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1. Introduction 

It is possible to give a lecture on algebra or calculus without any exam-
ples of physics, economy, chemistry, or any other branch of science. A lecture 
using only strictly mathematical methods is sufficient. But there are some 
reasons for giving in the mathematical lecture some examples from other 
branches of science.  

Firstly: mathematics is often used in the other branches of science as 
a precise language. Sometimes there is a chance that from physics or econom-
ics or another branch comes an impulse for the development of mathematics, 
for example the calculus has its starting point in physics.  

Secondly: some problems in different branches of science are described 
with the same mathematical language. For example speed in physics and mar-
ginal cost in economics are described by derivatives.  

Thirdly: the lectures on mathematics, physics, and economics are given 
in parallel during the studies. One ought to show in the lecture of mathematics 
some application of mathematical notion on the other branches of science. 
The ‘pure’ mathematics is insufficient.  
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This paper presents a description of the Coriolis force by using some 
functions with real argument and complex value. At the end of the paper 
a project using the energy of the rotation motion of the Earth to the production 
of electrical energy is shown.  

2. Fundamental principles of rotational motion with constant velocity 

Suppose that a particle is moving all around a point O with a constant 
angular velocity ω. Let the distance between the particle and the centre O 
equal r. The rotating motion may be described by function 2: RRf →  where 
R is the field of real numbers – the time axis, and 2R  is the plane i.e. 

CRf →:  where C is the field of complex numbers – the location of the 
particle. Let the centre of the rotating O be the zero of the complex number 
plane. On any moment of the time the particle is situated in the circle 

{ }rzCzCr =∈= : , i.e. rCRf →: . Suppose simply that in the moment 
0=t  the particle is situated on the positive axis zRe . So ( )tfz =  where  

 ( )tirz ωexp⋅= ,  (1) 

where by definition: for Cu∈  it is ( )ueu exp= . In formula (1) the parameter 
ω is the angular velocity; it is a constant. In a more complicated case the lo-
cation of the particle is given by the formula 

( )( )tirz ϕ⋅⋅= exp , 

where ( )tϕ  the angular displacement. If ( ) tt ⋅= ωϕ , as in formula (1), the an-
gular velocity is constant. The situation for 0>ω  is presented in  Figure 1.  

The unit vector sgn z is the versor of the radius vector r = z of the position 
of the particle1, i.e. 

( )tiz ωexpsgn = . 

Angle φ is the argument of the number z, i.e. zarg=ϕ . This is the angular 
displacement of the particle. Arch s is the path of the particle along circle Cr. 
The time of the motion of the particle is considered in  interval [ ]t,0 . The 
formulae s = rφ, and s = rωt, and  φ = ωt hold.  

 
                                                 

1 The radius vector r is said the leading vector of the position of the particle. It is possible to 
write the equality r = z even though r is a vector and z is a complex number.   
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 Fig. 1. The rotation of the particle on the complex number plane 

Source: own elaboration.  

The velocity v of the particle is vector: 
dt
dzv = , i.e.  

 ( )tiriz ωω exp⋅⋅⋅=′ .  (2) 

Since it is 





 ⋅=

2
exp πii   formula (2) is equivalent  

 













 +⋅⋅⋅=′

2
exp πωω tirz .  (3) 

From (1) and (3) it follows that vectors z and z’ are perpendicular. The 
versor of the vector of velocity v = z’ is the rotation of the versor of position 
z of the particle. The angle of this rotation equals π/2 and its direction corre-
sponds with the direction of the rotation of the particle, see Figure 2. 
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Fig. 2. The vector of the linear velocity and its versor 

Source: own elaboration.  

Suppose that the standard unit of the length is equal the radius of circle 
1=z  in Figure 2 and angle φ is crossed during the standard unit of time. 

Then the length of the path crossed by the particle during the same unit of 
time equals s, i.e. the length of the vector of linear velocity equals s. From the 
lecture on physics it is known that angular velocity is represented by the vec-
tor perpendicular to the plane of the rotation. The direction of the rotation and 
the sense of the vector are such that they both form a right-handed system2. 

                                                 
2 The observer is standing on the plane of rotation with their head in the sense of the vector 

perpendicular to the rotating plane. The direction of the rotation and the sense of the vector form 
the right-handed system if the rotation is seen by the observer as counter-clockwise.  
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In Figure 2 it is, with these assumptions, that the vector of angular velocity 
passes from the figure to the face of the observer and its length is equal to the 
length of arch φ. This situation is presented in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The direction of the rotation of the particle, the versors of the vectors of the position,  
linear velocity, and linear acceleration; the direction, the sense  

and the length of the vector of the angular velocity 

Source: own elaboration.  

The position of the particle is represented by the complex number z. Vec-
tor r passes from the origin to the position z is the leading vector for the par-
ticle. It is possible to write the equality z = r, similarly z′ = v. Vector ω is the 
vector of angular velocity which equals the vector product of  the leading 
vector of position of particle r = z and the vector of linear velocity v = z′ 
multiplied by the real number that is equal to the inverse of the square of the 
length of vector of the position, i.e.  

ω = 
2

1
r

· ( r × v ). 

All The vectors of the formula above are perpendicular. It is possible to 
write the formula that gives the vector of the linear velocity v = ω × r  using 
the convex number  

v = r · ( ω × sgn z ), 
where sgn z is the leading vector of the complex number sign z.  

  y = Im z 

x = Re z 

    
  1 

sgn z 

φ = ω·1 

ω 

the direction of the rotation 
of the particle 

the vector of angular velocity 

i 

sgn z′ 

 the right  
angle 

the versor of the leading 
vector of the position  
of the particle 

the versor of the vector 
of linear velocity –  
translated to the origin 

       
 the path through  

the unit of the time 

sgn z′′ 

the versor of the vector of 
the linear acceleration – 
translated to the origin  

the right  angle 



20 Tadeusz Janaszak 
  
 

To count the acceleration of the particle it is necessary to differentiate 
function (2).   Physics tells us that acceleration is the derivative of velocity:  

 ( ) ( )tirz ωω exp1 2 ⋅⋅⋅−=′′ .  (4) 

The leading vector of complex number z ′′  in physics is signified by a, 
i.e. a = z ′′ . Since ( )π⋅=− iexp1 , formula (4) has the form: 

 ( )( )πωω +⋅⋅=′′ tirz exp2 .  (5) 

According to the formula above, the rotation of the versor of the linear 
velocity through the right angle corresponding with the direction of the rota-
tion of the particle makes the versor of the vector of the linear acceleration of 
the particle, i.e. the equality sign z ′′ – sign z holds.  

The second law of Newton states that the rate of change of momentum 
of the moving body is proportional to and in the same direction as the force 
acting on it, i.e. F = d(mv)/dt, where F is the applied force of, v is the velocity 
of the body, and m its mass. If the mass remains constant, F = mdv/dt or  
F = m·a, i.e. F = m·z", where  

 ( )( )πωω +⋅⋅⋅=′′⋅ tirmzm exp2 .  (6) 

If m = 1, then the vector of linear acceleration is equal to the vector of 
the centripetal force. If the mass of the particle is not equal to 1, then the 
vector of the centripetal force has the same direction and sense as the vector 
of linear acceleration, but its length is not equal to it. The versors of the vec-
tors of the acceleration and the centripetal force are equal, see Figure 3.3 
 
 

                                                 
3 If, for example, the particle is a weight rotating in a string, then the centripetal force is the 

tension of the string; if it is a ball in a roulette, then the centripetal force is  the resilience force 
of the roulette board. During the motion in a circular path the centripetal force is balanced by an 
equal and opposite force, acting away from the centre of the circle, called centrifugal force. This 
force tightens the string and causes the pressure on the board of the roulette.  A person  is riding 
in a tram: on the curve of a tramline the passenger feels the pressure directed outside the curve. 
This is the effect of the acting centrifugal force. The passenger balances the pressure bending 
his/her trunk to the centre of the curve. Finally, the action of centrifugal force is balanced by the 
friction force between his/her body and the floor of the tram. A person driving a car puts on the 
free seat an apple. If the engine is turned off the apple rolls outside the bend. If the car is suddenly 
brought to a stop, the apple falls down to the floor of the car. If the speed of the car is increased, 
the apple rolls to the back of the car.  
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Fig. 4. Fictitious force – the centrifugal force  

Source: own elaboration.  

In Figure 4 point (r, 0) is the origin of the new frame of reference O’, x’, 
y’. In origin O’ a clock is located in such a way that the positive x’-axis is 
directed to the three and the positive y’-axis to the twelve. The new system is 
rotating about the origin of the coordinate system O, x, y in such a way that 
O’ is rotating through the circle 222 ryx =+ , and origin O has in the new 
system the coordinates (–r, 0); Figure 4  shows three positions of the new 
system. In point O’ along the line O’,O there is always the vector of linear 
acceleration, its sense is directed from O’ to O, its length is equal to 2ω⋅r .  
It appears if on the point O’ one is locating a particle of mass m. According 
to Newton’s law, the vector has a length equal to 2ω⋅⋅ rm , its sense is oppo-
site to the sense of the vector of linear acceleration,4 see Figure 4. 
                                                 

4 If on the free seat in the car there is not any object, then in any point there is not any fictitious 
force. If one places an apple on the seat, the fictitious force will appear. The vector of acceleration 
always occurs.  
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It is possible to introduce one more frame of reference O’’, x’’, y’’. Origin 
O’’ is the same point as point O. The system is rotating around point O = O’ 
with the angular velocity ω. In moment t = 0 the positive x’’-axis is the same 
as the x-axis, and the y’’-axis is the same as the y-axis. The system O, x, y is 
inertial and systems O’, x’, y’ and O’’, x’’, y’’ are non-inertial. 

The position of the particle in the inertial coordinate system O, x, y is 
given by formula (1), in system O’, x’, y’ the particle is always in origin O’, 
in system O’’, x’’, y’’ it is located in point (r, 0).  

In Figure 4 the vector of fictitious force always shows three o’clock. This 
result is obtained in theory. It is possible to check it in practice, for which it 
is necessary to construct a face of a special clock.  

3. The construction and application  
of a fictitious force finding clock  

The face is not flat but it has the form of a crater or a funnel. The board 
of the face is similar to a roulette, see Figure 5. In the centre of the crater one 
ought to put a little ball. 

 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 5. The face of a fictitious force finding clock 

Source: own elaboration.  
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This clock should be located on a small merry-go-round as can be found 
in a playground. The centre of the merry-go-round and the hours nine and 
three lie in one and the same radius of the circle, it is certain that the centre 
of the clock and the centre of the merry-go-round are located in the two other 
points, see Figure 4.   

One puts on the clock a little wooden or metal ball, and sets the merry-
go-round in a rotational motion. During the motion the ball stays at the three 
o’clock. It shows the direction of action of the fictitious force. In this case it 
is the centrifugal force. The direction of the rotation has no influence on the 
direction of the centrifugal force. The merry-go-round can rotate clockwise 
or counter-clockwise, one way or another the ball stays in the same place – 
three o’clock. The next point is to consider a non-inertial coordinate system 
that is not only rotating but also moving through a straight line.  

4. Uniform motion in a straight line  
in the rotating frame of reference 

Suppose that a particle is moving through the diameter of a circle, its 
linear velocity is constant, the circle is rotating about its centre at a constant 
angular velocity.5 Let the angular velocity be equal to 2π, i.e. at the unit of the 
time the disc is making one turn. At the same time the particle is moving from 
point A(R, 0) to point B(–R, 0), where R is the radius of the circle.  

In Figure 6 the time of one turn of the circle is equal to the time that the 
particle crosses through the diameter of the circle; the path of the particle 
divides the circle on two sides – with respect to the direction of the linear 
motion of the particle 

 Table 1 shows the position of the particle in some moments of the time 
in the inertial frame of reference using the polar coordinates. 

Figure 7  shows the position of the particle according to Table 1 in the 
inertial frame of reference, the line of the points is the trajectory of the particle 
in this inertial frame of reference. 

 
 
 
 

                                                 
5 It is easy to assume these conditions. The next stage is showing in an experiment in what 

way that motion is possible in practice.  
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Fig. 6. The rotational motion of the circle and the linear motion  
of the particle on the surface of the circle 

Source: own elaboration.  

Table 1. The position of the particle in certain moments of time 

time 0 1/12 1/8 1/6 1/4 1/3 3/8 5/12 1/2 

angle π π /6 π /4 π /3 π /2 (2/3) π (3/4) π (5/6) π none 

radius R (5/6)R (3/4)R (2/3)R R/2 R/3 R/4 R/6 0 

point A0=A A1 A2 A3 A4 A6 A6 A7 A8=0 
 

time 1/2 7/12 5/8 2/3 3/4 5/6 7/8 11/12 1 

angle none π/6 (1/4)π π/3 π/2 (2/3)π (3/4)π (5/6)π π 

radius 0 R/6 R/4 R/3 R/2 (2/3)R (3/4)R (5/6)R R 

point A8=0 A9 A10 A11 A12=A4 A13 A14 A15 A16=B 

Source: own elaboration.  
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Fig. 7. Trajectory of the particle in the inertial frame of reference 

Source: own elaboration.  

The equation of the trajectory is equal to  

 ( ) ( )titRz π2exp21 ⋅−⋅= , (7) written r = z, where 
r is the leading vector of the position of the particle. The first derivative of 
function (7) is the vector of the velocity of the particle in the inertial frame of 
reference, the second derivative is the vector of the acceleration: 

 ( ) ( ) ( )titRitiRz πππ 2exp2122exp2 ⋅−⋅⋅+⋅−=′ ,  (8) 
i.e. 

 ( ) ( ) 
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is directed according to the vector of the position of the particle but its sense 
is contrary to it. Its length is equal to 2R according to the linear velocity of 
the particle on the linear motion through the diameter of the circle. Vector vr 
is parallel to the vector tt BA , , where points At  and Bt are the positions of 
points A0  and B0, if the circle is turning through angle 2π·t, i.e. in the moment 
t of time, see Figure 8, i.e.  

 ( )tRtRAt ⋅⋅⋅⋅= ππ 2sin,2cos   (10) 

and 

 ( )tRtRBt ⋅⋅−⋅⋅−= ππ 2sin,2cos .  (11) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Fig. 8. Decomposition of the vector of linear velocity of the particle in the inertial frame 
of reference; in the point of the trajectory for the moment of time  t < ¼ 

Source: own elaboration.  
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The rotational component of the vector of the linear velocity is perpen-
dicular to the leading vector of the particle, the length of it is equal to  
2πR·(1-2t); it is equal to the vector of the velocity of the point of the circle in 
which the particle is situated at moment t. This component measures the 
velocity with respect to the rotation of the disc. In Figure 8 the moment t of 
time belongs to interval (0, ¼). The linear speed of the particle6 with respect 
to the inertial frame of reference is changeable. This is the function of variable t: 

( )22 2112 tRv −⋅+⋅= π .  
The smallest value of it is equal to 2R, for t = ½; the particle at the moment is 
located in the centre of the circle. The greatest value is equal to 212 π+⋅R , 
for t = 0 and t = 1. The speed is a decreasing function in interval (0, ½) and 
an increasing in (½, 1), see Figure 7. The decomposition of the vector of the 
linear velocity of the particle with respect to the inertial frame of reference is 
presented in Figure 8. 

To find the linear acceleration of the particle in the inertial frame of 
reference it is necessary to calculate the second derivative of the function of 
the position of the particle, i.e.to calculate the derivative of function (8):  

( )
( ) ( ) ( ),2exp21222exp22

2exp22
ittRitRi

itiRz
πππππ

ππ

⋅−⋅⋅−⋅⋅⋅

−⋅⋅⋅−=′′
 

the result would be given in a more simple form: 
 ( ) ( ) ( )titRtiiRz ππππ 2exp2142exp8 2 ⋅−⋅−⋅⋅−=′′ ,  (12) 
i.e. 

 ( ) ( )titRtiRz πππππ 2exp214
2

2exp8 2 ⋅−⋅−













 +⋅−=′′ .  (13) 

Since a = z’’, the vector of acceleration has two components: centripetal ac-
celeration acp:  

 acp = ( ) ( )titR ππ 2exp214 2 ⋅−⋅−   (14) 

and Coriolis acceleration7 aC: 

 aC = 













 +⋅−

2
2exp8 πππ tiR .  (15) 

                                                 
6 The velocity is a vector, the speed is the length of this vector, it is a scalar.  
7 [Resnick, Halliday 1980, p. 773]. 
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Fig. 9. The acceleration vectors – in the inertial frame of reference and 
the vectors of the fictitious forces – in the rotating frame of reference 

Source: own elaboration.  

If the mass of the particle is equal to the unit, then Fcf = – acp and 
FC = – aC and Ffic = –a. The direction of the linear motion of the particle on 
the surface of the disc is running from As to Bs.  From the direction is defined 
the right and left-hand side. 

The coordinate system O’’, x’’, y’’ has the same origin as the inertial 
coordinate system O, x, y, i.e. O = O’’. System O’’, x’’, y’’ is rotating about 
the origin at angular velocity 2π, i.e. the disc is rotating through 360° during 
the unit of the time. In this frame of reference the particle has the location:  
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x’’ = R·(1-2t), and y’’ = O, where ( )1,0∈t . Two fictitious forces act on the 
particle: centrifugal force Fcf and Coriolis force FC; the resultant fictitious 
force Ffic that acts on the particle at a particular moment of time is the sum of 
centrifugal force Fcf and Coriolis force FC,8 similarly  the acceleration of the 
particle with respect to the inertial frame of reference, symbol a, has two com-
ponents: centrifugal acceleration acp and Coriolis acceleration aC at the same 
moment of the time.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. The fictitious forces that act at the particle that is moving on the linear path  
with the constant velocity in the rotating frame of reference 

Source: own elaboration.  

Each horizontal vector is the representation of the centrifugal force de-
pendent on the x’’-axis. Each vertical vector is a representation of the Coriolis 
force, it is one and the same in the rotating system O’’, x’’, y’’ through the 
path of the particle. The sum of the vertical and horizontal vector is the vector 
of the resultant fictitious force in the rotating system O’’, x’’, y’’.  

The formulae of the fictitious forces: the centrifugal force and the Cori-
olis force are similar to the formulae of the Coriolis acceleration and centrip-
etal acceleration. To find the force it is necessary to write the sign of minus 
and the mass of the particle to the formula of acceleration: 

 Fcf = ( ) ( )titRm ππ 2exp214 2 ⋅−⋅⋅   (16) 

                                                 
8 See Figures 9 and 10. 
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and 

 FC = 













 +⋅⋅

2
2exp8 πππ tiRm , (17) 

see (14) and (15). The formulae are the same as in the textbooks.9 Centrifugal 
force Fcf = m·ω2·r and Coriolis force  FC =2m (v1 × ω), where v1 is the vector 
of linear velocity on the rotating frame of reference and ω is the vector of 
angular velocity of it.  

It is possible to count the absolute value of the tangent of the angle that 
is made by the resultant fictitious force and the Coriolis force:  

( ) ( ) ( )
2

21
42

214 2 t
Rm

tRm
F
F

ttg
C

cf −⋅
−=

⋅
−⋅⋅

=±=
π

π
πβ . 

The sign of the tangent depends on the direction of the linear motion of the 
particle at the surface of the turning disc and whether the disc is turned 
clockwise or counter-clockwise, see Figure 12. The absolute value of the 
tangent is presented in Table 2: 

Table 2. The direction of the fictitious force in the time  

the time 0 1/12 1/8 1/6 1/4 1/3 3/8 5/12 1/2 

tan β(t) -1.57 -1.31 -1.18 -1.05 -0.78 -0.52 -0.39 -0.26 0 

β(t) -57°30’ -52°35’ -49°45’ -46°25’ -37°55’ -27°30’ -21°20’ -14°35’ 0° 

h(t) 1:55 1:45 1:40 1:33 1:16 0:55 0:43 0:29 0:00 
 
the time 1/2 7/12 5/8 2/3 3/4 5/6 7/8 11/12 1 

tan β(t) 0 0.26 0.39 0.52 0.78 1.05 1.18 1.31 1.57 

β(t) 0° 14°35’ 21°20’ 27°30’ 37°55’ 46°25’ 49°45’ 52°35’ 57°30’ 

h(t) 0:00 11:31 11:17 11:05 10:44 10:27 10:20 10:15 10:05 

Source: own elaboration. 

Now, in the position of the particle is located the origin of the frame of 
reference O’, x’, y’ in such a way that the x’-axis is determined by the origin 
of the inertial frame of reference O, x, y and the position of the particle in 

                                                 
9 See: [Feynman, Leighton, Sands 1974, p. 290; Bobrowski 1998, p. 65]. 
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moment 0=t , i.e. by point ( )R,0  in system O, x, y, the y’-axis is perpendic-
ular to the x’-axis and simultaneously the angle between the positive x’-axis 
and the positive y’-axis is counter-clockwise. Each point of system O’, x’, y’ 
is moving at a linear path in respect to system O’’, x’’, y’’, origin O’  has the 
same position in respect to the inertial frame of reference O, x, y as that of 
particle (7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 11. The resultant fictitious forces 

Source: own elaboration.  

In the origin of system O’, x’, y’ there is located a clock, in such a way 
that the y’-axis shows 12 o’clock and the x’-axis, 3 o’clock. This way the 
Coriolis force that acts on the particle which is located in origin O’ shows 12 
o’clock and has always one and the same value 8mπR; the centrifugal force 
is directed through the x’-axis and has the sense compatible to the positive of 
it for ( )2

1,0∈t , to the negative for ( )1,2
1∈t , for 2
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same position in respect to the inertial frame of reference as that of its origin 
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O, consequently the centrifugal force equals zero, see Figure 11.10 The value 
of the centrifugal force in respect to the time is equal to ( )tRm 214 −⋅π , in the 
linear frame of reference O’, x’ it would be positive or negative. In Figure 11 
the resultant fictitious force is shown at three moments of the time: t = 0,  
t = 1/2, t = 5/6.11 

In the inertial frame of reference O, x, y,  system O’, x’, y’ has the loca-
tion that is changeable in time. The positive x’-axis always shows 3 o’clock 
and the y’-axis, 12 o’clock.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. The trolley with the clock in the track on the surface of the merry-go-round 

Source: own elaboration.  

                                                 
10 If the direction of the rotation of the disc is couter-clockwise, then the Coriolis force and 

the resultant fictitious force is directed on the right-hand side with respect to the direction of the 
particle; similarly these forces are directed on the left-hand side if the rotation is directed clock-
wise. In harmony to this conclusion on the northern hemisphere rivers destroy the right-hand 
edges southern hemisphere the left-hand edges, see Bobrowski [1998], p. 65. 

11 See: Figure 7 and Tables 1 and 2. 
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It is possible to verify in practice the results found in theory. To this end 
it would be put through the centre of the merry-go-round12 a track for a little 
wagon; on this trolley is located the clock, see Figure 5. The roundabout 
would be moved by an electric motor or simply by hand. This is need to force 
the linear motion of the trolley along the track. In the front and back of it 
would be fastened with a rope. The string in the front would be pulled by 
a little electric motor that is situated in the edge of the disc. The trolley is held 
back by the second string fastened in the back of the wagon – a spring located 
in the opposite edge of the trolley is pulling it back. The spring is needed to 
neutralize the centrifugal force which occurs when the trolley is passing the 
centre of the roundabout. In this way it would get a motion simultaneously 
rotational and linear. In Figure 12 a view of this situation is presented from 
above. 

The ball of the clock shows the direction in which acts the resultant fic-
titious force. It is possible to film the experiment from above and in this way 
to vet the theory results that are presented in Table 2.  

There is a simple method to would look for the direction in which the 
Coriolis force acts. It requires finding in a playground a merry-go-round with 
an axle-tree in its centre13. On the surface of the roundabout it is necessary to 
place two parallel planks as in Figure 13; round the axle a string is wound, on 
the end of a block is tied. If the carousel is rotating, the string is winding round 
the axle and the block is shifting from the edge of the disc to the centre of it. 
The block is moving through the edge of one of these two planks. The block 
is pressing onto the edge by the Coriolis force. The direction of the force de-
pends on the direction of the rotation of the disc, see Figure 13. If the block 
is situated close to the axle of the roundabout without the string, then during 
the rotating motion of the disc the block is pushed aside from the centre of 
the merry-go-round to its edge by the centripetal force. And again the Coriolis 
force is pushing aside the block to the edge of one of the two planks. The 
Coriolis force acts only on a body which is moving in some rotating frame of 
reference. The direction of the Coriolis force depends on the direction of the 
rotation of the disc, and the direction of the linear motion of the body is pre-
sented in Figure 13.  

 

                                                 
12 It is need to find a roundabout without an axis in its center. The handrail must be situated 

on the edge of it. 
13 In this model of the merry-go-round,  three handrails are situated evenly like in the Mer-

cedes symbol.  
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 Fig. 13 a Fig. 13 b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 13 c Fig. 13 d 

 
Fig. 13. The direction of the action of the Coriolis force 

Source: own elaboration.  

Figure 13 would help to understand why rivers in the northern hemi-
sphere are pushing at the right-side bank: Figures 13a and 13c, and at the left-
side bank in the southern hemisphere: Figures 13b and 13d.  

       
  FC 

       
     FC 

the right-hand side 

the left-hand side 

the right-hand side 

 the left-hand side 

         
  FC 

         
  FC 

the right-hand side 

the left-hand side 

         
  FC 

         
     FC 

the right-hand side 

the left-hand side 
              
   FC 

              
   FC 



 The Coriolis force and the concept of the Coriolis power plant 35 
  
 

5. Coriolis power plant 

It is known that demand for energy is huge and constantly growing. 
Looking for new sources of energy is nowadays a necessity. An inexhaustible 
source of energy is the rotational motion of the Earth, but an idea  of how to 
do it is needed. There is a simple means to build a power plant using the 
energy of the rotation of the Earth, making use of the Coriolis force which 
acts on a stream of water.  

It does not need to be a big river step.  Figure 14 shows a system of con-
tainers – tubs. In the outlet of each tub a turbine is placed. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. The scheme of the Coriolis power plant 

Source: own elaboration.  

 

the barrage 

a turbine 

a turbine 

the lower course 
of the river 

the upper course 
of the river 

the confluence of the water in the tub 

the confluence of the water in the tub 

the confluence of the water in the tub 

the pipe of the  
energy of the  

turbines 

a turbine 



36 Tadeusz Janaszak 
  
 

The water flows through each tub. Because of it and because of the rota-
tion of the Earth, the Coriolis force acts on the flowing water. In the outflow, 
the water causes the rotation of the turbine and flows from one to the next tub. 
On the way each turbine produces the electric energy which it is needed to 
collect and to send into the energy system.  

6. Application in the economy 

In theory of economics there is a trend which interprets the physical laws 
and equations in the economy. It is a question whether there can be some 
interpretations in the economy of the fictitious forces: Coriolis and centrifu-
gal.   
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