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The transmission properties in microwave domains (10 GHz to 40 GHz) of generalized dielectric
Fibonacci multilayer generated by the rule : with a pair of positive integers m
and n were studied. The initial generations of generalized Fibonacci sequence are taken as follows:
S0 = L and S1 = H, where H and L are two elementary layers with refractive indices nL = 1 (air)
and nH = 3 (ceramic). The so-called “trace map method” was used to simulate the transmission
spectra of the multilayer structures at normal incidence. Based on the representation of
the transmittance spectra in the microwave range an analysis depending on the pair (n, m) is
presented. It has been shown that the reflection bands of the proposed quasi-periodic structure
could cover the whole spectral range. By comparison, it is impossible to reach this result by using
the periodical multilayer structure.
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1. Introduction
A great deal of attention has been devoted to photonic crystals (PC), because of their
attractive properties and technological application variety, precisely in the microwave
domains. They are an artificial material made from periodic arrays of dielectric or
metallic building blocks.

Recently, some new periodic structures, such as photonic and electromagnetic band
gap structures, have been applied widely to microwave devices [1, 2]. The existence
of photonic band gaps (PBG) has brought about an unprecedented power to control
and manipulate the propagation of electromagnetic waves [3–5].

This situation is similar to that in semiconductor crystals where the propagation of
electron is forbidden in certain energy regions (band gap). The appearance of the band
gap can be explained by the concepts of interference and dielectric potential. PBG
structures can be one-, two- or three-dimensional periodic structures. The simplest
form of a photonic crystal is the one-dimensional periodic structure such as the Bragg
mirror [6].
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On the other hand, great interest has been observed as regards the properties
and applications of one-dimensional spatially periodic, quasi-periodic and random
PBG structures [7]. Quasi-periodic systems can be considered as suitable models
for describing the transition from the perfect periodic structure to the random
structure [8, 9].

Various studies have been based on multilayer systems built recursively according
to the Fibonacci sequence, such as those by MACIA [10], who presents an analysis of
wave transmission through Fibonacci dielectric multilayer (FDM) structures and
demonstrates that they can be used as reflectors. Some of these works were focused
on studying the localization of light waves within Fibonacci quasi-periodic multilayer
structures in order to create photonic band gaps similar to those existing in periodic
structures and developed the omnidirectional band gap [11–14].

The aim of this work is to study, at normal incidence, the transmission properties
in microwave domains [10 GHz, 40 GHz] of the one-dimensional multilayer system
built according to the generalized Fibonacci sequence. We calculate transmission
spectra through these structures using the trace map method. From the numerical
results, it has been found that the transmission bands of the quasi-periodic sequence
structures can cover the full spectral range by increasing the parameter n and fixing m
to 1 or vice versa. In addition, extra multi-narrow bands can be obtained and controlled
by adjusting the parameter m = 2n or n = 2m from the 3rd generalized Fibonacci
sequence. Using the proposed analysis, multi-stop band filters in the microwave
spectral domains can be easily designed.

2. Fibonacci model

The generalized Fibonacci sequences are a class of quasi-periodic lattices generated
by the substitution rules: L → H m and H → H mLn, where m and n are all positive
integers. They can be generated by a recursive relation [15]:

(1)

Based on the characteristics of the construction of generalized Fibonacci sequences,
we consider the matrices of light propagating through the GF(m, n) multilayer of

Sl 1+ S l
mSl 1–

n=

Fig. 1. Fibonacci-class quasi-periodic multilayer stack (l = 3, m = 2, n = 2).
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the l-st generation Sl which is sandwiched by two material media types L and H.
Figure 1 shows the 3-rd generation of one-dimensional generalized Fibonacci
class quasi-periodic multilayer stacks for m = 2 and n = 2. According to Fibonacci rule,
the structure contains 10 layers, as shown in Fig. 1.

3. Transmittance spectra through generalized Fibonacci multilayer

The transmission spectra of electromagnetic radiation through the multilayer periodic
and aperiodic systems were widely studied by various methods such as the transfer
matrix method [16]. The interesting and representative models of Fibonacci-class
(FC(n)) and generalized Fibonacci (GF(m, n)) have been extensively reported by
KLAUZER-KRUSZYNA et al. [17, 18], who studied the polarized light propagation through
optical generalized Fibonacci superlattices.

We use the trace map method to investigate the transmission spectra through
the generalized Fibonacci multilayer. The trace-map technique [19] has proven to be
a powerful tool to investigate the properties of various aperiodic systems.

The transfer matrices Al used in the trace-map technique are written as [11]:

A1 = Pab Pb Pba 

A2 = Pa (2)

where Pab(Pba) stands for the propagation matrix from layer a (b ) to b (a ) and Pa(Pb)
is the propagation matrix through a single layer a (b ). They are given by [19]:

(3)

(4)

where δa (b ) = kna (b ) da (b ), na (b ) is the media refraction index a (b ), da (b ) are the layer
thicknesses and k the wavenumber in a vacuum. The transmission coefficient is
expressed as follows:

(5)

where  is the sum of four element squares of the . Since the transfer matrix is
unimodular, we can express the transmission coefficient as:
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(6)

where xl and yl denote respectively the trace and anti-trace of the transfer matrix Al.
The transmission coefficient is completely determined by the trace and anti-trace.
Thus, a complete description of the transmission through general aperiodic multilayer
requires both trace and anti-trace map.

Given a matrix , the anti-trace of A is defined as yA = A21 – A12.

In order to study anti-trace maps we need the following identity for two unimodular
transfer matrices A and B [20]: yAB = xB yA + xA yB – yBA. In this case, we need to know
the n-th power of a unimodular 2×2 matrix A, which can be written as [20, 21]:

(7)

where I  is the unit matrix, and

(8)

Here, xA and λ± denote the trace and the two eigenvalues of A, respectively. Using
Eqs. (2) and (7), we can write the recursion relation of the transfer matrix as:

(9)

From Equation (6) the trace and anti-trace maps are obtained as:

(10)

(11)

(12)

(13)

where vl = xAl Al – 1 and wl = yAl Al – 1.
The roles of vl and wl are subsidiary. Equations (10) and (11) represent the trace

map whereas Eqs. (12) and (13) give the corresponding anti-trace map. We choose
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appropriate layer thicknesses da and db to make na da = nb db. Then, we have
δa = δb = δ = (k + 1/2)π, with δa and δb being the incident angles of light in layers
A and B, respectively, where k is a positive integer. The propagation matrices become:

(14)

Finally, the trace and anti-trace maps are completely determined by Eqs. (10)–(13).
So, if we know the initial conditions, the transmission coefficients through general
aperiodic multilayer can be determined from the trace and anti-trace maps [22].

4. Results and discussion

4.1. The effect of the n variation with m set to 1

In the following numerical investigation, we have chosen air (L) and ceramic (H )
as two elementary layers, with refractive indices nL = 1 and nH = 3, respectively.
The thicknesses dL, H of the two materials has been chosen to satisfy the Bragg
conditions: dL nL = dHnH = λ0/4, where λ0 = 12 mm is the central wavelength.
According to these conditions, dH = 1 mm and dL = 3 mm. We use the trace map
method to extract the transmission coefficients in the spectral range from 10 GHz to
40 GHz. We show that the corresponding transmission coefficients display interesting
properties. As a result, the reflection bands of the multilayer structures cover the entire
spectral range by increasing the parameter n and setting m to 1. It is interesting to note
that this result is impossible to reach by using the periodical multilayer systems.

The Table gives the width Δ f  of the pseudo-forbidden gaps and their corresponding
central frequencies fi for the case of l = 3, m = 1, n = 20. It is clear that the width Δ fi
increases with an increase of the corresponding central frequency fi .

Figure 2 shows typical transmission coefficients of the generalized Fibonacci-
-class multilayer stack. Many pseudo-band gaps appear in the spectral domain
[10 GHz, 40 GHz] and the width of these pseudo-band gaps can cover 75% of the
whole spectral domain. By varying the parameter m, the total width of the forbidden
gaps increases and can reach the value of 20 GHz for m = 10 (Fig. 3). Thus, we note
a stacking of pseudo-forbidden gap whose sizes increase gradually with the frequency
located between 10 GHz and 40 GHz. When we establish the width of each pseudo-
-band gap and the corresponding central frequency, multi-stop band filter can be easily
considered.

Pa b( )
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fi [GHz] 10.39 11.16 11.95 13.85 15.19 16.9 18.89 21.27 24.46 28.46 34.97
Δ fi [GHz] 0.48 0.5 0.86 0.95 1.14 1.15 1.71 1.9 2.38 3.61 4.94
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The number of photonic band gaps increases linearly with an increase of the pa-
rameter n. We can modulate the number of photonic band gaps, N, according to
the parameter n by the following linear variation: N = 0.6082n – 0.2868, where n
denotes an integer part of real number N. From this approximation we can deduce

Fig. 2. Transmission coefficient of generalized Fibonacci multilayer where: l = 3, m = 1, n = 15 (a), and
l = 3, m = 1, n = 20 (b).

a b

Fig. 3. The total width of forbidden bands
versus parameter m.

Fig. 4. The number of forbidden bands versus
parameter n.
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the number of photonic band gaps for any given n > 3 (see Fig. 4). Indeed, we verify
that for n = 100, for example, the number of photonic band gaps is equal to 60 as shown
in Fig. 5. This allows us to predict the number of peaks without making calculation
which becomes complex for large values of the number n.

4.2. The effect of parameter m variation with n set to 1

In the case where the parameter m varies and n is set to 1, we have found a large zone
with 20.54 GHz for m equal 10. Comparing this result with that of the corresponding
case with n varying and m set to 1, we have found that n must be taken equal to 20 in
order to reach the same result. Figure 6 shows the transmission spectra for many
m values for the same iteration l = 3. In this case, we can cover more than 75% of
the spectral domain.

We note that the behaviour of N relative to the parameter m is not linear as compared
with the case where n varies and m is set to 1 (Fig. 7). A good approximation of the N

Fig. 5. Transmittance coefficient for m = 1, n = 100 for third generation of generalized Fibonacci
multilayer.

Fig. 6. Transmission coefficient of generalized Fibonacci multilayer, where l = 3, m = 15, n = 1 (a), and
l = 3, m = 20, n = 1 (b).

a b
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variation versus the parameter m can be made valuable as follows: N = 0.38685m2 +
+ 1.11625m – 3.23171 for m > 3 with a coincidence of 99.99%, where m denotes an
integer part of the real number N.

4.3. Case of m and n variations

To study the transmission properties, two cases were taken: i ) n = 2m with m = 5, 6,
8, 10 and ii ) m = 2n with n = 5, 6, 8, 10. Hence, the layer numbers of the whole structure
increase by varying m and n simultaneously. In all the cases, we note an increase of
the forbidden band gaps by increasing the parameters m or n and the transmission
spectra show a multitude of bands which increase by increasing the parameters m
or n. In addition, we can note that for the case where m = 2n the alternation of higher
transmission values (with lower transmission values) is about 40%.

Thus, reducing the lower transmission values to zero can lead to a good mirror for
the 10–40 GHz spectral range. The opportunity of this work is to consider the case of
m = 2n and trying to reduce the lower transmission values by probably introducing
a partial or global defect of the whole system as described elsewhere [11].

With generalized Fibonacci quasi-periodic multilayer structure, we show the exis-
tence of several forbidden gaps, all of which increase gradually with the system
parameters (Fig. 8). Each forbidden gap represents a multi-narrow stop band. This
rejection band is localized around the central frequency. The stacking of the forbidden
gap leads to the design of the multi-stop band filters in high frequency. In this case,
we can order each filter by knowing the frequency centre and the width of
corresponding stop band. We deduce that extra narrow-band filters can be obtained
using the multilayer structure studied by the trace map method.

However, this method is applicable only to normal incidence and in the case of not
normal incidence we must use, for example, the matrix method (MM) [23]. Indeed in
our previous works [23, 24] we show that an omnidirectional high reflector with wide
bandwidth was obtained for both S and P polarizations for the all incident angles in

Fig. 7. The number of forbidden bands
versus parameter m.
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the range 0–90°. So, as an alternative work we expect to use the MM and by
varying the incident angle we hope to obtain an omnidirectional mirror which covers
the spectral range 10–40 GHz.

5. Conclusions

This work is focused firstly on the transmission properties at normal incidence of
the multilayer structures built according to the generalized Fibonacci quasi-periodic
multilayer GF(m, n) in the microwave spectral domain (10–40 GHz). According
to the proposed method (trace and anti-trace), the transmission spectra through
the generalized Fibonacci multilayer structure show a stacking multi-narrow stop band.
The number of multi-narrow bands can be controlled by varying the parameters m or
n. Based on the analysis proposed, multi-stop band filters can be easily designed. In
all the cases, by increasing n or m with a fixed Fibonacci iteration, the number of
the photonic band gaps increases. By increasing these photonic band gaps, we can
obtain high reflector components working in microwave domains, very interesting for

Fig. 8. Transmission spectra of generalized Fibonacci multilayer, where: l = 3; m = 5, 10; n = 2m (a);
l = 3; m = 2n; n = 5, 10 (b).

a

b
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technological applications. As an alternative work we expect to study the effect of
the incident angle on the transmission properties both for S and P polarizations in order
to obtain an omnidirectional mirror in the microwave spectral domain.
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