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We propose a real time volume clipping method which is capable of using several analytical planes
for virtual clipping, in order to display internal anatomical structures within volumetric data sets.
A single proxy plane is used for computation of the direction of a ray that is cast from the viewpoint.
Intersections between the rays and the planes are computed on graphics process unit (GPU).
The start and end points for each ray are determined by analyzing relationships with the ray
direction, intersections and the normal of planes. Then the volume integral is computed along
the ray from the start point to the end point. To obtain immediate visual feedback of clipping
effects, we implement translation and rotation of planes on GPU to interactively change the shape
of clip object. At last, several experiments were performed on a standard PC with a GeForce
FX8600 graphics card. Experimental results show that the method can freely clip and clearly
visualize volumetric data sets at real time frame rates.
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1. Introduction
Visualization techniques include surface rendering and volume rendering. In surface
rendering techniques, intermediate triangles of iso-surfaces must be extracted from 3D
volumetric data sets and then the triangles are rendered using traditional computer
graphics hardware. It can achieve interactive frame rates. However, the quality of
the rendered images is not high, due to the loss of details during the extraction process.
While in volume rendering techniques, extraction of polygons is not required and
the volumetric data set is directly rendered according to a transfer function specified
by users, so it can produce high quality images. But it is memory and time consuming.
Ray casting algorithm is one of the image space volume rendering techniques. It can
generate high quality images and often be used in many applications. It can achieve
high rendering frame rates on high end workstations and specialized volume rendering
hardware (such as VolumePro [1], etc.). However, it is unable to obtain interactive
frame rates on the popular PC platform without graphics hardware.

Many acceleration techniques were proposed to speed up the brute force ray casting
algorithm. One kind of these techniques is the acceleration technique based on space
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leaping, which can avoid many empty resamplings without loss of image quality, such
as cylindrical approximation of tubular organs presented by VILANOVA et al. [2],
spherical approximation of tubular organs proposed by SHARGHI and RICKETTS [3]. But
these methods require a complicated or time-consuming preprocessing. Another kind
of these techniques is based on a tradeoff between image quality and rendering speed,
such as two-phase perspective ray casting for interactive volume navigation presented
by BRADY et al. [4], screen and object adaptive sampling, etc. The third kind of
acceleration techniques is based on graphics hardware.

With the rapid development of computer game industry, consumer level graphics
cards have huge computation performance. There are two typical approaches based on
graphics cards, including texture based volume rendering and graphics process unit
(GPU) based volume rendering. The texture based volume rendering was originally
presented by CULLIP and NEUMANN [5] and further developed by CABRAL et al. [6].
The algorithm can directly utilize the texture mapping capabilities of graphics
hardware by proxy resampling planes, which can be either axis-aligned [7] with three
sets of 2D texture stacks or view-aligned [8] with one 3D texture, as shown in Fig. 1.
It can achieve interactive frame rates, but it produces relatively low image quality,
especially in the cases of close views. As shown in Fig. 2, we can clearly observe
circular artifacts when the viewpoint is located within the human trachea. The quality
of rendered image depends mainly on the number of proxy surfaces. If the number of

Fig. 1. Axis-aligned (a) and view-aligned resampling slices (b).

a b

Fig. 2. Circular artifacts with close views.
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proxy surfaces increases, the rendering speed becomes reduced. Up to now, most of
the modern graphics cards have flexible capabilities of programmability on GPU.
These capabilities lead to the rapid development of GPU based volume rendering. And
graphics hardware has become preferred technique for the standard implementation
of ray casting. KRÜGER and WESTERMANN [9] proposed a GPU based ray casting.
BENTOUMI et al. [10] proposed a GPU based shear-warp algorithm. GPU based volume
rendering algorithm can generate high quality images at interactive frame rates. GPU
can also be used in traditional graphics rendering tasks. REIS et al. [11] presented high-
-quality rendering of quartic spline surfaces on the GPU. KIM et al. [12] presented
vertex transformation streams based on GPU. Flexibility of GPU improves parallel
computation performance in many time-critical applications [13, 14].

Transfer function is very important for volume rendering. However, rapid
specification of an appropriate transfer function is usually difficult in practice. Therefore,
volume clipping becomes an important compensatory tool for difficulty in designing
transfer function. Clip planes are frequently used in texture based volume rendering.
For instance, VAN GELDER and KIM [15] used clip planes to specify the boundaries of
the data set in 3D texture-based volume rendering, thus planar volume clipping was
implemented for texture based volume rendering. WESTERMANN and ERTL [8] presented
a volume clipping method using a stencil buffer. The clip object has to be rendered for
each slice to set the stencil buffer correctly. WEISKOPF et al. [16] presented clipping
techniques based on a volumetric description of clip objects. Clip objects must be first
voxelized and represented by a 3D volumetric texture. DIEPSTRATEN et al. [17]
proposed another depth-based clipping method for depth sorting semi-transparent
surfaces. The method is related to virtual pixel maps [18] and dual depth buffers [19].
TIEDE et al. [20] used a similar method to visualize attributed volumes by ray casting.
WILLIAMS et al. [21] presented a volumetric curved planar reformation for virtual
endoscopy.

In this paper, we propose a real time visualization method based on GPU ray
casting, which is capable of using multiple planes for convex volume clipping. This
paper is organized as follows. Section 2 introduces traditional GPU based ray casting.
In Section 3, the single proxy plane based GPU ray casting is presented. Section 4
discusses geometrical transformation of clip planes. In Section 5, some experiments
are described. At last, conclusions are given.

2. Traditional GPU ray casting

The algorithm presented by STEGMAIER et al. [22] is the classical GPU ray casting,
within which the data set is stored as a 3D texture to take advantage of the built-in
tri-linear interpolation in graphics hardware. In their algorithm, a bounding box for
the data set is created, and coordinates of start and end points for each ray are encoded
in the color channel of the rendered surfaces of the box, as shown in Figs. 3a and 3b,
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respectively. The color of the front surfaces is regarded as the start point for the ray
casting process. And the color of the back surfaces is regarded as the end point.
The ray direction at any given pixel can be computed by subtracting the color of front
surfaces at the pixel from the color of back surfaces in the same position. Two-pass
rendering is performed [23], that is, one pass for the front surface and another for
the back.

3. Single proxy plane based GPU ray casting

In the GPU ray casting algorithm proposed by CHU et al. [24], which is different from
the classic GPU ray casting, only a single proxy plane is used to compute ray equations
and ray-plane intersections are computed by analytical geometry on GPU, instead of
the two-pass rendering. In their algorithm, six planes of the bounding box are used.
We extend six planes of the bounding box to an arbitrary number of planes, and these
planes are not required to be parallel to one of xy, yz and xz coordinate planes.
Therefore, our method is more flexible and more useful for volume clipping.

3.1. Single proxy plane

In the classic GPU based ray casting algorithm, six faces of the bounding box are
rendered first to get the end point for ray termination while front face culling is enabled,
and six faces of the same box are rendered again to generate the start point for ray
casting. In other words, it has six proxy planes for encoding information of each ray,
as shown in Fig. 4. Computation of start and end points is automatically completed by
rendering six proxy faces twice.

Ray-plane intersections can also be calculated by mathematical analytic geometry
on GPU. A ray direction must be given before computing intersections of rays and
planes. As shown in Fig. 5, a plane specified by OpenGL’s GL_QUADS function is
first rendered to generate a ray direction. But in the Chu’s algorithm [24], the six planes
must be parallel to one of xy, yz or xz coordinate surfaces. Because the orientation and
the number of planes are fixed, it has no clipping function and that limits the technique
to be widely applied. Our algorithm allows users to specify arbitrary orientation

a b

Fig. 3. Rendered colors of front (a) and back (b) surfaces of the bounding box of the 3D texture which
encode the start and end points, respectively.
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and number of planes by adding some actual clip planes, as shown in Fig. 5. And all
the original planes of the bounding box and actual clip planes can be regarded as
ordinary clip planes.

3.2. Computation of ray directions

Suppose that Mmv is the model view matrix consisting of a translation matrix MT and
a rotation matrix MR, Pw and Pe are the same vertex in the world and eye coordinate
systems, respectively. We have

Pe = Mmv Pw = MT MRPw (1)

As shown in Fig. 6, the left-handed camera coordinate system has the same origin,
y and z axes as the right-handed eye coordinate system, but its x axis is just contrary
to x axis in the eye coordinate system. A fragment vertex Pe in the proxy plane can be

Fig. 5. Single proxy plane.

Fig. 6. Camera location in the eye coordinate
system.

Fig. 4. Six proxy planes.



336 F. YUAN

used to generate the normalized direction of the ray in the eye coordinate system for
that pixel. The ray direction De can be computed by

De = normalize(Pe.xyz) (2)

In Equation (2), we adopt the symbol denotation used by OpenGL shading language.
Pe.xyz stands for a new vector consisting of the first three components of the 4D
homogeneous coordinates.

3.3. Computation of ray-plane intersections

Since the ray direction is computed in the eye coordinate system and its bounding
box is defined in the world coordinates, so we must transform the ray direction back
to the world system and compute the intersections in the world coordinate system. So,
we have

(3)

According to the analytic geometry, the parameterized equation of a ray is defined as

(4)

where Pw is the 4D homogeneous coordinates (x, y, z, 1), Peye is the eye position
(viewpoint), t is the distance from the eye position. According to the analytic

Dw normalize MR
1– Pe( ).xyz=

Pw .xyz Peye.xyz Dw t⋅+=

Fig. 7. Determination of start and end points. The viewpoint outside (a) and inside (b) the clipped volume. 

a

b
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geometry, positive t stands for points having the distance t along the ray direction Dw.
And negative t denotes points with the distance t along the contrary ray direction –Dw.

A plane is usually defined as

(5)

where (A, B, C ) is the normalized normal of the plane, S = (A, B, C, D) and
Pw = (x, y, z, 1) are homogeneous coordinates. Therefore, a plane equation can be
defined as the dot product of two vectors S and Pw. Combining Eqs. (4) and (5), we
obtain the intersection between a ray and a plane by

(6)

where Peye is the homogeneous coordinates of the eye (xeye, yeye, zeye, 1) and Dw is
the 3D vector of the ray direction (xd , yd , zd).

In Equation (6), when the denominator d = S.xyzDw is equal to zero, t becomes
infinite, and it means that there is no intersection between the ray and the plane. In
other words, the ray is parallel to the plane.

3.4. Determination of start and end points

In our method, a plane splits the 3D space into two parts which are called saved part
and discarded part. We keep the saved part that the normal of the plane points to, whilst
the discarded part is deleted. Several planes are often used for convex volume clipping
and each ray may have several intersections with clip planes. How to select two points
as start and end points from these intersections is a key problem to correctly implement
convex clipping.

3.4.1. A ray is parallel to a plane

If a ray is parallel to a plane and the eye is located in the discarded part, current ray
should be discarded as there is no intersection. In the case of Fig. 7a, Ray3 is parallel
to Plane1 and the eye is in the discarded part of Plane1, so we can discard Ray3
immediately. If a ray is parallel to a plane and the eye is in the saved part, we need to
compute possible intersections with other planes. In the case of Fig 7b, because Ray2
is parallel to Plane5 and the eye is in the saved part of Plane5, Ray2 cannot be discarded
and continue to be processed to compute intersections with other clip planes.

The criterion which can determine if the eye Peye is in the saved part of plane S is
defined as

(7)

If  Equation (7) is satisfied, we think that the eye Peye is located in the saved part
of plane S. Otherwise, it is in the discarded part. Equation (7) is just the numerator in
Equation (6).

Ax By Cz D+ + + S P⋅ 0= =

t
Axeye Byeye Czeye D+ + +

Axd Byd Czd+ +
-----------------------------------------------------------------------–

S Peye⋅
S .xyz Dw⋅

---------------------------------–= =

Axeye Byeye Czeye D+ + + S Peye⋅ 0>=
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3.4.2. Sorting classified intersections

If a ray is not parallel to a plane, there must be an intersection. Ray-plane intersections
are classified into two categories. One category is composed of such intersections with
an angle less than 90 degrees which the ray and the plane normal form, and these
intersections are denoted by parameters tn (1), tn(2), …, tn(M ). Another category
consists of intersections with an angle greater than 90 degrees, represented as
tf(1), tf (2), …, tf(N ). The criterion for judging the angle less than 90 degrees is
defined as

(8)

Equation (8) is just the denominator d = S.xyz Dw in Eq. (6). Then we compute
the maximum value of parameter t in the first category of intersections and the minimum
value of parameter t in the second one. The process can be formulated as

(9)

(10)

At last, we must decide whether or not the two parameters are valid. If tf < tn
or tf < 0, the ray has no intersection with the convex clipped geometry. In other
words, the two parameters are invalid. When the eye is inside the clipped volume,
the parameter tn for the start point is usually less than 0. In this case, the parameter tn
is set to 0, in order to ensure that the start point is not behind the eye along the ray
direction. After the aforementioned processing, tn and tf are the parameters for
the valid start and end points, respectively. Now, we can trace each ray to compute
volume integral from the start point to the end point on the GPU. As shown in Fig. 7a,
as for Ray1, the start and end points are determined by parameters t2 and t3,
respectively. Figure 7b illustrates the eye inside the clipped volume. We obtain
the parameters for start and end points which are t2 and t3, respectively. But t2 is less
than 0, so the start point parameter is modified to 0. So, the parameters for start and
end points are t6 and t3, respectively.

Figure 8 lists GPU codes for computing start and end points. In our implemen-
tation, vector operations are widely applied to take full advantage of intrinsic parallel
hardware computation contained on GPU. We pass all the parameters of clip planes
from CPU to GPU using uniform variables defined by OpenGL Shading Language.
The uniform qualifier is used to declare global variables whose values are the same
across the entire primitive being processed. All uniform variables are read-only and
are initialized externally either at link time or through the API. The uniform variable

Axd Byd Czd+ + S.xyz Dw⋅ 0>=

tn max tn 1( ) tn 2( ) … tn M( ), , ,
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

tf min tf 1( ) tf 2( ) … tf N( ), , ,
⎩ ⎭
⎨ ⎬
⎧ ⎫

=
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S specifies the parameters of clip planes and the uniform variable ClipPlaneNum
stores the number of clip planes. The detailed declarations are listed as follows:
uniform vec4 S[64]; uniform int ClipPlaneNum.

In our implementation, the number of clip planes varies from 6 to 64. We can see
that the flexibility of our method is obvious.

4. Translation and rotation of clip plane

Translation and rotation of clip planes can change the shape of convex clip objects.
According to the definition of a plane [25], the parameter D is just a negative

vec3 Dw=normalize(FragVertex.xyz);
int i=0;
tn=-1000.0;
tf=1000.0;
while(i<ClipPlaneNum)
{/*Compute intersections between rays and planes S[i]*/

n=dot(S[i], Peye);
d=dot(S[i].xyz, Dw);
if(abs(d)<=0.00001)

{/*A ray is parallel to a plane*/
if(n<=0.0)
{ /*The eye is located in the discard part of plane S[i]*/

NoIter=1;//Discard this ray
break;//Stop searching

}
}else

{//A ray is not parallel to a plane
t=-n/d;
if(d>0.0)
{//an angle less than 90 degrees
 //calculate maximum values for first category

tn=max(tn,t);
}else

{//Calculate minimum values for second category
tf=min(tf,t);

}
}

i++;
}
if(tf<tn||tf<0.0)
NoIter=1;// No intersection
else

{ if(tn<0.0) 
{ /*Set the start point to the eye when the eye inside the clipped volume.*/

tn=0.0;
}

}

Fig. 8. GPU codes for computing start and end points.
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distance to the origin from the plane. As shown in Fig. 9, the translation vector is T,
so the equation of moved plane becomes

Ax + By + Cz + D' = 0 (11)

where

D' = D – A·T.x – B·T.y – C·T.z (12)

Rotation of a plane is more complex than translation. To implement plane rotation,
the standard equation of a plane in 3D space (Eq. (5)) is converted to the point-normal
equation. The point-normal equation of a plane is defined as

A(x – x0) + B(y – y0) + C(z – z0) = 0 (13)

where (A, B, C ) is the normalized normal of the plane, (x0, y0, z0) is a point P0 on
the plane. For convenience, P0 is defined as an intersection between the plane and
a ray which is cast from the origin and has the normalized direction N = (A, B, C, 1).
So, the ray parameterized equation is

(14)

Combining Eqs. (5) and (14), we can obtain the parameter of intersection t = –D.
So, the point P0 is equal to

 (15)

Now, we rotate the plane normal around the point P0. As shown in Fig. 10, given
a rotation matrix MR, the new normal N' = (A', B', C', 1) is computed by

N' = MR N (16)

Because the standard equation is used for computing ray-plane intersections on
GPU, the point-normal equation should be converted back to the standard equation.
Combining Eqs. (13), (14) and (16), we have

D' = –P0.xyz·N'.xyz (17)

Thus, we obtain the standard equation of the rotated plane as follows

A'x + B'y + C'z + D' = 0 (18)

where A' = N'.x, B' = N'.y, C' = N'.z.

P.xyz
x
y
z

A
B
C

t⋅= =

P0 .xyz
x0

y0

z0

A D⋅
B D⋅
C D⋅

–= =
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Figure 11 gives experimental results of our convex volume clipping by interactively
translating and rotating two clip planes.

5. Experiments

We implemented the real time GPU ray casting with our volume clipping techniques
using Visual C++ and OpenGL Shading Language, and then several experiments were
performed on a standard PC with an Intel E2160 dual core 1.8 GHz processor with
a 2 Gbyte RAM. And a GeForce FX8600 graphics card was installed.

First, we test our methods on a volumetric data set with the viewpoint outside
the clipped volume. The data set was acquired by a CT scanner from a human in

Fig. 9. Plane translation.

Fig. 10. Plane rotation.

Fig. 11. Translation and rotation of two clip planes.
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a hospital. The data set is composed of 112 DICOM images with 2D cross-section
image size 512×512, so the 3D data set size is 512×512×112. An iso-surface ray casting
is used for rendering. As shown in Fig. 12, we can find the volume to be correctly
clipped and the rendered images to have high quality. We can interactively alter
the transfer function by simply re-generating the 2D lookup texture or directly specify
different ambient, diffuse and specular colors for the illumination model. So, our
algorithm is very convenient in cases where users need to frequently modify material
optical property.

Second, we navigate into the human trachea of the volumetric data set, in order
to make the viewpoint located inside the volume. As shown in Fig. 13, we can find
that the volume is also correctly clipped and the rendered images have high quality.
Our method can also process RGB color volumetric data sets by modifying the ray

Fig. 12. Convex volume clipping with the viewpoint outside the clipped volume.

Fig. 13. Convex volume clipping with the viewpoint inside the volume.

Fig. 14. Clipping the visible human.
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casting algorithm and replacing the color transfer function with direct resamplings of
RGB volumes. Figure 14 shows the resulting images with our method for the visible
human color data set using three clip planes.

The size of data sets does not influence the rendering speed with our method, as
long as the data set can be fully loaded into video memory of graphics card. But
the size of viewport obviously influences rendering speed. The number of clip planes
has a little influence on the rendering speed. The Table illustrates rendering speed
under different viewport sizes and different number of clip planes. Experimental
results show that our method can render volumetric data sets with an iso-surface ray
casting in real time. The method provides users with immediate visual feedback.

6. Conclusions

We propose a real time clipping method based on GPU ray casting, which is capable
of using multiple planes for convex volume clipping. The traditional GPU based ray
casting methods often use two-pass rendering of front and back proxy surfaces.
Different from the classic GPU based ray casting, one proxy plane is used and ray-
-plane intersections are computed on GPU. Fragment coordinates encode the direction
of a ray that is cast from the viewpoint. And we presented an approach to compute
intersections between the ray and clip planes, and then the start and end points of
the ray are thus obtained by analyzing relationships between the ray direction,
intersections and the normal of each plane. Then the volume integral is computed along
the ray from the start point to the end point. To obtain immediate visual feedback of
volume clipping effects, we implement translation and rotation of planes on GPU to
interactively change the shape of clip object. This implementation of GPU based ray
casting has good rendering performance and clipping capability. At last, several
experiments were performed on a standard PC with an Intel dual core 1.8 GHz processor
and a GeForce FX8600 graphics card. Experimental results show that the method can
clip and visualize volumetric data sets clearly at real time frame rates.

Acknowledgements – This project was supported by the Natural Science Foundation of Jiangxi Province
(2007GQS0076), Foundation of Education Department of Jiangxi Province (GJJ09297) and Key Project
of Jiangxi University of Finance and Economics.

T a b l e. Frame rates with different viewport sizes and different number of clip planes. 

Number of clip planes Viewport size Frame rates [fps]
6 512×512 59.4 
9 512×512 58.6 

12 512×512 57.9 
12 600×600 39.7 
12 800×800 22.3 
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