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Attempts at the mechanical identification of the human eyeball are often not very effective for two
reasons: the material parameters determined by tension tests on corneal and scleral tissue
specimens are not sufficiently accurate while numerical models of the eye, integrating material
and geometric parameters, are often based on unrealistic assumptions. The examples presented
here cover refractive surgery, Goldmann applanation tonometry and the optical self-adjustment of
the eye. The discussed problems are illustrated with calculations showing that it is possible to
effectively use a biomechanical model of the eye to identify its material parameters. Also
the handicaps, the Imbert–Fick law among them (numerical calculations do not corroborate this
law), lying at the basis of applanation tonometry are demonstrated. The conclusions can help to
create a realistic numerical model of the eyeball.
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1. Introduction

There has been a growing interest in the numerical modelling of the human eyeball in
view of its practical applications in tonometry and refractive surgery. The mechanics
of the outer shells of the eye is related to optical system since their most flexible part
– the cornea – is at the same time the strongest lens in this system. The intraocular
pressure – usually the principal load acting on this shell structure – is subject to
variation in a relatively wide range, noticeably affecting the displacements of
the cornea and the sclera. The deformations translate into changes in optical power
and the consequent shifts of the optical focus relative to the fundus of the eye, affecting
the sharpness of the image on the retina. Thus the eyeball’s structural (geometrical and
material) parameters have a major influence on its optical functions. In recent
decades this influence has been exploited to correct the optical power of the eye by
surgically altering the profile of the cornea’s outer surface. Complete knowledge about
the geometry of the eyeball and the material parameters of the tissues forming it would
make it possible to precisely plan the effects of such surgical procedures.

Despite the fact that attempts at the mechanical identification of the eye have been
made for nearly a century, only the physicochemical structures of the cornea and
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the sclera, and recently also their geometries, have been identified. The mechanical
parameters of primary importance for solutions concerning displacements, i.e., moduli
of elasticity, are still the subject of controversy.

2. Structure of eyeball model

Ophthalmologists distinguish many layers in the cornea, but only the stroma plays
a principle role in eyeball mechanics. The stroma takes up over 90% of the corneal
thickness. For this reason the material of the cornea is equated with this single kind of
tissue. Because of its specific structure, the shell is globally isotropic in the directions
tangent to the middle layer. Moreover, because of its outer shape and material
characteristic the cornea can be treated as a membrane. Therefore in calculations this
tissue is usually treated as an isotropic material [1]. Similar simplifications are applied
to the sclera.

In the corneal-scleral shell the transitional zone, called the limbus, plays a special
role. The material of the limbus shows noticeable anisotropy [2], but the area which
it occupies between the cornea and the sclera is so small that the anisotropy of this
zone is usually neglected. But the ciliary body together with the muscle which controls
the lens as well as the choroid cannot be neglected. These tissues clearly increase
the overall limbus and sclera stiffness and so this effect should be taken into account
in investigations of eyeball deformations caused by intraocular pressure.

3. Material constants

3.1. Exponential characteristic
Although the cornea material curve is still sometimes approximated by a linear
function, today both cornea material nonlinearity and anisotropy (and even rheology)
are commonly taken into account. However, not always the above effects and not all
of them at the same time must be taken into account.

The elastic nonlinearity of the stroma and that of the sclera, under uniaxial stress,
is usually described by the exponential relation proposed by WOO et al. [3]:

where: σ – stress, ε – strain, A and α – material constants. For a complex state of
stress one should additionally reduce the main stress tensor components to uniaxial
stress [4] according to the formula:
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The main strain tensor components are converted in a similar way

3.2. Longitudinal modulus of elasticity
The material of the eye shells is often described by a secant elasticity modulus, i.e.,
a ratio of total stress to total strain in a uniaxial state of stress. This parameter can be
compared for different materials at a fixed level of stress. In the case of the cornea
material, the (two-axial) steady-stress component in the apex, amounting to about
20 kPa at the nominal intraocular pressure, can be considered to be such a level.
The elasticity modulus E (measured in vitro on samples excised from the cornea) found
in the literature, ranges widely from 0.026 MPa [5] to 57 MPa [6] and to as much as
115 MPa reported by UCHIO et al. [7].

4. Biomechanical models of eyeball

The eyeball as a structure seems to be uncomplicated and relatively amenable to
mechanical analysis. This is really so in some special applications, e.g. when modelling
the effects of dynamic loads caused by quickly moving glass slivers or an air bag
impact. In other applications, e.g. in refractive surgery, the most important aspect of
the eye model is often its optics and then the analysis does not end with the deter-
mination of the displacement field and the stress field as in the case of, let us say,
the thigh bone. The configuration of the loaded structure requires further calculations
to determine the change in the position of the optical focus relative to the fundus caused
by deformation. The results of such calculations are highly sensitive to displacement
solution accuracy and so to the preliminary geometry and material assumptions,
the simplifications made and the adopted boundary conditions. It is extremely
difficult to obtain correct results and, in the author’s opinion, they are rare exceptions
in the literature on the subject.

The models found in the literature fall into two groups: analytical models [8, 9]
and numerical models [1, 10–14, 17]. An analytical model would have this advantage
over a numerical model that by providing a closed solution it would make it possible
to investigate the influence of individual parameters on its optical functioning. Thus
any effects of changes in the parameters (e.g., an increase in intraocular pressure
resulting in a change in optical power) would have a physical justification.
Unfortunately, the current analytical capacities in this regard are insufficient and
models which can be solved in this way are limited to the cornea (with a constant
thickness and made of a linear material) alone, which is too large simplification.
The numerical model has no such limitations. It can cover the whole eyeball (the cornea
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together with the sclera) with any geometry and it can be equipped with nearly any
material: anisotropic, nonlinear or inelastic. Such boundary conditions (the way in
which the model is fixed) do not encounter any computing barriers. Thus the model’s
potential seems to be limitless.

But the numerical model has one major drawback – the solution it provides is in
the form of numerical tables. Each relation investigated in this model requires a series
of separate solutions and the obtained functions come from approximations. The latter,
however, are performed arbitrarily and so have no physical justification.

Despite the above inconveniences, the numerical model of the eyeball has become
a powerful investigative tool. Thanks to computer tomography, the geometry of all
the structural details of the eye has been precisely determined. But little is known about
the mechanical properties of the tissues forming the eyeball. The longitudinal moduli
of elasticity measured by different researchers vary by as much as four orders (see
Sec. 3.2) and it is difficult to distinguish between correct and worthless results.
A similar scatter characterizes the other measured mechanical parameters. We have
found ourselves in a rather uncomfortable situation when the possibilities offered by
numerical techniques have got much ahead of our laboratory potential as regards
the investigation of the mechanical properties of the eye’s tissues and its optical
functions. The results yielded by the tensile test turn out to be so uncertain that
researchers have turned to the numerical model of the cornea and the sclera to identify
the tissues in the mechanical respect. The model material or geometry parameters are
matched to make the model behave in the same way as the real eye. By imposing

Fig. 1. Schematic finite element model of the eyeball with
principal planes of the eye optical system.
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constraints on the parameters, one can determine their proper ranges. This approach
has turned out to be more effective. An axial symmetric finite element eyeball model,
on which this kind of material identification was made, is described in [13]. The model
is built from 2D solid quadrilateral 8-node body of revolution elements shown in
Figs. 1 and 3.

5. Numerical identification of corneal material

The eyeball models found in the literature were designed mostly to simulate the flatten-
ing of the corneal apex in Goldmann applanation tonometry [8, 10, 11] or the change
in the eyeball’s optical power after surgical correction of its geometry [1, 12, 14]. In
both cases, the model is also used to identify the cornea material. The results are
often far from ideal because of the questionable assumptions or outright errors made
in the creation of the model. Despite this, the obtained parameter values are within
a much narrower range than the ones determined experimentally. Sometimes they are
quite reliable, although obtained on the basis of flawed assumptions or after gross
simplifications. Numerical models seem to be much more researcher-friendly than
biological preparations. It often happens that a model which was not previously
verified is used to identify the cornea material or to investigate the influence of its
thickness on tonometrically measured intraocular pressure. The trust placed on
the model by its creator sometimes seems to be boundless. The few problems of
model’s applications in ophthalmology are described below.

5.1. Refractive surgery
The model is verified by introducing the same changes as the ones made by surgery
into the geometry of the cornea and then calculating its radius of curvature in the apex
under intraocular pressure. The change in optical power calculated for the model is
compared with the change observed after the surgery. If the model is correct,
the respective results, evaluated by the quality of the image on the retina, should be
similar.

Geometry modifications made by photorefractive keratectomy (PRK) are the easiest
to introduce into the model. The surgery performed with a laser consists in changing
the curvature radius of the corneal apex (over a diameter of about 7 mm) through
ablation (vaporization) of its outer layers. During the operation the intraocular pressure
does not change. If no astigmatism is corrected, but only optical power, the cornea
after the new profile is introduced, still remains (approximately) axially symmetric. It
seems quite easy to create a model and numerically solve the problem. Unfortunately,
“it seems” is the most certain element in this thesis.

An attempt at a numerical solution encounters a formidable difficulty for quite
an inconspicuous reason. An eyeball model always comes into existence through
a design, i.e., a configuration of the structure prior to loading. This applies to the geom-
etry before and after the operation. The problem derives from the fact that in clinical
conditions the geometry in both cases is unavailable. Only the final configuration
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is known, i.e., the dimensions of the cornea under pressure before surgery and
the postoperative dimensions of the cornea deformed by both the surgery and the intra-
ocular pressure. Only after the solution one can find out whether the cornea model,
both the one before the surgery and the one after the surgery (they are two different
models), acquired correct dimensions, but the configuration of the model under load
depends on both the initial geometry and the assumed material elasticity. The injustice
which the analyst suffers here consists in the fact that the surgeon is completely
unaware of the problem – the measurements before the surgery, the surgery itself and
the postoperative checkup are conducted at a (roughly) invariable intraocular pressure.
The geometry of the cornea not subjected to load does not occur here at all.

One can easily guess what the basic error in the numerical PRK simulation is –
the change in the eye’s optical power is calculated for a “frozen” eyeball. The model
(not subjected to load) acquires eyeball dimensions from clinical measurements, i.e.,
carried out on the eyeball subjected to load. Then it is being solved (changes its
dimensions, and so also its optical power) and the geometry correction caused by PRK
is introduced into the obtained model which is now considered to be stiff. For this final
model configuration the ultimate optical power of the cornea is calculated. Is such
an algorithm admissible?

The answer depends on the cornea’s elasticity modulus. If it is close to 8 MPa,
as indicated by many reliable experiments, carried out mainly by HJORTDAL [2],
the answer is yes since the shell characterized by this elasticity modulus is so stiff
that a change in pressure from 0 to 2.135 kPa (16 mmHg) has little influence on its
configuration. If, however, the elasticity modulus is close to 0.3 MPa, as indicated by
other equally reliable experiments [7, 8], including ours [13], then the answer is no.
One could get the impression that this question is decided by a vote if it were not for
the fact that the former figure comes from measurements while the latter in most cases
is the result of numerical simulations. The existing experience suggests that the latter
figure is correct. The role which the cornea’s elasticity modulus plays in predicting
changes in the optical power of the model after PRK and the significance of
the simplifications made in such calculations were investigated by the authors in [14].

Radial keratotomy is an example of another difficulty, this time associated with
the cornea material itself. The surgery is performed using a special scalpel and consists
in making several deep incisions arranged radially on the peripheries of the cornea, as
is seen in Fig. 2. The apex flattening caused by intraocular pressure corrects myopia.
To the above difficulties, the numerical simulation of the surgical procedure adds
another one: this kind of change in the geometry of the cornea results in high stress
gradients on the bottom of the incisions. Then the assumption that the material is
anisotropic seems untenable. But one can easily find attempts at such solutions [1, 12]
and it is by no means certain that they are basically flawed.

5.2. Goldmann applanation tonometry
The numerical simulation of intraocular pressure (IOP) measurement by means of
an applanation tonometer is readily used to verify the cornea material adopted
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in the model. This measuring method [15] is based on the assumption of equality of
pressures on both sides of the flattened corneal apex, i.e., the external pressure (denoted
as IOPG) caused by the (flat) measuring tip of the instrument and the internal pressure
(denoted as IOP):

IOPG = IOP (1)

The former pressure is associated with the name of Goldmann. After the pressure
force and the diameter of the zone of contact between the tonometer tip and the cornea
are measured, the average IOPG pressure is calculated. Eq. (1), called the Imbert–Fick
law, holds good, according to Goldmann, only for the so-called calibration dimensions:

– applanation zone diameter D = 3.06 mm,
– apex cornea thickness CCT = 0.52 mm,
– apex cornea curvature radius R = 7.80 mm.

Fig. 3. Cross-section of cornea. Y-axis is symmetry axis. Surface tension force reduces resultant IOPG
force needed to flatten corneal apex over radius r  = 1.53 mm. Forces originating from IOP and from
reaction of part of cornea surrounding disc act from inside on flattened disc.

Fig. 2. Part of the cornea after modelling of the radial keratotomy.
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The measurement of pressure on a cornea with dimensions other than the cali-
bration ones requires a correction for CCT and R. But the dependence of IOPG on
the pressure level and the cornea material parameters is not taken into account.

Applanation tonometry has an over one hundred years old tradition and it would
seem that the theoretical basis of the mechanics of this measurement is well
understood. However, some arguments and beliefs expressed in the literature, although
they do not arouse controversy there, are at odds with our numerical solutions.
An example here is the argument for calibration dimensions put forward by GOLDMANN

and SCHMIDT [15] and repeated by others [16]: justifying diameter D = 3.06 mm it is
assumed (Goldmann did not do any such calculations) that externally applied pressure
IOPG acting over diameter D is counteracted from the inside by pressure IOP and by
the bending resistance of the shell not exposed to load. Thus IOPG is always higher
than IOP and condition (1) is satisfied only when also the force of attraction between
the tonometer tip and the cornea is taken into account. The force originates from
the surface tension in the lacrimal film connecting the two surfaces and its magnitude
counterbalances the forces bending the shell exactly at D = 3.06 mm. As is apparent,
the result is understood here as a superposition of two solutions: 1) for a shell
(membrane) devoid of bending rigidity – then the external pressure and the internal
pressure, acting in the applanation zone, are exactly equal, regardless of its dimensions
and the value of IOP and 2) for a shell with low bending rigidity, loaded by only this
(constant) part of pressure IOPG which is needed to bend the shell at IOP = 0.

Our studies of the eyeball model indicate that the above assumption is incorrect
and leads to not only large errors, but also to a paradox. The problem is best illustrated
by the solution obtained for a linearly elastic model. But the most serious consequences
follow from the solution for a realistic nonlinear model. The two results are presented
as graphs in Fig. 4. Each of the models (the linear model and the nonlinear one) has
such a cornea material that at nominal intraocular pressure IOP = 16 mmHg
the calculated average pressure exerted from the outside by the tonometer tip, IOPG,
also amounts to 16 mmHg. According to current applanation tonometry, the measured
pressure IOPG is a linear function of IOP, represented by grey dashed line in the figure,
i.e., written as Eq. (1). If the force originating from surface tension were neglected (as
it is done in numerical models), then the function graph would be a grey dashed line
vertically shifted by the initial value of IOPG (at IOP = 0).

The solution for the linear model, shown in Fig. 4, is, of course, far from the reality,
but it clearly puts in doubt the applanation tonometry’s assumption that the difference
between IOPG and IOP does not depend on IOP. As the diagram for the linear model
shows, the influence of the intraocular pressure is so strong that even the functional
trend between the variables has been reversed. One can say that in the linear model by
increasing IOP one helps IOPG to flatten the apex.

According to Fig. 4, the nonlinear model behaves quite differently in this respect.
But the functional dependence for this model does not coincide with the applanation
tonometry predictions. At a low IOP (below the nominal value) applanation pressure
IOPG is, as assumed by Goldmann, actually higher than IOP. But as the pressure
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increases, a trend similar to the one observed for the linear model emerges: the higher
the IOP, the easier it is to flatten the corneal apex. Thus above the nominal pressure,
IOPG becomes lower than IOP. This is the paradox: the pressure on the outside of
the flattened disc is lower than the pressure acting from the inside. If Goldmann’s
assumption about the influence of the shell’s bending resistance and the surface tension
were correct, the cornea’s bending resistance in this case would have to be negative!
The rest of the cornea then would attract the flattened disc, instead of repelling it.

This result stands in contradiction to all the theses and the experimental results
found in the literature on the subject. All the opinions and measurement data support
the above applanation tonometry assumptions and so they are at variance with the
result presented here. This raises questions about the quality of the model and the sense
of the obtained solutions. Can the bending resistance of a spherical shell being flattened
and simultaneously loaded with an external pressure be negative? However strange
the answer will sound – this is precisely the case.

The applanation tonometry’s cornea deformation model based on intuition has
never been verified before. To the author’s knowledge, the calculation results shown
in Fig. 4 are the only attempt to check Goldmann’s assumptions. The numerical model,
described in [13, 14], used for this purpose, was carefully prepared with regard to both
the selection of materials for the cornea, the sclera and the corneal limbus and its
agreement with the known experimental results. According to Fig. 4, applanation
pressure IOPG for the model not loaded with internal pressure is slight, amounting to
about 1 mmHg. Thus there are no reasons to question the IOPG value obtained at
IOP = 32 mmHg. The calculated IOPG = 27.5 mmHg is by about 5 mmHg lower than

Fig. 4. Calculated IOPG for model made of: linear-elastic material and nonlinear-elastic material,
depending on IOP. Grey lines represent Goldmann idealization: broken line – pressure measured on dry
(not wetted with lacrimal fluid) cornea, solid line expresses Imbert–Fick law (Eq. (1)) and so takes into
account the influence of surface tension in lacrimal film. All bold lines satisfy condition
IOPG = IOP = 16 mmHg (nominal).
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IOP, which means that this deviation cannot be linked to the shell’s bending rigidity.
Inequality IOPG < IOP above 16 mmHg, in the nonlinear model is as contrary to our
intuition as in the linear model. But in the latter model the numerical solution does not
raise doubts as to its quality since the fact that the graph is so radically different from
that of function (1) cannot be due to only calculation errors. Intuition in mechanical
problems is a poor adviser.

5.3. Corneal profile
An interesting application of the numerical model to structural identification is corneal
profile geometry. The corneal profile is often approximated with a circle whereby
the cornea’s outer surface is then treated as a segment of a sphere. But the spherical
aberration caused by this shape of the lens and the results of topographic examination
of the cornea, indicating that the curvature radius decreases as the distance from
the eye’s optical axis increases, speak against the sphere. Easier to use and better fitting
the geometry of the cornea is the ellipse [17]

(2)

changing its shape depending on eccentricity e from e = 0 (a circle), through e = 1
(a parabola) to e > 1 (a hyperbola). The parabola has a particularly desirable analytical
form since being a 2nd degree polynomial it is easy to differentiate and integrate. Is it
acceptable to approximate the corneal profile with the parabola in studies of cornea
model optics?

One of the few studies devoted to this problem is [18] in which an attempt is made
to determine the optimum eccentricity of the ellipse, used to describe the cornea’s outer
and inner outline in the linear-elastic model. The optimization was performed with
regard to a peculiar aspect of the model, called optical self-adjustment. One should
note that the type of function approximating the outer profile of the cornea has a strong
influence on the model’s optical system and its dynamics as the model parameters
(e.g., IOP or the radius of corneal apex curvature) are changed. The model’s optical
focus not only should be located near the fundus of the eye at the nominal value of
IOP but also changes in its location, dependent on the fluctuations in IOP, are governed
by strict rules. Not every function can meet their requirements.

The optical self-adjustment of the eye is a hypothesis advanced by KASPRZAK [19].
As applied to the real eye, it reads as follows: the quality of the image on the retina
of an unaccommodating eye does not depend on IOP. Physiological deviations of
IOP from the mean value vary depending on the time of the day, the blood pressure,
the body position and many other circumstances, including the health ones. The devia-
tions do not usually exceed 5 mmHg. Of an eyeball model the Kasprzak hypothesis
requires that its performance should be relatively easily verified: intraocular pressure

z x( ) 1
e2 1–

------------------- R2 x2 e2 1–( )+ R–=



Biomechanical model of human eyeball and its applications 411

fluctuations around the nominal value, with an amplitude of at least 30% of this value,
should not have a noticeable effect on the location of the optical focus relative to
the fundus while the lens should retain constant focal power. This model performance
is hardly likely if the model is not structurally adapted for this purpose. When the pres-
sure is increased, the eyeball expands – the cornea displaces forward while the corneal
apex curvature radius increases. As a result of the stiff displacement of the cornea,
the focus shifts forwards whereas the increase in the apex curvature radius shifts
the focus backwards. When the numerical model’s structural (geometrical and
material) parameters are properly matched, the absolute values of the focus shifts are
equal to each other and ultimately the location of the focus does not change. Such
a model is optically self-adjusting.

In the discussed paper [18] the self-adjustment of the eyeball model was achieved
through a properly matched limbus ring stiffness. The calculation results showed that
limbus stiffness depends monotonically on the corneal profile ellipse eccentricity in
the self-adjusting model. Initially, at an eccentricity close to zero, the model shows
almost spontaneous self-adjustment. In order to increase eccentricity, it was necessary
to increase the tension stiffness of the limbus ring. Initially, increments in limbus ring
stiffness were small but once e = 0.5 was exceeded, they rapidly grew and at e close
to 0.65 the limbus stiffness required to retain self-adjustment approached infinity. This
result does not depend on the cornea’s Young modulus, provided the ratio of the sclera
modulus to the cornea modulus amounts to 5 (this value is justified by both
experimental results [3] and physical predictions [13]).

Experiments of this kind show the strategy of identifying eye structures, based on
the numerical model, to be highly effective. The obtained result imposes clear limits
on the function used to describe the cornea’s topography. In particular, it provides
an answer to the question asked above – the parabola (the more so the hyperbola) is
unsuitable for corneal profile approximation in the linear model.

6. Conclusions

At present, experimental results which could be used to create a numerical model of
the human eyeball are far from satisfactory. The results of strength tests carried out
on specimens excised from eye tissues and on whole eyeballs differ too much to be
a reliable source of data. The technique of identifying the material of the eye’s shells,
consisting in the numerical simulation of clinical tests (such as applanation tonometry)
turns out to be more effective.

Numerical eye models, even though they prove to be suitable for the purpose, are
still far from perfect, particularly when applied to predict the results of refractive
surgery. The cause is not so much the lack of a method, but rather faulty calculation
programs. The resulting solution errors are due to, at least partially, the controversies
around material constants and the associated simplifications.
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The identified experimental and numerical shortcomings contribute to the persis-
tence of conflicting beliefs about solutions achievable today. The results obtained by
the author suggest that the principal equation of applanation tonometry (the Imbert –
Fick law) cannot be satisfied by the real eyeball, even when the latter has calibration
dimensions, since the law is based on false assumptions.

The shortcomings also affect the other aspects of the eyeball model’s structure and
behaviour – rheological material parameters, accommodation and fixing in the eye
socket, i.e. the boundary conditions. All have an effect on the model’s optical functions.
Therefore one can conclude that the problem lies in the too little weight attached to
the correctness of assumptions and solutions. The investigation of the optical system
of the eyeball by means of a numerical model constitutes a new quality in mechanics
and requires a new approach to eyeball design. The eye is not a mechanical structure
in the classical sense – its function is not to carry loads, but to see.
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