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Coherent combination of laser radiations 
and fringe contrast ratios on far field patterns
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Fourier optics method has been used to study the far field of coherently combined laser beams.
And an explicit expression of the far field has been derived for the case when emitters are
positioned on apexes of multiple regular polygons with a common center. The statistical influence
of the relative phases between constituent waves has been investigated and an expression for
the fringes contrast ratio has been deduced with the aid of Ergodic hypothesis.
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1. Introduction

In recent years, laser sources with high output power and good beam quality are
required in various application areas, such as the laser weapon, laser radar, and
the next generation laser communication in free-space, etc. While the output power of
a single laser is limited by the gain saturation, thermal effects, and so on, coherent
combination of laser beams from multiple lasers has been regarded as a hopeful option.
And different types of lasers have been successfully phase locked to generate
coherently combined beams [1–12]. There are many kinds of methods to achieve
coherent combination of laser beams, such as phase control [7], mutual injections of
radiations [2], etc. Meanwhile, previous studies have also been carried out to
characterize the coherently combined lasers beams. Based on Collins integral formula,
characteristics of the combined Hermite–Gaussian light beams have been studied [8].
In reference [9], a semi-empirical model is presented and the numerical results have
been reported.

In order to coherently combine the laser beams, it is important that the relative
phases of emitters should be fixed. Any fluctuation of the relative phases may induce
a decrease of the fringe contrast ratios of the far field pattern. Several researchers have
studied the relative phases of emitters so far [10–12]. The relation between injection
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current and the relative phase between the light emitted from each defect has been
discussed in detail [10]. AUGST et al. [11] have presented detailed phase noise spectra
generated in Yb-doped fiber amplifiers in coherent combination process. In ref. [12],
the effect of the stochastic phase errors has been discussed.

In this work, by using Fourier optics [13], the far field of coherently combined
laser beams has been analytically expressed in terms of the observation directions and
an explicit expression has been derived for the case when the emitters are positioned
on apexes of multiple regular polygons with a common center. With the aid of this
expression, it has been shown that the dark fringes are far from being circles for
the circular array when the number of emitters is not large enough. Meanwhile,
the statistical influences of the parameter fluctuations on the far field pattern have been
considered. For example, the fluctuations of the relative phases between constituent
waves have been discussed in detail and an expression for the fringe contrast ratio has
been deduced with the aid of Ergodic hypothesis [14].

2. Far field expression 

Consider the case when N laser beams, with identical polarization and oscillation
wavelength, are combined. Assume that the output field of the n-th laser is

(1)

where An, φn and k0 are the amplitude, phase and propagation constant of the field,
respectively, rn is the transversal coordinate of the beam center and zn is longitudinal
position of the output mirror (or facet), un(r) describes the transversal distribution of
the field. From Fourier optics, the far field of the combined fields is 

(2)

where f represents the spatial frequency,  stands for the dot product, and 

(3)

and the far field intensity of the combined beams is 

(4)

where * indicates complex conjugation, and  denotes time average.
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ĨT An An' Ũn f( )Ũn'
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Generally, all the output mirrors (or facets) of the lasers are in the same plane,
e.g., zn = 0, and all the laser beams have identical transversal field distribution, say
u(r – rn). If all the field amplitudes are the same, one has

(5)

In principle, all parameters of an individual beam may fluctuate around their ideal
values. However, in practice, efforts should always be made to minimizing these
fluctuations. In many cases, the phase fluctuation is the most frequently encountered
one. And, in this work, the discussions are focused on this fluctuation, as suggested
by Eq. (5). Even though, we would like to point out that the studies made in this work
can be extended to discuss other fluctuations with minor modifications. Thus, finding
the time average of Eq. (5) becomes finding

(6)

where, for simplicity, (φn – φn') has been denoted by Δφ with its subscript (nn' )
omitted.

When one investigates the light intensity at the direction making a small angle θ
with respect to the Z-direction, it can be shown that [13] 

(7)

where λ is the wavelength of the radiation. Inserting Eq. (7) into Eq. (5), the angular
distribution of the far field of the combined beams can be found. From Eq. (5), it
can be realized that the quantity | |2 acts as a profile of the far field pattern and
the summation term dictates the fine structures of the pattern. If the lasers are
scattered within a range considerably larger than the size of an individual beam,
a considerable number of fringes can be observed on the far field pattern of
the coherently combined beams.

In fact, Eq. (5) can also be cast as 

(8)

On closer inspection on Eq. (8), it can be realized that the first term on the right
side (RHS) represents the far field intensity of incoherently combined beams, and
the second term indicates a redistribution of the light energy of the combined beams
in the spatial directions, leading to bright and dark fringes on the far field pattern.

ĨT A2 Ũ f( )
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A2N Ũ f( )

2
A2 if rn rn'–( )• i φn φn'–( )exp〈 〉exp

n n'≠
∑+=



462 RUHAI DOU et al.

According to the law of energy conservation, it can be anticipated that the integration
of the second term over f is equal to zero, since the integration of the first term
represents the total energy of N constituent beams.

For the ideal case when N beams are coherently combined, the quantity Δφ has
fixed values. For the so-called in-phase mode, Δφ is equal to zero and the quantity η
is equal to unity. For the out-off-phase mode, Δφnn' may be equal to (n – n' )π and ηnn'
is equal to (–1)n–n'. If there is no coherence between individual fields, the quantity Δφ
may randomly pick up any values and η becomes zero. Inspecting on Eqs. (2) and (5),
it can be seen that for the in-phase mode, the light intensity at the normal direction
takes its maximum because f is equal to zero at this direction, and for the out-off-phase
mode, the light intensity is equal to zero at Z-direction if N is an even number.

3. Calculating far field patterns

In order to calculate the far field pattern of the coherent combined waves, we consider
the light intensity at the direction indicated by the ray 0P shown in Fig. 1. The angle
between 0P and Z-axis is θ, and that between the projection of 0P inside the z = 0
plane and the X-axis is ψ. Inside the plane defined by 0P and Z-axis, one can find out
that

(9)

where we have assumed that θ  is a very small angle, and i and j represent the unit
vectors along X- and Y-directions, respectively. If we express rn in the polar
coordinate, i.e., 

(10)

it can be derived from (2), for the in-phase mode, that 

(11)

If the out-off-phase mode satisfies

(12a)

it can be obtained that 

(12b)
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It may happen that all the output facets (or mirrors) of the lasers are positioned on
the apexes of a regular polygon. Under those circumstances, rn is equal to the radius
r of the circumscribed circle of the polygon, and

(13)

Inserting Eq. (13) into Eq. (11) and Eq. (12b), the explicit analytical expression of
the far field of the coherently combined beams can be derived.

In Figure 2, variations of the light intensity of the in-phase mode, decided by
the summation term (denoted by K ) of Eq. (11), with the divergent angle θ  inside
the X-Z (i.e., ψ = 0 and π) plane (a) and Y-Z (i.e., ψ = π /2 and 3π/2) plane (b), have
been plotted for N = 6. In the calculations, r/λ = 1000 and ψ1 = 0. The analytical
expressions can be deduced from (11), which are

(14a)

(14b)

Figure 2 gives only the fine structure of the intensity distribution. If the specific
form of (f ) is known, the number of the dark fringes, which can be observed, may
be reduced considerably.

In Figure 3, dark fringes for N = 4 on the far field pattern of the in-phase mode
have been shown. The data used are the same as those given after Fig. 2. In this
diagram, the vector, from the frame origin O to the point under consideration, gives
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Fig. 1. Schematic showing the observation direction
indicated by the ray 0P and its defining parameters.
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the number set (θ, ψ ) in the polar coordinate, i.e., the modular and angle of the vector
represent θ  and ψ, respectively. The points on the dark fringes, defining the number
set (θ, ψ ), satisfy K (θ, ψ ) = 0. While the expression of K, derived from (11), reads 

(15)

And the points on the dark fringe satisfy

(m = 0, 1, 2...) (16)

From Figure 3, it can be realized that the dark fringes are far from being circles.
Rather, they look like “squares” although the “sides” are not the exact straight lines.
It is not difficult to understand these results. Since the four light sources are located
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Fig. 2. Fine structure of the far field inside ψ = 0 (or π) (a) and ψ = π/2 (or 3π/2) (b) planes for a circular
array with 6 emitters.
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Fig. 3. Distribution of dark fringes on the far field
for a circular array with 4 emitters.
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at ψ = 0, π/2, π, and 3π/2, respectively, there is no reason that the light intensities at
the four directions should be different from each other.

It should be pointed out that the quantity K, i.e. the summation term of Eq. (11),
only represents the fine structures of the far field pattern. A comprehensive pattern
requires the knowledge of (f ) or u(r), which serves as an envelope covering the fine
structure. For most lasers, the functions of U (r) are known. What we would like to
address is that if the light sources are distributed within an area considerably larger
than that of the individual beam, there may be large amounts of peaks, which appear
when |K2| takes its maxima, on the far field pattern. To make sure that a considerable
amount of coherently combined energy may be directed to the central peak of the far
field pattern, the ratio of the beam size to the quantity r should be kept as large as
possible. In many cases, the sizes of the output mirrors of the lasers are larger than
the beam sizes. This, to certain extent, frustrates the attempts of reducing the quantity
r, if the entire output mirror should be positioned on one circle.

Before ending this section, we want to point out that Eq. (11) can be extended to
the case where the light sources are positioned on several circles with different radii.
Assume that these sources are positioned on the apexes of M regular polygons with
a common center, and the m-th polygon, whose radius of the circumscribed circle is
rm , has Nm apexes, it can be deduced that the far field of the in-phase mode reads

(17)

where ψon is the polar angle of the zeroth emitter on the n-th polygon.
Using Eq. (17), the far fields of many practical arrays can be specified. For example,

we can calculate the far field for the configuration, in ref. [12], where 19 emitters are
on two hexagons and one at the center of these hexagons.

4. Fringe contrast ratio
Now, we consider the quantity η defined by Eq. (6). For a practical phase-locked
laser system, it is likely that the constituent laser fields may experience certain
fluctuations, which, in turn make Δφ randomly fluctuate around the ideal value Δφ (0).
If the probability density p (Δφ ) that the quantity Δφ takes the value of Δφ can be
described by a Gaussian function, i.e.

(18)

while δφ is the standard deviation of Δφ, the quantity η can be evaluated. When
the sampling time of the detector is much longer than the time scale at which
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the fluctuations take place, or the average of Eq. (6) is made within a period during
which the constituent fields have experienced a large number of fluctuations, one may
employ the Ergodic hypothesis and use the assemble average to replace the time
average. Thus, one can deduce that

(19)

For the in-phase mode, Δφ (0) is equal to zero. Under the circumstances, Eq. (8) can be
put down as 

(20)

where the subscripts “inc” and “coh” are used to indicate the incoherent and coherent
light intensities, respectively, and

(21a)

(21b)

Since the light intensity is zero at the directions of the dark fringes, from the above
equations it can be derived that the fringe contrast ratio Γ  of the far field pattern is

(22)

In deriving Eq. (22), we have assumed that the angular spacing between the bright
fringe and its nearest dark fringe is considerably smaller than the divergent angle
(FWHM) of | |2, thus the roll-off of | |2 can be neglected within this angular spacing.
Equation (22) tells us that the quantity η or δφ can be obtained by measuring the fringe
contrast on the far field pattern.

In Figure 4, dependences of δφ (a) and η (b) on the contrast ratio Γ  have been
plotted for N = 4, 8 and 19, respectively. From this diagram, it can be seen that
the standard deviation δφ of Δφ reduces, while, the η increases with the contrast
ratio Γ. The smaller the emitter number N is, the tighter the phase fluctuation should
be controlled for realizing the same contrast ratio Γ. In practice, it is conceivable that
it is difficult to force a large number of field phases to fall into a very small range.
Fortunately, the phase control is not so tight when the emitter number becomes large.
In laboratory, a contrast ratio of ≥ 0.8 has been observed from an external cavity
phase-locked diode array with 19 broad-stripe emitters [15]. However, if one wants to
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realize a contrast ratio approaching unity, the phase fluctuations should be strictly
controlled. In other words, for a completely coherent combination of laser beams, it
may become more difficult if the emitter number is larger.

5. Conclusions

Using Fourier optics method, an analytical expression of the far field of coherently
combined laser beams is obtained, and an explicit expression has been derived for
the case when emitters are positioned on apexes of multiple regular polygons with
a common center. Based upon this expression, it has been shown that the dark fringes
are far from being circles for the circular array when the emitter number is not large
enough. The fluctuation of the relative phase between constituent waves has been
discussed, and an expression for the fringes contrast ratio has been deduced with
the aid of Ergodic hypothesis. From this expression, it can be realized that for the case
when a larger number of beams should be coherently combined, the control on
the relative phase between individual fields may become less tight if one wants
to achieve a medium contrast ratio, say < 0.9. This is, no doubt, an encouragement for
people who want to phase lock more laser beams.
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