system consists of a number of individual polarizing elements which can be represented 
in Mueller or Jones notation, respectively. In the present paper, the harmonic analysis, under
taken earlier for the Mueller notation, will be extended also for the Jones representation. The 
harmonic equivalents of the Jones matrix, the coherency matrix and the Jones vector will be 
defined and their basic properties described. The harmonic matrices of the most commonly used 
modulators will be determined. Furthermore, the analytical formulas for the amplitudes and the 
phase shifts of particular harmonic components of the total intensity emergent from any measuring 
system with a single modulator will be derived. The usability of the harmonic representation to the 
systematic error analysis will be demonstrated on the example of birefringence measuring system 
with the linear phase modulation. The differential Jones matrices enabling the first order error 
analysis will also be determined.

1. Introduction

The modulation of polarization state is applied to the variety of measuring systems 
as ellipsometers, polarimeters, birefringence measuring systems and to some types of 
polarizaton interferometers. In principle, every measuring system consists of a single 
periodical modulator and a sequence of polarizing elements properly made and 
adjusted. The output intensity is time-dependent and usually the phase shifts or the 
amplitudes of harmonic components of the output intensity are measured. We 
should realize that every individual polarizing element being a function of five 
parameters (i.e., the transmission of the faster k{ and slower ks eigenwaves, the 
azimuth a and the ellipticity # of the faster eigenwaves, the phase retardation 
y between faster and slower eigenwaves) is manufactured and aligned with certain 
error. So, a difficult question arises, how errors of particular elements of measuring 
system influence the final measurement results. A lot of efforts have been made 
[l]-[9 ] to determine the systematic measurement errors for variety of measuring 
systems with different modulation and detection techniques. In all those papers, the 
analysis of errors was carried out in the time-domain. At first, the analytical formula 
for the total intensity of beam emergent from measuring system is determined, and 
next, this formula is developed into a series of harmonic components. As a result, the 
influence of the errors of individual elements of the system on the measurement 
accuracy can be analysed.
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In the recent paper [10], the Fourier formalism has been proposed (for Mueller 
notation, only), enabling one to determine, how particular harmonic components of 
intensity are propagated through the measuring systems. Furthermore, it was 
possible to express the phase shifts and the amplitudes of the harmonic components 
of the output intensity as the analytical function of the Mueller matrices representing 
individual elements of the system. It was also demonstrated that these formulas are 
very useful for the systematic errors analysis. So, the final conclusion of the recent 
paper was that the systematic error analysis should be carried out with the help of 
the proposed Fourier formalism rather than directly in the time-domain.

In the present paper, the harmonic representation will be extended also on the 
Jones notation. The usability of the proposed Fourier formalism to the systematic 
error analysis will be demonstrated on the example of birefringence measuring 
system with the linear phase modulation.

2. Fundamental definitions in a frequency-domain

Let us initially assume that a polarizing system consists of only one time-dependent 
element (Fig. 1). The polarization state of the input beam can be represented by

A A A
E , S , 3

Fig. 1. Transformation of the polarization 
state by the polarizing element

Jones vector K  Stokes vector S0 or coherency matrix K  The output polarization 
state can therefore be determined in one of the following three ways:

£{t) =  f( t )E 0,

§(t) =  M(t)S0, (l)

J(t) = T(t)J0THt)

where T(t) and M{t) are Jones and Mueller matrices, respectively, and symbol 
t  denotes Hermitian adjoint of matrix. The final state of polarization which depends 
on time can be represented in the form of Fourier integrals:

0 0

E(t) — J e (co) exp {2nja)t) da>,
—  oo 

0 0

S(t) = S s(co)exp(2nja)t)do, (2)

00
J(t) = J j(o})exp(27ij(ot)dcoy

— 00
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where the integration refers to all the elements of matrix f(co) and vectors e(w), s(a)). 
Harmonic components of the Jones and Stokes vectors as well as the coherency 
matrix are defined with the help of inverse Fourier integrals:

e{co) = J E(t) exp (—2njwt)dt,
— oo 

00

s(m)= J S(i)exp(—2nj(ot)dl, (3)
— 00

0 0

/(i) =  J J (t)exp(—2nj(ot)dt.
—  oo

Substituting to the above equations, the expressions for the final polarization state 
(Eqs. (1)), we obtain:

e{o)) =  i(a))E0,

s(co) =  m(w)S0, (4)

j(co) = t{w)J0*t{a)),

where t{co) and rh(col) are harmonic components of Jones and Mueller matrices:
oo

t(co) =  J T(t)exp(—2nja)t)dt,
— 00 

00
m((o) = J M (i)exp(—2njo)t)dt,

— oo

(5)

and the symbol ★  denotes correlation of two matrices, see Appendix. Equations (4) 
make it possible to determine harmonic components of Jones and Stokes vectors and 
coherency matrix of the output beam if the input polarization state and the harmonic 
components of the matrix that represents modulator are known.

3. Basic properties of harmonic components

In this Section, basic properties of the Fourier components of the Jones vector 
the coherency matrix j((o) as well as the Jones matrix t(co) will be discussed.

3.1. Cascade of polarizing elements
If a polarizing system consists of two or more time-dependent elements, the output 
polarization state can be determined in one of the following ways:

£(t) =  f B(t)fA(i)£0, (6)

J(t) =  TB(t) tA(t)J0T \(t)T U t).
Applying the inverse Fourier transform to the above equations we can readily give 
the adequate relations for harmonic components:
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2(a)) =  fB(ft)) X fA(ft))£0> (?)
/(ft)) =  rB(o)) X fA(ft))J0^ rA(ft)) X fB(o).

The structures of equations in the time- and frequency-domain are identical. The 
only difference is that in the frequency-domain the multiplication of matrices is 
substituted by their convolution ( x ) or cross-correlation (★ ), see Appendix. In the 
case where one of the elements (e.g., element A) is independent of time, Eqs. (7) take 
the form:

$(<*>) = tB((o)TA£ 0, ^
/(ft)) =  tB(a))fAJ 0+TAtB{w).

3.2. Transformation of the harmonic components under the effect 
of coordinate rotation or base vectors transformation
A rotation of coordinate axes with respect to which the polarization state or 
polarizing element is represented gives rise to the transformation of vector E(t) and 
matrices J(t), T(t).,Let the index a denote vectors and matrices in a new coordinate 
system obtained from an old one by a rotation through an angle a. Adequate 
transformations of vectors and matrices in time-domain are given by:

£ a(i) =  R(a)£(t),

U t )  =  fi(a)J(t)R(~oc),

Z(t) = m n t ) R ( ~  a)
where £(a) represents the rotation matrix 

cosa, sina
R(a) =

—sina, cosa

(9)

(10)

Since rotation matrices are independent of time, then identical equations describe 
also transformations of harmonic components:

£ »  =  £(a)<?(ft)),

/(ft)) =  R{a)j{(o)R{ -  a), (11)

/(ft)) = £(a)f(ft))£(—a).

Rotation of a coordinate system is one of the simplest examples of transformations of 
base vectors according to which the matrices J(t), T(t), and vector E(t) are 
constructed. In certain problems, due to considerable simplification of the descrip
tion, it is more suitable to replace the orthogonal base vectors representing two 
linear polarization states by orthonormal vectors corresponding to left- and 
right-circular polarization. This gives rise to the transformation (in time- and 
frequency-domain) of Jones vector, coherency and Jones matrices. The transforma
tions are identical as in the case of coordinate system rotation, Eqs. (9) and (11). It
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is required only to substitute the rotation matrix R(ot) for the matrix representing 
simple and inverse transformations of base vectors.

33. Interrelations between different representations of polarization state
It is known that the components of the Stokes vector are a simple linear combination 
of the elements of the coherency matrix [11]

[ ^ ( t ) ] l  =  [ - ? « ) ]  11 +  [ ^ ) ] 2 2 .

[S(t)]2 = [ l ( i ) ] i , - [ J ( t ) ] 22, (12)

[S(i) ] 3 =  [J(t) ] 12 +  [J(t)]2i,

[ S « ] 4 = -7 { [^ i)] l2 -[ ./( t)]2 l}
where [J(i)]ik indicates i, k element of the coherency matrix. Also the Mueller and 
Jones matrices are interrelated [11]

(13)

where o denotes the Kronecker product of two matrices, with Q being the 
transformation matrix given by

1, 0, 0, 1,
1, 0, 0, -1 ,
0, 1, 1, 0,
0, - h h 0,

(14)

It can readily be shown that similar relations are also fulfilled for the harmonic 
components:

[$(<*>)] 1 =  [ /M ] 11 +  [fM ] 22»

[ś(ft>)]2 =  f r ( « ) ] l l - [ / H ] 22> (15)

[ s N ]  3 =  [ T M ]  12 +  C /fa )] 21»

[s (o > )]4 =  - j{ [ R c o ) - ]  12 -  [ f (m )]  } 21 , 

and

m(ooi) = Qt{co) ®  t{co)Q~l (16)

where 0  denotes the autocorrelation of two matrices in the Kronecker sense, see 
the Appendix.

3.4. Total beam intensity
The total intensity of polarized light beam is equal to a trace of a matrix [11] 

f(t) = tr[£ (t) £ m  (17)

/(<) =  tr[/(t)].
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Since the total intensity of modulated beam depends on time, it can be represented in 
the form of an integral of harmonic components

00
I(t) = J i{(Q)exp(2njcot)d(o, (18)

— 00
with the following relations between harmonic components of intensity and 
harmonic components of Jones vector and coherence matrix being fulfilled

i(co) = ir[f(o>)].
The above equations make it possible to determine, for any polarizing system, the 
amplitudes and phase shifts of each harmonic component of the total intensity of an 
output beam. However, the output harmonic components of the Jones vector and 
the coherency matrix should be known earlier. From the analysis presented in this 
section it appears that their determination is quite simple since the harmonic 
components e(o), /(co) are transmitted through the polarizing system in a very 
similar manner to their time-dependent equivalents E(t) and J(t).

3.5. Polarizing systems with periodical modulators
So far, we have not been assuming that the properties of polarizing systems vary in 
time periodically. Most measuring systems consist of a single modulator and 
a cascade of polarizing elements independent of time (Fig. 2). The modulators usually

SEQUENCE OF POLARIZING SEQUENCE OF POLARIZING
ELEMENTS ELEMENTS

Fig. 2. Typical configuration of the measuring system

applied are periodical. This means that their harmonic spectrum is discrete, and their 
harmonic matrices can be represented as a sum

f(co)= £  tk3(co-kw0), (20)
k = -  oo

where S(co — kco0) indicates the Dirac delta, and co0 is the fundamental frequency of 
modulation. Harmonic components of the output polarization state can be represent
ed in one of the following ways:

i(co) = TBt{(o)TA£0,
j{w) = t Bt(cD)fAJ0+ tA(co)fB

(21)
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where E0 and J0 are the input polarization states and the matrices t A and TB 
represent the combined effect of n polarizing elements placed in front of and behind 
the modulator

i A —  l 2 i B —  1k - 2 (22)

respectively.
From the point of view of practical applications, it is 

represent the periodic signals in the form of Fourier series, 
intensity, following equation can be written:

more convenient to 
For the total output

ao
/(*)= Z  Ikcos{kco0t- (p k)

k = 0
(23)

where Ik and (pk represent the amplitudes and phase shifts of the harmonic 
components of frequency ka>0, respectively. After the elementary transformations, we 
can show that

Ik = 2\i(k(o0)\ = 2\i{ — k(o0)\, (24a)

and

% = arctanIDm ;i' ^ | .
R e{i(k(o0)}

(24b)

Combining the formulae (24), (21), (20) and (19), the amplitudes and phase shifts of 
harmonic components of output intensity can be expressed as:

It = 2\ £  l r [ t r , J 0i7_|1t t ] | )
/= — ao

(25a)

q>k =  arctan 1 ^ (25b)

/= — 00
where Im{...} and Re{...} is the imaginary and real part, respectively.

If the input polarization state is represented by Jones vector E0, the coherency 
matrix in the above equations should be replaced by the product {EqEq}.

3.6. Harmonic matrices of the linear and the sinusoidal modulators
In the measuring practice, it is either the azimuth or the ellipticity of polarization 
state that is modulated. In general, two types of modulators, can be distinguished 
-  sinusoidal and linear. In this subsection, as an example, the harmonic matrices of 
the sinusoidal and linear modulators of azimuth will be determined.

Applying the general form of the Jones matrix (see Appendix B), we will find the 
time-dependent representation of sinusoidal modulator of azimuth
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f(t)  =
cosiao + ocisincooi),

— sin (a0 + a t sin co0t),

sin(a0 + a1sinco0t) 

cos(a0 + a ! sinawi)
(26)

where a0, oclt co0 indicate the initial azimuth, the depth of modulation and the 
fundamental frequency of modulation, respectively. The harmonic matrices tk can be 
determined if the Fourier spectrum of the functions cos(a0-hot! sin <u0i) and 
sm(ct0-rcil smco0t) are known. Carrying out necessary calculations, we obtain

t0 = Jofai)
cosa0,

— sina0,

sina0

cosa0
(27a)

and, for k ^  0, we have:

7sina0,
t2k-1 ~  72jt_ i(aL)

;cosa0,

—j cosa0 

7'sina0

(27b)

tik — 72fc(ai)
cosa0,

— sina0,

sina0

cosa0

where Jk( i s  the k-th order of Bessel function. For the linear modulator of 
azimuth, the time-dependent Jones matrix takes the form

T(t) =
cos(a 0 + co0t), sin(a0 + £o0i)

—sin(a0 + co0i), cos(a0 + ct>0i) 

and its harmonic components equal

(28)

0, 0

0, 0

cosa0 +7‘sina0, 

7cosa0 — sina0,

sina0— ycosa0 

cosa0+jsina0
(29)

t - 1
The harmonic matrices representing higher frequencies are equal to zero for linear 
modulators.

In this subsection, as an example, only the harmonic matrices of the azimuth 
modulators were determined. However, by analogy, one could readily determine the 
harmonic matrices in the case of ellipticity modulation.

4. Exemplary analysis of systematic measurement error

The usability of the proposed Fourier representation to the systematic error
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analysis will be demonstrated on the example of birefringence measuring system. The 
sequence of polarizing elements of the system and their azimuths are shown in Fig. 3.

Fig. 3. Scheme of the birefringence measuring system with the linear modulation. P -  polarizer, A/2 
-  rotating halfwave plate, A/4 -  quarterwave .plate, S -  birefringent sample, A -  analyser, D -  intensity 
detector

It is a classical measuring system with the linear phase modulation [12]—[14], and 
such errors analysis has not been undertaken earlier. The linear modulator is 
composed of the A/2 plate rotating with angular velocity cj0 and the A/4 plate with 
the azimuth 90°. Due to the modulation, the output intensity is time-dependent

J(i) =  70[1+ cos(4 a)0t + <Ps)] (30)

where <ps is the phase shift introduced by the birefringent sample. Usually, the 
rotating A/2 plate generates the reference signal of the frequency 4ta0 and the zero 
initial phase shift. Thus, the phase shift <ps introduced by the birefringent sample is 
directly equal to the phase retardation between reference and output signals. In 
accordance with Eq. (25b) <ps can be expressed as

<ps = arctan
Re{tr[?Af Ą 4f2f pJ 0f i t _ 2f i /4n ? 2 ] } '

(31)

The Jones matrices of ideal elements of the system are given by (see Appendix B):

0

0 ’
0

1 ’

^a/2(0 —
cos(2a>0i),

— sin(2<u0i),

sin(2ca0i) 

cos(2a)0t)

0

7

cos<ps/2,

;sin<ps/2,

jsin<ps/2 

COSiPs^J ’
(32)
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and the harmonic matrices of the rotating A/2 plate equal

o , o ' 1, - j j
<0 =

. 0 , 0
, 12 —

.b 1
> t - 2  —

. - b  1 .
(33)

The formula (31) was derived under the assumption that all elements of 
measuring system are perfectly made and aligned. However, real elements are made 
and aligned with errors which means that the measured phase shift <pM will not have 
to be equal to the phase shift introduced by the birefringent sample <ps. The 
systematic measurement error A(peT = <pM — (ps caused by the imperfections of any 
element of the system can be determined from Eq. (31). For example, the error caused 
by the polarizer is given by

A(peT = arctan
Im {tr [ f A t sf Jf4r2 t%'J0 Ty'i_ 2 f  1,4  t j  f Ał] ;
K e i t T i t t s t ^ T v J o l r ^ . ^ n t n }

, im {ir[T^TsT^Ąt2Tvj 0Tpi_ 2  T\±'Ts'j\ J }

R e M w ^ t - f p / o

(34)

where Tp is the Jones matrix of imperfect polarizer. It should be underlined that the 
above formula is valid for any polarizer (the same refers to the other elements) 
imperfections, i.e., there were not made any restrictions referring to the kind and 
value of imperfections.

If the errors of individual elements of the system are small, we can apply the 
so-called first order error analysis. It means that the first order coupling coefficients 
indicating how particular errors of elements influence the measurement result can be 
found. Differentiating Eq. (31), we get

^  =  16 {Re {tr [ f A %TXIJ 2 tp  J„ 2 t u  n m }

+ ?A t ’J’i /J 2Tp-^O^- 2 W/4? ! -jA- l }
dx J3 (35)

-  Im {tr [ fA % fll4t2 TPJ0 T}L  2 t u f \ f t

x Re|trj^ 8- b  fs f eJ0 2Tll4T l n

+ t f,% t)J 2TPJon i - 2f U n  ^  ] }

where dx can formally indicate the extinction error (dk), the residual ellipticity ( dS), 
the azimuth error (da) or the retardation error (dy), and d%jdx is the differential 
Jones matrix fot the polarizer (see Appendix B).
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The expressions (34) and (35) are convenient for both numerical and analytical 
error analysis. As an example, the first order coupling coefficients were found for the 
polarizer, the birefringent sample and the analyser, respectively. After the necessary 
calculations we get for the polarizer:

d(Ps _  0 7 <^s _ n
dk ’ da ' ds ’

(36a)

for the birefringent sample:

dk ’ ^ = 0 ,
cot

d(Ps =  0, (36b)

and for the analyser:

^ 5 = 0  dk ’ da
d<Ps _  
dot

(36c)

respectively.
In accordance with Equation (34), the exact error analysis was also carried out. 

The ellipticity, azimuth and extinction errors in ail three cases were assumed to be 
d# = +10°, Aot = ±  10°, Ak =  0-0.1, respectively. The results of the analysis are as 
follows:

i) The polarizer extinction error and the polarizer residual ellipticity have no 
influence on the measurement accuracy. The polarizer misalignment gives the 
measurement error exactly equal to A(per — 2Aot and A(per is not dependent on the 
measured phase shift (ps.

ii) The measurement errors introduced by the misalignment and the residual 
ellipticity of the birefringent sample are shown in Fig. 4. The residual dichroism of 
the sample has no influence on the measurement accuracy.

iii) The analyser extinction error and the analyser misalignment have no 
influence on the measurement accuracy. The analyser residual ellipticity introduces 
the measurement error equal to A(per= —2 and Aq>er is not dependent on the 
measurement phase shift <ps.

It is now evident that critical for the measurement accuracy are the residual 
ellipticity of the analyser and the azimuth error (misalignment) of the polarizer. In 
the first order approximation, the misalignment and the residual ellipticity of the 
sample have no influence on the measurement accuracy. However, the exact analysis 
shows (Fig. 4) that these parameters can also affect the measurement results. It is 
interesting that the extinction errors of the polarizer and the analyser, the residual 
dichroism of the sample, residual ellipticity of the analyser and the misalignment of 
polarizer do not introduce any measurement errors, except for the increase of the 
S/N ratio.

5. Conclusions

The Fourier representation of time-dependent polarizing systems, proposed.recently
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for Mueller notation, has been extended also on the Jones notation. The harmonic 
components of the coherency matrix, the Jones vector as well as the Jones matrix 
have been defined and their basic properties described.

Particular attention has been paid to the case of measuring system with a single 
periodical modulator. It was possible to derive simple analytical expressions for the 
amplitudes Ik and phase shifts tpk (Eqs. (25a, b)) of any harmonic components of the 
output intensity. These results are of major importance in practice, since Ik and tpk 
are most often directly measured. Knownig the formulas (25), it is possible to 
estimate systematic errors of measurements caused by individual elements of 
measuring system. This was demonstrated by the example of the birefringence 
measuring system with linear phase modulation. The advantages of the error analysis 
using the proposed Fourier formalism are as follows:

i) The derived formulas (Eq. (34) and (35)) are general, i.e., they can be applied 
to the class of measuring systems with the same modulation and detection technique 
as for example polarimeters, interferometers, etc. Only the sequence of the Jones 
matrices in Eqs. (34) and (35) should be replaced in order to correspond to the 
measuring system being analysed.

ii) Since the differential Jones matrices have been defined, it is possible to 
determine the exact as well as the first order measurement errors.

iii) Since the errors are expressed by the Jones matrices representing individual 
elements of the measuring system, they can be easily calculated by means of 
matrix-oriented software.

It should be also underlined that the proposed Fourier representation for Jones 
notation has one important disadvantage. It is useful for error analysis of measuring 
system with the linear modulators (as in the example) rather than with sinusoidal 
ones. The Fourier spectrum of the linear modulators is finite (Eq. (29)) and due to 
this fact we avoid the infinite summation in Eqs. (25). For the measuring system with 
sinusoidal phase modulation, the Mueller notation should be recommended. It deals 
directly with intensity (not amplitudes) and in formulas (25) the infinite summation 
does not occur.

Appendix A
The properties of the Fourier transform of matrix functions will be discussed in this 
Appendix. First, a definition of convolution and the cross-correlation, generalized 
over the case of matrix functions, will be presented.

Convolution and cross-correlation defined as [15]
00

f(w) X g(co) = J f{oj)g{co-(o )d(o\ (Al)
—  00 

00

f{to)+g{(o) = f f{(o')g*{o'-(D)dco', (A2)
—  00
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is often used in the Fourier analysis of scalar signals. The above definitions can be 
generalized over the case of matrix functions used to represent the polarizing 
elements. A matrix convolution and cross-correlation will be defined as

/(co) X 0(w) =  J ?(a)')g(co-a)')d(o\ (A3)
— 00

?{cq)+c){(d)=  J ?{cQ )§1{a)'-a))dw, (A4)
—  00

where the dimensions of matrices/ and g are equal to lx  k and k x m , respectively, 
and the symbol f  denotes the Hermitian adjoint of matrix. It can be easily proved 
that matrix convolution and matrix cross-correlation have the properties almost 
identical to their scalar equivalents.

The majority of theorems referring to the Fourier transform of scalar functions 
can be generalized over the case of matrix functions applied in the description of 
polarization phenomena. The Table presents a few of those theorems that are of 
major importance. Only some of them have been used in the present paper.

Theorems referring to the Fourier transformation of matrix functions

Theorems of: Time-domain (£(t)) Frequency-domain (/(co))

1. Similarity

2. Addition

3. Translation

4. Modulation

5. Convolution

6. Correlation

7. Derivative

8. Derivative of convolution

P(qt)
X )

P(t) +  G(t) f(co)+g(co)
e -i2«l0o,f((0)

COS UtP{t) 1 t(  u-  f \  (0— —
2  V 2n
j'M  x g(w)

P(t)GHt) t(cD)*d(co)

dF(t)/'dt Unto /  (a>)

d  ̂ dF(t)
-  [ / « )  x  e « ) ]  =  —
dt dt

X o> r-+ II X

+ -n<°+
2 i t )

Proofs of the above theorems are analogous to the scalar case [15]. Generaliza
tion of the convolution and the cross-correlation over matrix functions can also be 
defined on the basis of Kronecker product (direct product) of matrices. In this paper, 
convolution and correlation in the sense of Kronecker, are understood as

J f{co')og(co-oj')d(D\ (A5)
— 00

?(co)<&g(aj) = f J{co)o^{co-oj!)d(o\ (A6)
~  00
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where o denotes the Kronecker product of the matrices. It can be shown that 
theorems 5-7 hold true also when the convolution and matrix correlation under
stood in a conventional way (formulae (Al) and (A2)) have been substituted by the 
convolution and correlation in the Kronecker sense.

Appendix B
The Jones matrix of birefringent elliptic dichroic media can be found in [11] and 
[16]. For the zero azimuth of the faster eigenwave, we have

k exp (—jy) sin2 5 + cosy, — 0.5j  sin2 9 [ 1 — kexp (— y) ]
? o ( M ,y )  = , (Bl)

0.5jsin29[l — Jcexp( — jy)~\, sin29 + fccos29exp(— jy)

and in the general case

T(k,S,y,x) = R(a)t0ii(-<x)
where

(B2)

R (* )  =

cos a, sina

— sina, cos a
(B3)

and ks, k{ indicate the amplitude transmission coefficients for slower and faster 
eigenwaves; y is the phase retardation between faster and slower eigenwaves; a, 9 is 
the azimuth and ellipticity of the faster eigenwave, respectively.

The Jones matrices of individual elements of measuring system can be found by 
substitution into Eq. (Bl) respective values kf, 9i5 y\, a„ where the index i indicates 
ideal matrix. However, every real element of a measuring system is charged with the 
errors dk, d8, dy, dot. If they are small, we can apply the first order approximation to 
find the Jones matrix of the real element

f  er(/c,9,y,a) = T(kt,&ifyt9ad+ —  dk+ —  d9+ —  dy+ —  dot (B4)

where d f/dx  for x = (k, 9, y, a) are the differential Jones matrices. In this Appendix, 
the analytical form of the differential Jones matrices in the most general case were 
found. After differentiating Eq. (B2) we get: 

i) for the azimuth

8 t  eR(x) f n  n fdR(-«)
H  - %R{~ J) +R{a)T° (B5)

where

dR(a) — sina, cos a dR( — a) —sina, —cos a

da. — cos a, — sina da cos a, — sina
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ii) for the phase retardation

d t
dy

II to to -a )

where

dt* - j  sin2 5, —0.5 sin 2 5U I q
= kexp(-jy)

ay 0.5 sin 2 5, —7'cos25

iii) for the ellipticity

d t  A d t0 A

where

— sin 25, —jcos2S

j  cos 25, sin 25

iv) for the extinction ratio

where

3T
- / = d - e x p  ( - ir ) )

dk = exp(-jy)
sin2 5,

—0.57 sin 25,

0.57'sin25 

cos 2 5

(B6)

(B7)

(B8)

Verified by Hanna Basarowa
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Гармонический анализ временно зависимых поляризационных систем 
в нотации Джонса
Модуляция состояния поляризации в настоящее время широко применяется в оптических 
измерительных системах. Каждая измерительная система состоит из отдельных поляризационных 
элементов, которые можно описать при помощи матриц Мюллера или Джонса. Гармонический 
анализ, предложенный раньше для нотации Мюллера, расширен в настоящей статье также на 
нотацию Джонса. Определены гармонические ответы матрицы Джонса, матрицы когеренции, 
вектора Джонса и описаны их основные свойства. Определены также гармонические матрицы 
наиболее часто употребляемых модуляторов. Даны аналитические формулы, определяющие 
амплитуды, а также сдвиги по фазе для отдельных гармонических составных элементов конечного 
напряжения пучка, выходящего из измерительной системы с одиночным модулятором. Пригод
ность гармонического анализа для определения систематических погрешностей измерения была 
представлена на примере системы для измерения двойного лучепреломления с линейной модуля
цией фазы. Определены дифференциальные матрицы Джонса, дающие возможность первичного 
анализа систматических погрешностей измерения.

Перевел Станислав Ганцаж


