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Influence of the length of a uniform fiber 
Bragg grating on the accuracy of measuring 
an impulsive strain
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The influence of the length of a uniform, unapodized and apodized fiber Bragg grating on
the accuracy of converting an impulsive strain is discussed. Using the transfer matrix description
of the grating, derived from the coupled mode theory, the reflectivity spectrum changes of
the grating are calculated, which are caused by the strain pulses propagating along it. On the basis
of the introduced effective central frequency of the grating, the rise-time error (RTE) and
the amplitude error of the frequency change (AFCE) were calculated as a function of the ratio of
the strain pulse leading front width to the grating length. These errors were calculated for
different waveforms of the strain pulses. Charts presenting results of the calculations allow to
select the proper length of the uniform fiber grating, when the converting error is established, and
the waveform of the pulse is identified.
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1. Introduction

In the applications of a fiber Bragg grating as a sensor to measure dynamic strains in
a structure, where the strains are produced by mechanical impact, one must take into
consideration the grating length. The disturbance at the point of loading will propagate
into the structure in the form of strain waves propagating at speeds defined by
the mechanical properties of the material of the structure. If the length of any strain
pulse is small enough to be comparable with the grating length, then at any given
instant there are likely to be appreciable differences in strain magnitudes along
the grating. Under these circumstances, the grating output signal is not likely to be
truly representative of the impressed strain at the center of the grating. Therefore
a fiber Bragg grating with a finite length does not convert the impulsive strains
accurately. The distortions of the output signal of the grating, caused by its finite
length, and arising during the converting of the strain pulse are shown in Fig. 1. In
the quantitative assessment of the converting accuracy of the grating, errors are used:
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the RTE and the AFCE. These errors were calculated as a function of the ratio of
the strain pulse rise-length to the grating length, for pulses with different waveforms,
typical of mechanical impact.

The periodic perturbation to the effective index of refraction  neff of the optical
fiber core, that produces fiber Bragg gratings, is given by the following expression
[1, 2]

(1)

where s is the fringe visibility, Λ is the grating period, ϕ (z) accounts for the grating
chirp, and  is the “dc” index change spatially averaged over the grating period.

The model of the fiber Bragg grating is usually based on the coupled mode
theory. This theory can be summarized as follows: the dominant interaction lies
near the wavelength for which reflection occurs from a mode of amplitude A(z) and
an identical counter-propagating mode of amplitude B (z). This leads to a set of
the coupled mode equations [1–3]
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Fig. 1. The distortions of the output signal of the grating, caused by its finite length, and arising when
converting the strain pulse, which propagates at the speed of υo. As the output signal of the grating, one
assumes the effective central frequency:  for a finite-length grating, and  for a zero-length
grating. Δfceff is the amplitude of the effective central frequency change – the deviation of the effective
central frequency.
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where u(z) = A(z)exp( jδz – ϕ /2), ν (z) = B(z)exp(– jδz + ϕ /2), σ (z) is the general dc
self coupling coefficient and κ (z) is the ac coupling coefficient. These coefficients are
defined as

(4)

(5)

where δ  is the detuning, expressed as 

(6)

where λB = 2neff Λ is the design wavelength for Bragg reflectance. The function g(z)
is the function of apodization. The derivative term (1/2)dϕ /dz describes the chirp of
the grating period.

For a uniform grating, where σ and κ are constant, Eqs. (2) and (3) simplify into
coupled first-order ordinary differential equations with constant coefficients. These
equations can be solved analytically given the appropriate boundary conditions.
The solution of the coupled-mode Eqs. (2) and (3), in a closed-form expression, in
the case of non-uniform gratings, is more difficult to obtain. There is a variety of
methods to compute the reflection and transmission spectra for non-uniform gratings.
The most extensively used are: the direct numerical integration method and the transfer
matrix method. This second method was used to calculate the reflection spectra of
the grating, which converts a strain pulse. In this method the grating, with a total
length L, is divided into a sufficiently large number M of sections with length Δz so
that each section can be approximated as a uniform grating. The method is based on
identifying a square matrix of the dimension 2×2 for each of the M uniform sections
of the grating, and multiplying all of them together to obtain a single matrix 2×2 that
describes the whole grating [1, 2]. In the case of reflection gratings, with boundary
conditions u(L) = 1 and ν (L) = 0, the propagation through each uniform section k is
described by a matrix Tk such that

k = M, M – 1, ..., 1 (7)

where the matrix Tk for a Bragg grating is given by
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where σ  and κ are the local coupling coefficients for the k-th section, and γ =
= (κ 2 – σ 2)1/2. The total grating structure can be described as

(9)

where T = TM · TM – 1 · ... · Tk · ... · T1 is the overall transfer matrix. As a result, T is
a 2×2 matrix with the elements

(10)

Once T is found, the amplitude reflection coefficient r and the power reflection
R = |r |2 coefficient are calculated by the relations

(11)

obtained by substitution of the appropriate boundary conditions into (9). The number
of sections M cannot be made arbitrarily large, since the coupled-mode theory is no
longer valid when a uniform grating section is only a few grating periods long [1, 2].
This condition can be stated as 

(12)

2. Method

For strain-sensing applications, when the grating is subjected to a non-uniform strain,
different parts of the grating will contribute to different wavelengths according to
the local state of the strain. As a consequence, its reflected spectrum will not only be
shifted, but also distorted due to non-uniform changes of the local index of refraction
and the grating period. For the uniform grating subjected to an axial strain ε (z), these
two effects can be taken into consideration through an effective grating period
described by [4]

(13)

where Λ0 is the period of the grating without the strain and pe is the effective
strain-optic constant.
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The adaptation of the transfer matrix method to the modeling of a uniform
grating structure along which a strain pulse propagates, is based on calculating
the average period for each grating section due to the strain pulse using (13) and
putting the calculated period directly into the local coupling coefficient according to
the relation

(14)

For the consideration of the influence of the length of a uniform grating on
the accuracy of converting an impulsive strain one defines a non distorting grating and
an effective central frequency of the grating. By “the non distorting uniform grating”
one means a grating, whose reflective spectrum will be shifted, when the strain
pulse propagates along it. At any given instant the uniform grating is subjected to
a uniform strain with a value equal to the instantaneous value of the strain pulse
acting on the beginning of the grating. A so-defined non-distorting grating replaces
a zero-length grating in the simulation. By the effective central frequency of the grating
one means the abscissa of the reflective spectrum centroid, defined as [5]

(15)

Assuming that the effective central frequency of the grating is the output signal,
the converting error was calculated as a function of the ratio of the leading edge length
of the strain pulse to the grating length, for different waveforms of the strain pulses.
In the calculations, as the converting errors of the strain pulses one assumes: the RTE
δrt , and the AFCE δAΔ f . The RTE is defined as

(16)

where tri, tro are the rise times of the input signal, and the output signal of the finite-
-length grating, respectively. The AFCE δAΔ f  is described by

(17)

where   are the amplitudes of the effective central frequency change of
the finite-length grating and the zero-length grating, respectively. There are many rise
time definitions. The rise time of any waveform is usually defined as the time taken
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Fig. 2. The reflected spectrum and the corresponding effective central frequency of the apodized
grating subjected to the single half-sine compressive strain pulse with an amplitude of A = 1000με
and a rise length of b = L/2, for the different position of the pulse front with respect to the beginning
of the grating.



Influence of the length of a uniform fiber Bragg grating ... 311

for the leading edge of the waveform to rise from 10 to 90 per cent of its peak value.
Less frequently the rise time is defined as the time between the waveform reaching
5% and 95% or 0% and 100% of its final value. The rise time error was calculated for
these three rise time definitions.

3. Results
In the calculations, the uniform unapodized and apodized grating were considered.
The modeled gratings have the following parameters: L = 6 mm, neff = 1.46, λB =
= 1550 nm, = 1.25×10–4, = 2.2×10–4, pe = 0.22, FWHM = 0.205 nm for
the unapodized grating and FWHN = 0.200 nm for the apodized grating. These two
different  values determine a range. Within this range lie the  values of
the majority of uniform weaker gratings used as sensors. To model the apodized
grating, the Gaussian function g(z) in the formula (5) was used. For each transfer matrix
simulation 200 grating sections were used.

The calculations of the RTE as a function of the ratio of the strain pulse leading
front width to the grating length b/L were carried out in three stages. In the first stage,
on the basis of the transfer matrix method, the reflected spectrum due to the propagating
strain pulse is determined. In the second stage, using the determined spectrum and
formula (15), the effective central frequency of the grating is calculated. In the third
stage, the RTE and the AFCE are determined using formulas (16) and (17),
respectively.

The strain pulses ε (z) produced by impact can be approximated reasonably well
by the shapes: the single half-sine pulse ε (z) = Asin(πz/2b), the whole-sine pulse
ε(z) = (A/2)[1 – cos(πz/b)] and the constant slope front step function ε (z) = (A/b)z
for z ≤ b. The propagation of strain pulses of these forms along the grating will

δneff δneff

δneff δneff

Fig. 3. The normalized effective central frequency of the apodized gratings: non-distorting one (dashed
line) and distorting one (solid line), as a function of the front position of the acting compressive strain
pulses. These pulses have an amplitude of A = 1000με and the shapes: constant slope front step function
with a rise length of b = 2.5L (a), single whole-sine with a rise length of b = 2.0L (b).

a b
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be considered. Each of the pulses has an amplitude A and leading edge width b. As
an example, the reflected spectrum changes of the grating and the corresponding
effective central frequency, due to the single half-sine compressive strain pulse
propagating along the grating, are shown in Fig. 2. The amplitude of the strain
pulse equals 1000με, the strain pulse length is equal to the grating length 2b = L.

Figure 3 shows the selected effective central frequency response of the real and
the non-distorting grating subjected to strain pulses with the waveforms: the single
half-sine and the constant slope front step function. This frequency response was
calculated from relation (15). The converting errors: the RTE and the AFCE as
functions of the ratio of the strain pulse leading front width to the grating length b/L,
calculated by means of relations (16) and (17), respectively, for the uniform
apodized grating, are shown in Figs. 4–6. The RTE was calculated for the following
rise times: 10–90, 5–95 and 0–100 per cent. Figure 4 was plotted for the case of the
half-sinusoidal strain pulse. Figure 5 represents similar results for the whole-sinusoidal
strain pulse and Fig. 6 represents the results for the constant slope front step function.

Fig. 4. The converting errors of the apodized gratings as functions of the ratio b/L, for the half-sinusoidal
strain pulse.

Fig. 5. The converting errors of the apodized gratings as functions of the ratio b/L, for the whole-sinusoidal
strain pulse.
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These results presented in Figs. 4–6, are in force for both compressive and tensile
strain pulses. This follows from the fact that the reflected spectrum of the uniform
grating caused by a tensile strain pulse is a mirror image of the grating spectrum
caused by a compressive strain pulse. The RTE and the AFCE versus the ratio
b/L characteristics for the unapodized grating are similar to the corresponding
characteristics for the apodized grating.

4. Computational example

An electrical discharge in water allows to generate impulsive pressures of very short
duration and very high amplitude, which can be measured by the fiber Bragg
grating sensor [6]. These pressure pulses have a half-sinusoidal waveform of a few
microseconds duration. These pulses have a measured 10–90 per cent rise time of
1.4 μs, a 5–95 per cent rise time of 1.6 μs and a 0–100 per cent rise time of 2.0 μs [7].
For these rise times, the corresponding strain pulse leading front widths are equal to
b(10–90)% = 8.0 mm, b(5–95)% = 9.0 mm and b(0–100)% = 11 mm, for the strain pulse
propagation velocity in silica glass of υo = 5700 m/s.

If we assume that the grating length is equal to L = 2 mm, then the ratio b/L equals:
b(10–90)%/L = 4, b(5–95)%/L = 4.5 and b(0–100)% /L = 5.5. On the basis of the charts in
Fig. 4, the conversion errors of the single half-sin pulse, caused by the apodized

Fig. 6. The rise-time error of the apodized
gratings as functions of the ratio b/L, for
the constant slope front step function.
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grating, are equal to: δAΔ f = (0.47–0.52)%, δrt(10–90)% = (0.9–1.1)%, δrt(5–95)% =
= (2.1–2.4)%, δrt(0–100)% = 9.1%. These errors for the unapodized grating are equal
to: δAΔ f = (0.8–0.9)%, δrt(10–90)% = (1.6–2.0)%, δrt(5–95)% = (3.6–4.5)%, δrt(0–100)% =
= 9.1%.

This example shows that a small uniform grating can be used in the measurement
of very rapid strain transients. In such measurements apodized gratings should be used,
because their converting errors are smaller than those of unapodized gratings.

The converting errors of the gratings are little dependent on the  index.
The RTE criteria of the grating length selection are more demanding than the AFCE
criterion. If it is assumed, however, that the RTE values are not smaller than 2 to
3 per cent, then the RTE criteria are not likely to lead to impracticably small gratings.
Currently it is easy to make a uniform grating with a length smaller than 1 mm.

5. Conclusions 

The numerical analysis of the converting errors of the uniform Bragg gratings
presented in the paper, new in the context of the grating length influence on the
converting accuracy, is very useful. It allows to select the proper length of the uniform
grating, which is to be used in the measurement of impulsive strain of very short rise
time. It was shown that generally the AFCE is likely to be smaller than the RTE, and
that consideration of the RTE develops a “worst case” design.

In the measurement of impulsive strain, apodized gratings should be used, because
their conversion errors are smaller than those of unapodized gratings.

The worked example suggests that the RTE criteria of the grating length selection
are not likely to lead to impracticably small gratings for the majority of applications.
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