Multinuclear MAS NMR study of structural changes in LaF₃ doped borosilicate glasses for optoelectronics

MARCIN ŚRODA^{1*}, ZBIGNIEW OLEJNICZAK²

¹AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków, Poland

²Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland

*Corresponding author: msroda@agh.edu.pl

A new type of oxyfluoride glass-ceramics based on the silicate glassy matrix and the nano-phase of LaF₃ was developed for generating the up-conversion luminescence processes. In such material, the low-phonon energy crystals of LaF₃ are desirable host for the rare-earth elements. The effect of admixture of 3 mol% of La₂F₆ on the structural changes of glasses in the Na₂O-B₂O₃-SiO₂ system was investigated. The effect of LaF₃ additive was studied using ²⁹Si, ¹¹B, and ²³Na MAS NMR to learn more about the structural role of modifiers as well as fluorine in the glassy matrix. Glasses with compositions corresponding to different B₂O₃/Na₂O and B₂O₃/(Na₂O + 3La₂F₆) ratios in the 0.6–1.2 range were obtained by melt quenching. The ²⁹Si MAS NMR spectra indicated that the [SiO₄] units are more polymerized when the ratios and the fluorine admixture increase. The ¹¹B NMR spectra revealed the presence of both [BO₄] (Q^4) and [BO₃] (Q^3) units. The fraction of Q^3 increased with the decreasing sodium content. Glasses with the LaF₃ additive showed higher BO₃/BO₄ ratios. The effect of thermal treatment for glasses with the tendency towards LaF₃ crystallization was discussed in terms of structural changes.

Keywords: oxyfluoride glass, borosilicate glass, glass structure, MAS NMR, LaF₃.

1. Introduction

Borosilicate glasses are commercially used because of their good chemical and mechanical resistance [1]. They are also easy to fiberize (E-glass). The glasses have rather low refractive index and their phonon energy is high (\sim 1300 cm⁻¹). Contrary to fluoride glasses, the low energy gaps between the excited states of lantanides and the phonon energy of the borosilicate matrix eliminate luminescence from higher energy levels. Thus, this hammers their application in optoelectronics. In order to

eliminate the above disadvantage, a nanocrystallization of low phonon energy phase could be induced in the borosilicate glass. Nanocrystals of LaF_3 immersed in the oxide glassy matrix could play a role of such phase. It has already been observed in aluminosilicate glasses [2–5]. Moreover, LaF_3 has good solubility of the rare earth (RE) ions in its structure without clustering.

The aim of the study was to determine changes in the framework of borosilicate glass caused by introduction of LaF_3 . Furthermore, by changing the Na₂O content, the relation between the structure and the ability of LaF_3 phase to crystallize was also studied.

2. Experiments

Ten samples of glass, with the constant content of 15 mol% B_2O_3 , were prepared in two series. The glass compositions are listed in the Table. The first series contained borosilicate glasses without admixture of LaF₃. The ratio of B_2O_3/Na_2O was varied from 0.6 to 1.4. The second series was melted with the addition of 3 mol% of La₂F₆, and the ratio $B_2O_3/(Na_2O + 3La_2F_6)$ was kept in the same range.

Batches were prepared by mixing appropriate quantities of chemically pure reagents: SiO_2 , H_3BO_3 , Na_2CO_3 and LaF_3 . Glasses were obtained by melting 20 g batches in a covered platinum crucible in an electric furnace at a temperature of 1300 °C in the air atmosphere. Each molten glass was poured out onto a stainless plate forming a layer of *ca*. 3 mm in thickness.

The ability of the obtained glasses to crystallize was determined by DTA/DSC measurements conducted on the Perkin Elmer DTA-7 system operating in the heat flux DSC mode. The samples of 60 mg in weight were heated in platinum crucibles

		Ratio	Composition [mol%]				
	Glass	B ₂ O ₃ /Na ₂ O	$B_2O_3/(Na_2O + 3La_2F_6)$	SiO ₂	B_2O_3	Na ₂ O	La ₂ F ₆
Series I	0.6_B ₂ O ₃	0.6	—	60	15	25.0	—
	$0.8_B_2O_3$	0.8	_	66.25	15	18.75	
	$1.0_B_2O_3$	1.0	_	70	15	15	
	$1.2_B_2O_3$	1.2	—	72.5	15	12.5	
	1.4 _B ₂ O ₃	1.4	_	74.29	15	10.71	
Series II	$0.6_B_2O_3_LaF_3$	_	0.6	66	15	16	3.0
	$0.8_B_2O_3_LaF_3$	_	0.8	72.25	15	9.75	3.0
	$1.0_B_2O_3_LaF_3$	_	1.0	76	15	6	3.0
	$1.2_B_2O_3_LaF_3$	_	1.2	78.5	15	3.5	3.0
	$1.4_B_2O_3_LaF_3$	_	1.4	80.29	15	1.71	3.0

T a b l e. Composition of borosilicate glasses prepared.

260

at the rate of 10 °Cmin⁻¹ in the dry nitrogen atmosphere up to 1000 °C. The kind of the crystallites formed was examined by XRD (Philips X'Pert Diffractometer).

High resolution, solid-state MAS NMR spectra were measured on the 7.05 Tesla/ 89 mm Magnex superconducting magnet, using the Bruker HP-WB MAS probe and the APOLLO pulse NMR spectrometer. A 4 mm diameter zirconia rotor equipped with the KEL-F turbine was filled with the powder sample and spinned under magic angle with the frequency ranging from 4 to 9 kHz. A free induction decay signal was recorded after application of a single, 2 μ s radio-frequency pulse, using sufficient power to excite all resonant nuclei in the sample.

The ²⁹Si MAS NMR spectra were measured at the resonance frequency of 59.517 MHz and 4 kHz spinning speed. The number of accumulations was equal to 128 and the repetition time 50 s. The ppm scale was referenced to the liquid sample of TMS (tetra-methyl-silane).

The ¹¹B MAS NMR spectra were measured at the resonance frequency of 96.119 MHz and 7 kHz spinning speed. The number of accumulations was equal to 128, and the repetition time 1 s. The ppm scale was determined by using 1 M solution of H_3BO_3 .

The 23 Na MAS NMR spectra were measured at the resonance frequency of 79.250 MHz and 9 kHz spinning speed. The number of accumulations was equal to 256, and the repetition time 1 s. The ppm scale was referenced to 1 M solution of NaCl.

3. Results and discussion

3.1. Thermal stability

Glasses from the system $Na_2O-B_2O_3-SiO_2$ with the ratio B_2O_3/Na_2O ranging from 0.6 to 1.4 were transparent and no opalescence was observed. The glasses demonstrated high thermal stability without any crystallization effects visible on the DTA curves (Fig. 1). Some small exothermal effects in the range 700–750 °C are related to the change of heat capacity caused by sintering of the powder sample [6]. The XRD

Fig. 1. Examples of DTA curves of 0.6 (a) and 0.8 (b) glasses of series I and II.

investigation of glasses heated in this range of temperature has not revealed any crystal phases. The introduction of LaF_3 into the glass changed its thermal stability considerably. At the ratio $B_2O_3/(Na_2O + 3La_2F_6) \ge 1$ an increased tendency of the glass to phase separation was observed. It was manifested by the reduction of transparency while the amorphous character of the sample was preserved.

Two peaks were visible on the DTA curve of the $0.6_B_2O_3_LaF_3$ glass, with the maxima at 686 °C and 765 °C (Fig. 1a). The XRD analysis identified the crystallization products as LaOF and LaF₃, respectively.

In the case of $0.8_B_2O_3_LaF_3$ sample (Fig. 1b), the transformation temperature (485 °C) and the effect of ceramization (590 °C) were clearly visible. X-ray examinations confirmed the formation of lanthanum fluoride in the range 550–600 °C. Simultaneously, the second effect of the crystallization of La(BSiO_5) was detected at higher temperature. The thermal stability of these glasses was discussed in detail elsewhere [7].

3.2. MAS NMR

Figures 2a and 2b show ²⁹Si MAS NMR spectra of the glasses with (series I) and without LaF₃ (series II), respectively. Two overlapping peaks in the range from -80 to -120 ppm are observed, indicating that there are mainly two types of SiO₄ structural units: Q^3 (Si connected to three bridging oxygens (BO) and one non-bridging oxygen (NBO)) and Q^4 (having four BOs). According to literature, the peaks for Q^3 and Q^4 in borosilicate glasses should be in the ranges from -85 to -95 ppm, and from -102 to -115 ppm, respectively [8]. The deconvolution of the spectra of the series I gives the position of the peaks at -90 ppm for Q^3 and -104 ppm for Q^4 units. For glasses

Fig. 2. ²⁹Si MAS NMR spectra of series I (a) and series II (b) glasses.

Multinuclear MAS-NMR study of structural changes ...

Fig. 3. Normalized ²⁹Si MAS NMR spectra of 0.6 and 0.8 glasses of series II. Solid and dashed lines correspond to samples before and after thermal treatment, respectively.

with the lower B_2O_3/Na_2O ratio, the Si atoms are located mainly in the Q^3 species (for the ratio value 0.6, $Q^3 = 72\%$ and $Q^4 = 28\%$). A decrease of Na₂O content increases the intensity of the Q^4 peak, which indicates the polymerization of the silica network.

The introduction of LaF₃ to the glass (series II) moves the ²⁹Si MAS NMR spectrum towards the more negative values of the chemical shift and the peak at -110 ppm becomes dominant. This effect can be caused by the phase separation process that occurs at higher values of the B₂O₃/(Na₂O + 3La₂F₆) ratio. It is in agreement with the FTIR results obtained for those materials that were reported elsewhere [9].

The process of thermal treatment leading to the LaF_3 formation in the glassy matrix does not induce a significant change in the surroundings of silicon ions (Fig. 3).

Figure 4 shows the ¹¹B MAS NMR spectra collected for both series of glasses. The observed peaks corresponding to the BO₃ and BO₄ groups overlap. In ¹¹B MAS NMR spectra, a symmetric sharp peak is attributed to Q^4 in BO₄ tetrahedra, and the asymmetric broad peak is assigned to Q^3 in the trigonal BO₃ units [10].

A symmetric peak at about -20 ppm, which corresponds to BO₄ groups, dominates on the ¹¹B MAS NMR spectrum for the series I (glasses without LaF₃). An increase of the B₂O₃/Na₂O ratio does not cause any changes in the borate network. The deconvolution of the spectra gives the contribution of the Q⁴ groups equal to 85% for the 0.6_B₂O₃ sample, which only slightly decreases to 81% for 1.4_B₂O₃.

The introduction of LaF₃ causes a significant growth of the broad, asymmetric line intensity in the range from -10 ppm to -40 ppm, which corresponds to BO₃ groups (for the $1.0_B_2O_3$ _LaF₃ sample $Q^3/Q^4 = 1$). The addition of LaF₃ increases the tendency

towards separation of silica and borate phases, which results in the immiscibility process occurring when the ratio $B_2O_3/(Na_2O + 3La_2F_6) \ge 1$.

The process of thermal treatment leads to a small relative decrease of the asymmetric

line as a result of decreased contribution of BO₃ units in the glass framework (Fig. 5). Figure 6 shows the ²³Na MAS NMR spectra of the 0.6 and 0.8_B₂O₃_LaF₃ glasses before and after thermal treatment. The ²³Na chemical shift can be correlated

Fig. 4. ¹¹B MAS NMR spectra of series I (a) and series II (b) glasses.

Fig. 5. Normalized ¹¹B MAS NMR spectra of 0.6 and 0.8 glasses of series II. Solid and dashed lines correspond to samples before and after thermal treatment, respectively.

Fig. 6. Normalized ²³Na MAS NMR spectra of 0.6 and 0.8 glasses of series II. Solid and dashed lines correspond to samples before and after thermal treatment, respectively.

to the sodium oxygen distance [11]. It was shown by AGELI *et al.* [12] that the Na–O bond is longer when sodium acts as a charge compensating ion for BO₄ tetrahedra, as compared to the non-bridging oxygen bond (Si–O…Na) in the silicate network. No significant change in the line position or shape is observed after the annealing of the glasses. This indicates that the surroundings of Na⁺ ions do not change.

4. Conclusions

The effect of LaF₃ introduction to borosilicate glass for different Na₂O contents was investigated by DTA and ²⁹Si, ¹¹B and ²³Na MAS NMR. Incorporation of LaF₃ into the glass matrix modifies its structure and thermal stability. It lowers the melting and the glass transition temperatures. The MAS NMR spectra showed an increased contribution of BO₃ units. Simultaneously, the polymerization of silica network was observed. It indicates that LaF₃ enhances the tendency towards phase separation in borosilicate glass.

The process of the thermal treatment producing nanocrystallization of lanthanum fluorine induced no change in the surroundings of Na⁺ ions.

Acknowledgments – The work was financially supported by the Ministry of Education and Science, grant no. 3 T08D 048 29.

References

- [1] PYE L.D., FRECHETTE V.D., KREIDL N.J., [Eds.], Borate Glasses: Structure, Properties and Applications, Plenum, New York 1978, p. 587.
- [2] DEJNEKA M.J., Transparent oxyfluoride glass ceramics, MRS Bulletin 23(11), 1998, pp. 57-62.

- [3] DEJNEKA M.J., The luminescence and structure of novel transparent oxyfluoride glass-ceramics, Journal of Non-Crystalline Solids 239(1-3), 1998, p. 149–55.
- [4] ŚRODA M., REBEN M., KWAŚNY M., WACŁAWSKA I., LaF_3 nanocrystals as a host for Er^{3+} in oxyfluoride glass, Optica Applicata **35**(4), 2005, pp. 851–8.
- [5] HU Z., MA E., WANG Y., CHEN D., Fluorescence property investigations on Er³⁺-doped oxyfluoride glass ceramics containing LaF₃ nanocrystals, Materials Chemistry and Physics 100(2–3), 2006, pp. 308–12.
- [6] YAMAMOTO A., Japan Analyst, 1965, p. 692.
- [7] ŚRODA M., Effect of LaF₃ admixture on thermal stability of borosilicate glasses, Journal of Thermal Analysis and Calorimetry 88(1), 2007, pp. 245–9.
- [8] EL-DAMRAWI G., MULER-WARMUTH W., DOWEIDAR H., GOHAR I.A., Structure and heat treatment effects of sodium borosilicate glasses as studied by ²⁹Si and ¹¹B NMR, Journal of Non-Crystalline Solids 146, 1992, pp. 137–44.
- [9] ŚRODA M., PALUSZKIEWICZ C., Spectroscopic study of the influence of LaF₃ admixture on the crystallization and structure of borosilicate glass, Journal of Molecular Structure 834–836, 2007, pp. 302–6.
- [10] SEN S., XU Z., STEBBINS J.F., Temperature dependent structural changes in borate, borosilicate and boroaluminate liquids: high-resolution ¹¹B, ²⁹Si and ²⁷Al NMR studies, Journal of Non-Crystalline Solids 226(1–2), 1998, pp. 29–40.
- [11] MAEKAWA H., NAKAO T., SHIMOKAWA S., YOKAWA T., Coordination of sodium ions in NaAlO₂-SiO₂ melts: a high temperature ²³Na NMR study, Physics and Chemistry of Minerals 24(1), 1997, pp. 53-65.
- [12] AGELI F., DELAYE J.M., CHARPENTIER T., PETIT J.-C., GHALEB D., FAUCON P., Influence of glass chemical composition on the Na–O bond distance: a ²³Na 3Q-MAS NMR and molecular dynamics study, Journal of Non-Crystalline Solids 276(1–3), 2000, pp. 132–44.

Received September 18, 2007 in revised form October 19, 2007